Annotation of ttbar/p20_taujets_note/TriggParam.tex, revision 1.1

1.1     ! uid12904    1: \section{Trigger Parametrization \label{sec:trig_param}}
        !             2: 
        !             3: As aforementioned the trigger used in this analysis is JT2$\_$3JT15L$\_$IP$\_$VX. 
        !             4: In both v15 and v16 trigger versions, this trigger has 4 terms at level 2. Currently, only 
        !             5: three of these, the L2 $H_{T}$, missing $E_{T}$ ($\not\!\! E_{T}$) and 
        !             6: sphericity based branches have been modelled by the $hbb$ group \cite{bIDH_note}. Therefore
        !             7: these are the ones used in this analysis. The missing term is the acoplanarity term, namely,
        !             8: L2JET(1,20,2.4) L2HT(35,6) MJT(20,10) L2ACOP(168.75), which is the same in both 
        !             9: v15 and v15 trigger lists.
        !            10: 
        !            11: 
        !            12: Table \ref{tabtrigcond} shows the L1, L2 and L3 requirements of the trigger.
        !            13: 
        !            14: 
        !            15: In its work, the $hbb$ group has parametrized the trigger in three instantaneous luminosity 
        !            16: ($10^{32}$)regions: low ($L_{int} <$ 77 ), medium ( 77 $\leq L_{int} <$ 124 ) and 
        !            17: high ( $L_{int} \geq 124$ ). The final goal is to measure the total trigger efficiency for our events. In order to 
        !            18: do so we take into account both the trigger probabilities and the b-tag probabilities. Thus, the trigger
        !            19: probabilities for 0, 1, 2 and 3 or more b-tagged jets are then multiplied by the probabilities
        !            20: of 0, 1, 2 and 3 or more jets being tagged, which are themselves got from TRF's, as described in section \ref{sec:nntag}. 
        !            21: 
        !            22: The trigger efficiency is computed as a probability ({\it TrigWeight}) which we associate to each
        !            23: MC event with:
        !            24: 
        !            25: \begin{center}
        !            26: \begin{equation}
        !            27: P \displaystyle = P_{t0}*P_{b0} + P_{t1}*P_{b1} + P_{t2}*P_{b2} + P_{t\geq 3}*P_{b\geq 3}
        !            28: \end{equation}
        !            29: \end{center}
        !            30: 
        !            31: \noindent where $P_{ti}$ is the trigger probability for the event if it has $i$ b-tags and  $P_{bi}$ is in turn
        !            32: the probability of having $i$ b-tags in the event offline reconstruction.\\
        !            33: 
        !            34: What follows is a brief description of how the trigger probabilities at each level were calculated. Single-object
        !            35: turn-on curves were determined using muon triggered events from the TOPJETTRIG skim.
        !            36: Some turn-on curves are found in Appendix \ref{app:turnon}. A more complete description can be found in \cite{bIDH_note}.
        !            37: 
        !            38: \clearpage
        !            39: 
        !            40: 
        !            41: \begin{table}[h]
        !            42: \begin{small}
        !            43: \begin{center}
        !            44: %\subtable[v15]{
        !            45:   \begin{tabular}{l c}
        !            46:     \hline\hline
        !            47:     Level & v15    \\
        !            48:     \hline
        !            49:     L1 & CSWJT(3,8,3.2)CSWJT(2,15,2.4)CSWJT(1,30,2.4) \\
        !            50:     L2 & L2JET(3,6) L2HT(75,6) SPHER(0.1) OR\\ 
        !            51:   & L2JET(1,30,2.6) L2JET(2,15,2.6) L2JET(3,8) L2HT(75,6) MJT(10,10) OR \\
        !            52:   & L2JET(1,30,2.6) L2JET(2,15,2.6) L2JET(3,8) L2HT(100,6) \\
        !            53:     L3 & L3JET(3,15,3.6) L3JET(2,25,3.6) $\mathrm{|z_{PV}|< 35\;cm}$ BTAG(0.4) \\
        !            54:                \hline
        !            55:     Name & JT2$\_$3JT15L$\_$IP$\_$VX  \\
        !            56:     \hline\hline
        !            57:   \end{tabular}
        !            58: 
        !            59:   \begin{tabular}{l c}
        !            60:     \hline\hline
        !            61:     Level & v16    \\
        !            62:     \hline
        !            63:     L1 & CSWJT(3,8,3.2)CSWJT(2,15,2.4)CSWJT(1,30,2.4) \\
        !            64:     L2 & L2JET(3,6) L2HT(75,6) SPHER(0.1) STTIP(1,5.5,3) OR\\
        !            65:   & L2JET(1,30,2.6) L2JET(2,15,2.6) L2JET(3,8) L2HT(75,6) MJT(20,10) OR \\
        !            66:   & L2JET(1,30,2.4) L2JET(2,15,2.4) L2JET(3,8,2.4) L2HT(75,6) STTIP(1,5.5,3)\\
        !            67:     L3 & L3JET(3,15,3.6) JT(2,25,3.6) $\mathrm{|z_{PV}|< 35\;cm}$ BTAG(0.4) \\
        !            68:                \hline
        !            69:     Name & JT2$\_$3JT15L$\_$IP$\_$VX  \\
        !            70:     \hline\hline
        !            71:   \end{tabular}
        !            72: %}
        !            73: \end{center}
        !            74: \caption{\small Level-by-level description of trigger JT2$\_$3JT15L$\_$IP$\_$VX. The 
        !            75: CSWJT(x,y,z) term corresponds to x L1 jets above y~GeV and within 
        !            76: $\mathrm{|\eta| < z}$. The JT(x,y,z) term corresponds to x jets
        !            77: reconstructed at L2 or L3 with $p_T > y$ GeV and $\mathrm{|\eta|<z}$. The HT(x,y) term is used only at 
        !            78: L2 and requires that the sum of the transverse momenta of L2 jets with $p_T > y$ GeV is above x~GeV. 
        !            79: The SPHER(0.1) term requires the event sphericity calculated from L2 jets to be greater than 0.1.  
        !            80: The MJT(x,y) term corresponds to a missing transverse energy $>$ x~GeV calculated from jets 
        !            81: with $E_{T} >$ y~GeV. The STTIP(1,5.5,3) term requires one L2STT track with an impact parameter 
        !            82: significance greater than or equal to three and a $\chi^{2} < 5.5$. 
        !            83: The $\mathrm{|z_{PV}|< 35\;cm}$ term requires the primary vertex reconstructed 
        !            84: at L3 to be within 35 cm of the center of the detector and the BTAG(0.4) term is used 
        !            85: only at L3 and corresponds to a cut of 0.4 on the probability for the event to not contain a $b$-quark.}
        !            86: \label{tabtrigcond}
        !            87: \end{small}
        !            88: \end{table}
        !            89: 
        !            90: 
        !            91: \subsection{\label{sub:trig_paramL1}\boldmath Level 1}
        !            92: 
        !            93: \noindent Level 1 consists of jet terms only: 1 jet with $E_{T} >$ 30 GeV and $|\eta| < 2.4$, a second jet 
        !            94: with $E_{T} >$ 15 GeV and $|\eta| < 2.4$
        !            95: and a third jet with $E_{T} >$ 8 GeV and $|\eta| < 3.2$. The total L1 probability is given by
        !            96: 
        !            97: \begin{equation}
        !            98: \begin{split}
        !            99: P(L1) &= [P(\geq 3 \mbox{jets}) + P(= 2 \mbox{jets})*P(\geq 1 \mbox{noise jet}) + P(= 1 \mbox{jet})*P(\geq 2 \mbox{noise jets}) + P(= 0 \mbox{jets})*P(\geq 3 \mbox{noise jets})]\\
        !           100:       &* [P(\geq 2 \mbox{jets}) + P(= 1 \mbox{jet})*P(\geq 1 \mbox{noise jet}) + P(= 0 \mbox{jets})*P(\geq 2 \mbox{noise jets})] \\
        !           101:       &* [P(\geq 1 \mbox{jet}) + P(= 0 \mbox{jets})*P(\geq 1 \mbox{noise jet})]
        !           102: \end{split}
        !           103: \end{equation}
        !           104: 
        !           105: \noindent where $P(\geq x jets)$ is the probability of having $x$ or more jets present in the event and $P(= x jets)$ is 
        !           106: the probability of having exactly $x$ jets in the event. The term {\it noise jets} refers to all 
        !           107: those L1 jets that didn't match to an offline jet within $\Delta R < 0.5$. In the equation above the first line
        !           108: corresponds to the term CSWJT(3,8,$\mathrm{|\eta|<3.2}$), the second to the term 
        !           109: CSWJT(2,15,$\mathrm{|\eta|<2.4}$) and the third to the term CSWJT(1,30,$\mathrm{|\eta|<2.4}$).
        !           110: L1 jets that matched offline ones had their turn-on curves parametrized as functions of 
        !           111: offline jet $p{T}$'s. The number of noise jets per event was parametrized as a function
        !           112: of offline $H_{T}$. All L1 turn-on curves are found in Appendix \ref{app:jetturnon_L1}.
        !           113: 
        !           114: \subsection{\label{sub:trig_paramL2}\boldmath Level 2}
        !           115: 
        !           116: \noindent Level 2 part of this trigger consists of an OR of three terms (here classified as
        !           117: {\it top}, {\it hbb} and {\it mjt}), each with a variation for v15 and v16:
        !           118: 
        !           119: \begin{description}
        !           120: \item[v15 top:] 3 jets with $p_{T} >$8 GeV, 2 with $p_{T} >$15~GeV, 1 with $p_{T} >$30~GeV and $H_{T} >$100~GeV
        !           121: \item[v16 top:] 3 jets with $p_{T} >$8 GeV, 2 with $p_{T} >$15~GeV, 1 with $p_{T} >$30~GeV, $H_{T} >$75~GeV and STT IP with IPSIG $\geq$ 3 and $\chi^{2} < 5.5$.
        !           122: \item[v15 hbb:] 3 jets with $p_{T} >$6 GeV, $H_{T} >$75~GeV and sphericity $>$ 0.1
        !           123: \item[v16 hbb:] 3 jets with $p_{T} >$6 GeV, $H_{T} >$75~GeV, sphericity $>$ 0.1 and STT IP with IPSIG $\geq$ 3 and $\chi^{2} < 5.5$.
        !           124: \item[v15 mjt:] 3 jets with $p_{T} >$8 GeV, 2 jets with $p_{T} >$15~GeV, 1 jet with $p_{T} >$30~GeV, $H_{T} >$75~GeV and $\not\!\!E_{T}$ $>$ 10~GeV.
        !           125: \item[v16 mjt:] 3 jets with $p_{T} >$8 GeV, 2 jets with $p_{T} >$15~GeV, 1 jet with $p_{T} >$30~GeV, $H_{T} >$75~GeV and $\not\!\!E_{T}$ $>$ 20~GeV.
        !           126: \end{description}
        !           127: 
        !           128: For this level the net trigger probability is
        !           129: 
        !           130: \begin{center}
        !           131: \begin{equation}
        !           132: \begin{split}
        !           133: P(L2) &= P(hbb \cup mht \cup top)\\
        !           134:       &= P(top) + P(hbb) + P(mht) - P(top \cap hbb) - P(top \cap mht) - P(hbb \cap mht) + P(hbb \cap mht \cap top)
        !           135: \end{split}
        !           136: \end{equation}
        !           137: \end{center}
        !           138: 
        !           139: \noindent where P(x) corresponds to the probability of either L2, the mht, hbb or the top term firing.
        !           140: 
        !           141: 
        !           142: \noindent {\bf Level 2 jet terms}: from Table \ref{tabtrigcond} we see that for v15 trigger 
        !           143: version, L2 jets terms are actually 
        !           144: subsets of L1. As here conditional probability is used, it means that the probability of L2 jet terms 
        !           145: firing if L1 terms fired is unity. However in v16 the Pt requirement of jets in the first trigger term
        !           146: was loosened from 8 to 6 GeV and $\eta$ requirement on 8 GeV jets in the third trigger term 
        !           147: was tightened from $|\eta| < 3.2$ to $|\eta| < 2.4$. As in the L1 case, all L2 jets matching offline
        !           148: ones had their turn-on curves parametrized as functions of offline jet $p_{T}$'s, except
        !           149: for noise jets, whose number in each event which paratrized as funcions of offline $H_{t}$. 
        !           150: Turn-on curves for these cases are found in Appendix \ref{app:jetturnon_L2}.
        !           151: 
        !           152: \noindent {\bf Level 2 $H_{T}$ term}: this term consists of a cut of $H_{T}$ $> 75$~GeV for v15 
        !           153: and $H_{T}$ $>~100$~GeV for v16). Correspondent turn-on curves are shown in Appendix \ref{app:htturnon_L2}.
        !           154: 
        !           155: \noindent {\bf Level 2 $\not\!\!E_{T}$ term}: the correspondent $\not\!\!E_{T}$ cuts are $> 10~$GeV and $>~20$~GeV
        !           156: for v15 and v16 respectively. Their turn-on are shown in Appendix \ref{app:mhtturnon_L2}.
        !           157: 
        !           158: \noindent {\bf L2 Sphericity Term}: this term requires a sphericity cut of $>$ 0.1. 
        !           159: Corresponding turn-on curves are shown in Appendix \ref{app:spherturnon_L2}.
        !           160: 
        !           161: 
        !           162: \noindent {\bf L2 STT}: the L2STTIP efficiency was measured for events in v16 which have passed the rest of the 
        !           163: L1, L2 (L2top OR L2hbb) and L3 (except L3 b-tag) 
        !           164: trigger requirements and the offline three to five jet selection. The efficiency was measured versus 
        !           165: the invariant mass of the two 
        !           166: leading jets, separately for 0, 1, 2 and 3 offline tight NN b-tagged events, in the three different luminosity regions. 
        !           167: Appendix \ref{app:sttip_L2} shows the STTIP(1,5.5,3) efficiency versus the 
        !           168: leading invariant di-jet mass in the low, medium and high luminosity range for different number of offline b-tags.   
        !           169: 
        !           170: \subsection{\label{sub:trig_paramL3}\boldmath Level 3}
        !           171: 
        !           172: \noindent L3 consists of a jet part and a b-tag one. For the jet part of L3, turn-on curves were 
        !           173: determined for events passing both L1 and L2 requirements. Corresponding probability is given the equation below
        !           174: 
        !           175: \begin{equation}
        !           176: \begin{split}
        !           177: P(L3) &= [P(\geq 3 \mbox{jets}) + P(= 2 \mbox{jets})*P(\geq 1 \mbox{noise jet}) + P(= 1 \mbox{jet})*P(\geq 2 \mbox{noise jets}) + P(= 0 \mbox{jets})*P(\geq 3 \mbox{noise jets})]\\
        !           178:       &* [P(\geq 2 \mbox{jets}) + P(= 1 \mbox{jet})*P(\geq 1 \mbox{noise jet}) + P(= 0 \mbox{jets})*P(\geq 2 \mbox{noise jets})] 
        !           179: \end{split}
        !           180: \end{equation}
        !           181: 
        !           182: \noindent In the equation above the first line
        !           183: corresponds to the term JT(3,15,$\mathrm{|\eta|<3.6}$), the second to the term 
        !           184: JT(2,25,$\mathrm{|\eta|<3.6}$). Here was applied the same treatment to L3 jets matching offline ones and to noise 
        !           185: jets as in L1 and L2 jet terms. Corresponding turn-on curves are shown in Appendix \ref{app:jetturnon_L1}.
        !           186: 
        !           187: 
        !           188: Efficiencies for the b-tag part of L3 were measured in two different ways depending whether the trigger list was v15 
        !           189: or v16. In the v15 case events were recorded with the JT2$\_$4JT20 and JT2$\_$3JT12L$\_$MM3$\_$V triggers, 
        !           190: since their L1 and L2 conditions were exactly the same. Events were further required to pass the 
        !           191: rest of L3 conditions of JT2$\_$3JT15L$\_$IP$\_$VX and the offline event selection. In the v16 case 
        !           192: efficiencies were measured in a similar fashion, but using
        !           193: trigger JT4$\_$3JT15L$\_$VX (which has no L2STT or L3BTAG requirements). Events were then required 
        !           194: to have fired one of the three L2 branches of JT2$\_$3JT15L$\_$IP$\_$VX and to pass the offline 
        !           195: three to five jet selection. All turn-on curves for both trigger lists are found in Appendix \ref{app:btagturnon_L3}.
        !           196: 
        !           197: \clearpage

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>