Annotation of ttbar/p20_taujets_note/Tools.tex, revision 1.1.1.1

1.1       uid12904    1: 
                      2: \section{Tools}
                      3: 
                      4: 
                      5: \subsection{Object ID}
                      6: 
                      7: 
                      8: \subsubsection{\label{sub:tau--ID}$\tau$ ID}
                      9: 
                     10: 
                     11: \paragraph{Tau decay modes}
                     12: 
                     13: The $\tau$ lepton have several decay channels, classified by the
                     14: number of charged particles (tracks) associated with it \cite{PDG}
                     15: :
                     16: 
                     17: \begin{itemize}
                     18: \item electron + muon ($\tau\rightarrow e\nu_{e}\nu_{\tau}$ or $\tau\rightarrow\mu\nu_{\mu}\nu_{\tau})$,
                     19: BR = 35\% 
                     20: \item charged hadron ($\tau\rightarrow\pi^{-}\nu_{\tau}$), BR =12\% 
                     21: \item charged hadron + $\geq1$ neutral particle (i.e. $\tau\rightarrow\rho^{-}\nu_{\tau}\rightarrow\pi^{0}n+\pi^{-}\nu_{\tau}$)
                     22: , BR = 38\% 
                     23: \item 3 charged hadrons + $\geq0$ neutral hadrons, BR = 15\% (so-called
                     24: {}``3-prong'' decays) 
                     25: \end{itemize}
                     26: 
                     27: \paragraph{Tau ID variables}
                     28: 
                     29: At D0 $\tau$s are identified in their hadronic modes (contributing
                     30: to inefficiency of id) as narrow (0.3 cone) jets,isolated and matched
                     31: to a charged track. The (most important) discriminating variables
                     32: are \cite{tau ID}:
                     33: 
                     34: \begin{itemize}
                     35: \item Profile - $\frac{E_{T}^{1}+E_{T}^{0}}{\sum_{i}E_{T}^{i}}$, where
                     36: $E_{T}^{i}$ is the $E_{T}$ of the ith highest $E_{T}$ tower in
                     37: the cluster 
                     38: \item Isolation, defined as $\frac{E(0.5)-E(0.3)}{E(0.3)}$, where $E(R)$
                     39: is the energy contained in a radius of R around cal cluster centroid 
                     40: \item Track isolation, defined as $\sum p_{T}$ of non-$\tau$ tracks in
                     41: cone of 0.5 around the calorimeter cluster centroid 
                     42: \end{itemize}
                     43: Using these and other variables, 2 Neural Networks are trained to
                     44: identify 3 types of $\tau$ ($\pi$-type, $\rho$-type and 3-prong)
                     45: 
                     46: The output of these NN provides a set of 3 variables (nnout 1... 3)
                     47: to be used to select $\tau$ in the event. The high values of NN have
                     48: to correspond to the physical $\tau$ leptons, while the low ones
                     49: should indicate fakes. For more details, see \cite{tau ID}.
                     50: 
                     51: 
                     52: \paragraph{Energy Scale}
                     53: 
                     54: In \cite{ingo1} the process $Z\rightarrow\tau\tau$ had been studied.
                     55: In particular the Figure 4 of that note demonstrates an excellent
                     56: agreement between the data and $Z\rightarrow\tau\tau$ MC in distribution
                     57: of the invariant mass of the $\tau$ pair. Figure 15 of \cite{ingo2}
                     58: shows other important properties ($P_{T}$ of $\tau$ and $\not E_{T}$)
                     59: which also agree very well. Since no energy correction had been applied
                     60: to the $\tau$ in this work, one can conclude that we can take the
                     61: energy scale of $\tau$ ID to be 1.
                     62: 
                     63: 
                     64: \paragraph{Performance }
                     65: 
                     66: The $\tau$ NN had been trained and optimized for the low jet multiplicity
                     67: events (i.e. $Z\rightarrow\tau\tau$). We wanted to compare its performance
                     68: for the high multiplicity signal (top) that we are searching for here.
                     69: 
                     70: In order to evaluate the ID efficiency reliably one has to match the
                     71: reconstructed $\tau$ candidate with the true $\tau$ from MC. We
                     72: start with all the $\tau$ candidates in an event, regardless of the
                     73: quality. We then want to select those that can be with high confidence
                     74: correspond to the real $\tau$ leptons. The assumption is that those
                     75: $\tau$ candidates, whose energy and direction matched to a physical
                     76: $\tau$ are indeed representing the detector signature of this particle.
                     77: We can then determine how well does the $\tau$ ID identify this $\tau$
                     78: lepton. Figure \ref{cap:Matching-of-MC} illustrates the matching
                     79: procedure - the $\tau$ candidates with $\Delta R$ from a real MC
                     80: $\tau$ of 0.05 and $\Delta P$ of 10 GeV are deemed to be the {}``real''
                     81: matched $\tau$
                     82: 
                     83: For such $\tau$ we plotted the NN for different $\tau$ types (Fig
                     84: \ref{cap:NN-for-matched}). From these one can determine the efficiency
                     85: of $\tau$ ID for various cuts on NN (Fig \ref{tauID}).
                     86: 
                     87: %
                     88: \begin{figure}
                     89: \subfigure[$\Delta R$ between reco $\tau$ and MC $\tau$]{\includegraphics[scale=0.3]{plots_for_talk/drmin}}\subfigure[$\Delta R$ between reco $\tau$ and MC $\tau$ (low values)]{\includegraphics[scale=0.3]{plots_for_talk/drmin_zoomed}}
                     90: 
                     91: \subfigure[Difference in energy between reco and MC $\tau$]{\includegraphics[scale=0.3]{plots_for_talk/dpmin}}\subfigure[Difference in energy between MC and reco $\tau$ that were matched in angle]{\includegraphics[scale=0.3]{plots_for_talk/dpmin005}}
                     92: 
                     93: 
                     94: \caption{Matching of MC $\tau$ and reco $\tau$. Black is $Z\rightarrow\tau\tau$,
                     95: red is $t\overline{t}\rightarrow\tau+jets$The histograms are normalized
                     96: to 1 to enable comparision.}
                     97: 
                     98: \label{cap:Matching-of-MC} 
                     99: \end{figure}
                    100: 
                    101: 
                    102: %
                    103: \begin{figure}
                    104: \subfigure[NN for ALL types]{\includegraphics[scale=0.3]{plots_for_talk/nnmatched}}\subfigure[NN for type 1]{\includegraphics[scale=0.3]{plots_for_talk/nn1matched}}
                    105: 
                    106: \subfigure[NN type 2]{\includegraphics[scale=0.3]{plots_for_talk/nn2matched}}\subfigure[NN for type 3]{\includegraphics[scale=0.3]{plots_for_talk/nn3matched}}
                    107: 
                    108: 
                    109: \caption{NN for matched $\tau$. Black is $Z\rightarrow\tau\tau$, red is
                    110: $t\overline{t}\rightarrow\tau+jets$. The histograms are normalized
                    111: to 1 to enable comparision.}
                    112: 
                    113: \label{cap:NN-for-matched} 
                    114: \end{figure}
                    115: 
                    116: 
                    117: %
                    118: \begin{figure}
                    119: \subfigure[ALL types]{\includegraphics[scale=0.3]{plots_for_talk/eff0}}\subfigure[Type 1]{\includegraphics[scale=0.3]{plots_for_talk/eff1}}
                    120: 
                    121: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots_for_talk/eff2}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots_for_talk/eff3}}
                    122: 
                    123: 
                    124: \caption{$\tau$ ID Efficiencies for different types. Black is $Z\rightarrow\tau\tau$,
                    125: red is $t\overline{t}\rightarrow\tau+jets$}
                    126: 
                    127: \label{tauID} 
                    128: \end{figure}
                    129: 
                    130: 
                    131: In order to choose the best cut on $\tau$ NN one has to also consider
                    132: the fake rate (the number of fake $\tau$ candidates passing the ID
                    133: requirements successfully). For this purpose we had examined the $\tau$
                    134: candidates in the preselected ALLJET data sample (the details of preselection
                    135: are described in section \ref{sub:Preselection}). Since this dataset
                    136: is QCD dominated (no more then 0.2\% of electroweak is expected) we
                    137: can safely assume all $\tau$ in it to be fake (this assumption will
                    138: be employed again for our QCD background estimation in section \ref{sub:QCD-modeling}).
                    139: Figure \ref{cap:NN-for-fake} shows the distribution of NN for the
                    140: $\tau$. From this we can determine the fake rate dependence on NN
                    141: cut (Fig \ref{tauID_Fake}). We can note that type 3 has noticeably
                    142: higher fake rate. This is to be expected, since most jets have higher
                    143: track multiplicities than type 1 and 2 $\tau$ making it harder for
                    144: them to pass $\tau$ ID requirements.
                    145: 
                    146: %
                    147: \begin{figure}
                    148: \subfigure[NN for ALL types]{\includegraphics[scale=0.3]{plots/NN0fakeNN}}\subfigure[NN for type 1]{\includegraphics[scale=0.3]{plots/NN1akeNN}}
                    149: 
                    150: \subfigure[NN type 2]{\includegraphics[scale=0.3]{plots/NN2akeNN}}\subfigure[NN for type 3]{\includegraphics[scale=0.3]{plots/NN3akeNN}}
                    151: 
                    152: 
                    153: \caption{NN for fake $\tau$}
                    154: 
                    155: \label{cap:NN-for-fake} 
                    156: \end{figure}
                    157: 
                    158: 
                    159: %
                    160: \begin{figure}
                    161: \subfigure[ALL types]{\includegraphics[scale=0.3]{plots/NN0fake}}\subfigure[Type 1]{\includegraphics[scale=0.3]{plots/NN1fake}}
                    162: 
                    163: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NN2fake}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NN3fake}}
                    164: 
                    165: 
                    166: \caption{$\tau$ ID Fake Rate for different types}
                    167: 
                    168: \label{tauID_Fake} 
                    169: \end{figure}
                    170: 
                    171: 
                    172: On Fig \ref{tauID_Fake_Eff} we plot the fake rate vs. efficiency
                    173: of the $\tau$ ID for our channel. From this we can select the optimal
                    174: selection cut on $\tau$ NN, based on the $\tau$ID significance,
                    175: defined as $\frac{Number\, of\, real\, taus}{\sqrt{Number\, of\, real+Number\, fakes}}$
                    176: (Fig \ref{tauID_Fake_signif}). It is computed on our preselected
                    177: analysis data set (section \ref{sub:Preselection})
                    178: 
                    179: We can conclude that D0 $\tau$ ID algorithm has efficiency for $t\bar{t}$
                    180: comparable with $Z\rightarrow\tau\tau$. The optimal cut on $\tau$
                    181: NN appears to be 0.95 for all the types.
                    182: 
                    183: %
                    184: \begin{figure}
                    185: \subfigure[ALL types]{\includegraphics[scale=0.3]{plots/NN0fake_eff}}\subfigure[Type 1]{\includegraphics[scale=0.3]{plots/NN1fake_eff}}
                    186: 
                    187: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NN2fake_eff}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NN3fake_eff}}
                    188: 
                    189: 
                    190: \caption{$\tau$ ID Efficiency vs. the Fake rate. Type 2 is the cleanest,
                    191: type 3 has highest fake rate, as expected}
                    192: 
                    193: \label{tauID_Fake_Eff} 
                    194: \end{figure}
                    195: 
                    196: 
                    197: %
                    198: \begin{figure}
                    199: \subfigure[ALL types]{\includegraphics[scale=0.3]{plots/NN0fake_signif}}\subfigure[Type 1]{\includegraphics[scale=0.3]{plots/NN1fake_signif}}
                    200: 
                    201: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NN2fake_signif}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NN3fake_signif}}
                    202: 
                    203: 
                    204: \caption{$\tau$ ID Significance vs. the NN cut. The 0.95 cut appears to be
                    205: advantageous for all the types}
                    206: 
                    207: \label{tauID_Fake_signif} 
                    208: \end{figure}
                    209: 
                    210: 
                    211: 
                    212: \subsubsection{\label{sub:B-tagging}B-tagging}
                    213: 
                    214: The chosen b-tagging algorithm is Secondary Vertex Tagger (SVT) \cite{b-ID}.
                    215: It is characterized by high (compared to other taggers) purity, which
                    216: is essential for such QCD-dominated channel as ours.
                    217: 
                    218: The algorithm reconstructs secondary vertices inside a jet, using
                    219: the jet's associated tracks. The tracks are also required to pass
                    220: a set of cuts outlined in Table \ref{cap:The-standard-cuts}. Then,
                    221: the decay length significance is computed. If the jet has this significance
                    222: grater then 7 (for SVT TIGHT) it is considered b-tagged.
                    223: 
                    224: As can be seen from Figures \ref{cap:SVT-Signifficance} and \ref{cap:SVT-Signifficance_data},
                    225: the TIGHT cut is most appropriate for our signal.
                    226: 
                    227: %
                    228: \begin{table}
                    229: \begin{tabular}{|l|l|l|l|}
                    230: \hline 
                    231: {\large SVT}&
                    232: &
                    233: &
                    234: \tabularnewline
                    235: \hline 
                    236: &
                    237: LOOSE &
                    238: MEDIUM &
                    239: TIGHT\tabularnewline
                    240: \hline 
                    241: Number of SMT hits &
                    242: 2 &
                    243: 2 &
                    244: 2\tabularnewline
                    245: \hline 
                    246: $P_{T}$ of tracks &
                    247: 1 GeV/c &
                    248: 1 GeV/c &
                    249: 1 GeV/c\tabularnewline
                    250: \hline 
                    251: impact parameter significance of tracks &
                    252: 3 &
                    253: 3.5 &
                    254: 3.5\tabularnewline
                    255: \hline 
                    256: track $\chi^{2}$&
                    257: 10 &
                    258: 10 &
                    259: 10\tabularnewline
                    260: \hline 
                    261: max vertex $\chi^{2}$&
                    262: 100 &
                    263: 100 &
                    264: 100\tabularnewline
                    265: \hline 
                    266: vertex collinearity &
                    267: 0.9 &
                    268: 0.9 &
                    269: 0.9\tabularnewline
                    270: \hline 
                    271: max vertex decay length &
                    272: 2.6cm &
                    273: 2.6cm &
                    274: 2.6cm\tabularnewline
                    275: \hline 
                    276: Decay Length Significance Cut &
                    277: 5 &
                    278: 6 &
                    279: 7\tabularnewline
                    280: \hline
                    281: \end{tabular}
                    282: 
                    283: 
                    284: \caption{The standard cuts on SVT \cite{b-ID}}
                    285: 
                    286: \label{cap:The-standard-cuts} 
                    287: \end{table}
                    288: 
                    289: 
                    290: %
                    291: \begin{figure}
                    292: \includegraphics[scale=0.5]{MS_thesis/proposal_plots/svt}
                    293: 
                    294: 
                    295: \caption{SVT Decay Length Significance for the b-jets in $t\overline{t}\rightarrow\mu+jets$
                    296: MC}
                    297: 
                    298: \label{cap:SVT-Signifficance} 
                    299: \end{figure}
                    300: 
                    301: 
                    302: %
                    303: \begin{figure}
                    304: \subfigure[SVT significance across the entire range]{\includegraphics[scale=0.3]{plots/svt_data}}\subfigure[SVT significance at values near 0]{\includegraphics[scale=0.3]{plots/svt_data_zoomed}}
                    305: 
                    306: 
                    307: \caption{SVT Decay Length Significance for all the jets in the ALLJET skim
                    308: data.}
                    309: 
                    310: \label{cap:SVT-Signifficance_data} 
                    311: \end{figure}
                    312: 
                    313: 
                    314: 
                    315: \paragraph{Taggability}
                    316: 
                    317: In order to reconstruct a secondary vertex in a jet, the jet must
                    318: contain at least 2 tracks. If such tracks are found and their $P_{T}$
                    319: is greater then 0.5 GeV the jet is called taggable. In MC it is important
                    320: to distinguish the taggability from the tagging efficiency, since
                    321: the later depends on the jet's flavor.
                    322: 
                    323: 
                    324: \paragraph{B-tagging efficiency}
                    325: 
                    326: It is known that b-tagging applied directly to MC gives an overestimated
                    327: efficiency. In order to account for this factor SVT had been parameterized
                    328: on $t\overline{t}\rightarrow\mu+jets$ MC and $\mu+jets$ data to
                    329: compute the correction factor, which has to be applied to MC. As result
                    330: we obtain the MC tagging probability and data corrected one (Figure
                    331: \ref{bID}). It can be noted that the data corrected efficiency is
                    332: indeed noticeably (>30\%) lower then what we would expect by applying
                    333: SVT directly to MC.
                    334: 
                    335: 
                    336: \paragraph{C-tagging efficiency}
                    337: 
                    338: An assumption is made that the correction factor obtained by dividing
                    339: the semi-leptonic b-tagging efficiency in data to the one in MC also
                    340: is correct for c-jets. Hence the MC-obtained inclusive c-taging efficiency
                    341: is multiplied by this factor (and by it's taggability too) in order
                    342: to estimate the c-tagging probability
                    343: 
                    344: 
                    345: \paragraph{Light jet tagging efficiency}
                    346: 
                    347: The b-tag fake rate from light quarks is computed by measuring the
                    348: negative tag rate. It is defined by the rate of appearance of secondary
                    349: vertices with negative decay length significance. It is assumed that
                    350: the light quarks have equal chances to produce SV with positive and
                    351: negative decay length significance (due to finite resolution effects)
                    352: while the heavy flavor jets can only produce SV with positive decay
                    353: length significance. This however is not quite true and a special
                    354: scaling factor ($SF_{hf}$) is introduced to correct for the fraction
                    355: of heavy flavors among the jets with the negative decay length significance.
                    356: Another correction is for the presence of the long lived particles
                    357: in light jets ($SF_{ll}$). Both factors are derived from Monte Carlo.
                    358: 
                    359: %
                    360: \begin{figure}
                    361: \subfigure[SVT efficiency]{\includegraphics[scale=0.3]{plots/SVTeff_pt}}\subfigure[SVT efficiency]{\includegraphics[scale=0.3]{plots/SVTeff_eta}}
                    362: 
                    363: \subfigure[SVT efficiency parametrized on data]{\includegraphics[scale=0.3]{plots/SVTeff}}\subfigure[SVT efficiency parametrized on MC]{\includegraphics[scale=0.3]{plots/SVTeffMC}}
                    364: 
                    365: 
                    366: \caption{SVT Efficiency for $t\overline{t}\rightarrow\tau+jets$ MC. Red is
                    367: MC parameterization black is data-corrected. Flavor depancance is
                    368: taken into account. The lower plots show 2D parametrizations}
                    369: 
                    370: \label{bID} 
                    371: \end{figure}
                    372: 
                    373: 
                    374: 
                    375: \paragraph{Event tagging efficiency}
                    376: 
                    377: The tag rates and the taggability had been combined and used to predict
                    378: the probability for a jet to be b-tagged (b-tagging weight). The final
                    379: resulting per-event probability of having at least one such a tag
                    380: for the $t\overline{t}\rightarrow\tau+jets$ MC is plotted on Figure
                    381: \ref{cap:The-probability-to}
                    382: 
                    383: %
                    384: \begin{figure}
                    385: \includegraphics[scale=0.5]{plots/ttb_eventprobtag}
                    386: 
                    387: 
                    388: \caption{The probability to tag at least one jet with SVT for $t\overline{t}\rightarrow\tau+jets$
                    389: MC}
                    390: 
                    391: \label{cap:The-probability-to} 
                    392: \end{figure}
                    393: 
                    394: 
                    395: Finally it has to be noted that we tried to avoid th overlap between
                    396: $\tau$ ID and b-tagging. That is we remove the jets, matched to a
                    397: 0.8 $\tau$ candidate within $\Delta R$ = 0.5
                    398: 
                    399: 
                    400: \subsection{Trigger}
                    401: 
                    402: 
                    403: \subsubsection{\label{sub:Running-trigsim}Running TRIGSIM}
                    404: 
                    405: In order to search for a signal one has to collect the data with a
                    406: chosen set of triggers. We want to find such a combination so to maximize
                    407: the fraction of signal events written out.
                    408: 
                    409: For that purpose the trigger simulation program was run on the MC
                    410: signal. The following efficiencies were obtained (for 12.30 version
                    411: of the global D0 trigger definition list) (Table \ref{cap:Event-overlaps-between})
                    412: 
                    413: %
                    414: \begin{table}
                    415: \begin{tabular}{|l||l||}
                    416: \hline 
                    417: {\large Trigger}&
                    418: {\large Fraction of events passing}\tabularnewline
                    419: \hline 
                    420: 4JT12 &
                    421: 0.74$\pm$0.05\tabularnewline
                    422: 3J15\_2J25\_PVZ &
                    423: 0.73$\pm$0.05\tabularnewline
                    424: MHT30\_3CJT5&
                    425: 0.68$\pm$0.04\tabularnewline
                    426: MU\_JT20\_L2M0&
                    427: 0.30$\pm$0.01\tabularnewline
                    428: \hline 
                    429: \multicolumn{1}{|l|}{MU\_JT20\_L2M0 \&\& MHT30\_3CJT5}&
                    430: \multicolumn{1}{||l||}{0.2$\pm$0.01}\tabularnewline
                    431: \hline 
                    432: \multicolumn{1}{||l}{MHT30\_3CJT5 \&\& 4JT12}&
                    433: \multicolumn{1}{||l||}{0.4$\pm$0.04 }\tabularnewline
                    434: \hline 
                    435: \multicolumn{1}{||l}{4JT12 \&\& 3J15\_2J25\_PVZ}&
                    436: \multicolumn{1}{||l||}{0.67$\pm$0.04}\tabularnewline
                    437: \hline
                    438: \end{tabular}
                    439: 
                    440: 
                    441: \caption{Trigger efficiencies and event overlaps between the most efficient
                    442: (for selecting $t\overline{t}\rightarrow\tau+jets$) unprescaled triggers.
                    443: As one can see 3J15\_2J25\_PVZ has large overlap with 4JT12, and since
                    444: 4JT12 is better studied it has been chosen for this analysis.}
                    445: 
                    446: \label{cap:Event-overlaps-between} 
                    447: \end{table}
                    448: 
                    449: 
                    450: Taking this into account, we are left with 3 triggers, giving altogether
                    451: \textasciitilde{}85\% efficiency:
                    452: 
                    453: $\mathit{MHT30\_3CJT5}$ - $\not\!\! E_{T}$ trigger, requiring at
                    454: least 30 GeV at level 3, which leads to \textasciitilde{}30\% inefficiency,
                    455: since our missing $E_{T}$ peaks around 50 GeV
                    456: 
                    457: $Description$: {\large L1}: At least three Calorimeter trigger towers
                    458: with $E_{T}$$>$5 GeV. {\large L2}: Require jet $E_{T}$$>$20. {\large L3}:
                    459: Vector $H_{T}$ sum $>$30 GeV. Also, one in 4000 events is recorded
                    460: and marked as {}``unbiased''
                    461: 
                    462: $\mathit{4JT12}$ - Trigger designed for the $t\bar{t}\rightarrow jets$
                    463: analysis \cite{alljet}. Meets all the jet number requirements, but
                    464: doesn't often have high enough $\not E_{T}$
                    465: 
                    466: $Description$: {\large L1}: At least three Calorimeter JET trigger
                    467: towers having $E_{T}$$>$5 GeV. {\large L2}: Three JET candidates
                    468: with $E_{T}$$>$8 GeV and HT $>$ 50 GeV. {\large L3}: Four $|$$\eta$$|$$<$3.6
                    469: jet candidates with $E_{T}$$>$10 GeV found using a simple cone algorithm.
                    470: Three of those jets must have $E_{T}$$>$15 GeV. Record one in 500
                    471: events marked as 'unbiased'.
                    472: 
                    473: $\mathit{MU\_JT20\_L2M0}\mathbb{\,\,}$- Muon trigger with $<$20\%
                    474: efficiency for our signal, but it's unprescaled and has little overlap
                    475: with others
                    476: 
                    477: $Description$: {\large L1}: A single muon trigger based on muon scintillator
                    478: and also requiring one Calorimeter JET trigger tower with $E_{T}$>3
                    479: GeV. {\large L2}: At least one muon found meeting MEDIUM quality requirements
                    480: but no pT or region requirement. Also require at least one jet with
                    481: $E_{T}$>10 GeV. {\large L3}: At least one jet with $E_{T}$>20 GeV
                    482: is found using a simple cone algorithm. Additionally, one in 500 of
                    483: all events is recorded and marked as 'unbiased'.
                    484: 
                    485: 
                    486: \subsubsection{Triggers in version 13}
                    487: 
                    488: A new trigger list has recently been used for D0 data-taking. It includes
                    489: a number of new triggers and modifications to existing ones. Running
                    490: TRIGSIM on this triglist we discover that the triggers that were best
                    491: in v12 ($\mathit{4JT12}$ and $\mathit{MHT30\_3CJT5}$) are also most
                    492: efficient in v13. In fact, OR of just these two triggers gives 90$\pm$5\%
                    493: efficiency. The names and definitions of these triggers had changed:
                    494: 
                    495: 4JT12 became JT2\_4JT12L\_HT. An additional $H_{T}$ cut of 120 GeV
                    496: is being applied:
                    497: 
                    498: $Description$: {\large L1}: Three calorimeter trigger towers with
                    499: $E_{T}$>5 GeV. {\large L2}: Pass events with at least three JET candidates
                    500: with $E_{T}$>6 GeV and $H_{T}$, formed with jets above 6 GeV, greater
                    501: than 70 GeV. {\large L3}: Requires at least four jets with $E_{T}$
                    502: > 12 GeV and at at least three jets with $E_{T}$ > 15 GeV. Also require
                    503: at least two jets to have $E_{T}$ > 25 GeV . Event $H_{T}$ (calculated
                    504: using all jets with $E_{T}$>9 GeV) > 120 GeV .
                    505: 
                    506: MHT30\_3CJT5 became JT2\_MHT25\_HT.
                    507: 
                    508: $Description$:: {\large L1}: Three calorimeter trigger towers with
                    509: $E_{T}$>4 GeV, |$\eta$|<2.4, and two calorimeter trigger towers
                    510: with $E_{T}$>5 GeV. {\large L2}: Pass events with at least three
                    511: JET candidates with $E_{T}$>6 GeV and $H_{T}$, formed with jets
                    512: above 6 GeV, greater than 70 GeV {\large L3}: Vector $H_{T}$ sum
                    513: for the event must be above 25 GeV. Also require event scalar $H_{T}$
                    514: (calculated using all jets with $E_{T}$>9 GeV) > 125 GeV.
                    515: 
                    516: 
                    517: \subsubsection{Turn-on curves}
                    518: 
                    519: These features are reflected in the corresponding turn-on curves (integrated
                    520: efficiencies of signal) . Such a curve for MHT30 and 4JT12 triggers
                    521: is shown on Figure \ref{trig}.%
                    522: \begin{figure}
                    523: \includegraphics[scale=0.8]{MS_thesis/proposal_plots/MET_eff_new__7}
                    524: 
                    525: \includegraphics[scale=0.6]{MS_thesis/proposal_plots/4JT12jet3pt}
                    526: 
                    527: 
                    528: \caption{Integrated trigger efficiency for MHT30 and 4JT12 triggers for the
                    529: $t\overline{t}\rightarrow\tau+jets$ MC, obtained using TRIGSIM.}
                    530: 
                    531: \begin{centering}\label{trig}\par\end{centering}
                    532: \end{figure}
                    533: 
                    534: 
                    535: 
                    536: \subsubsection{Trigger simulation}
                    537: 
                    538: At the time of the analysis TRIGSIM had not reached the state in which
                    539: it could reliably reproduce the trigger efficiency on data. Therefore,
                    540: the accepted practice is to parameterize the trigger turn-ons on data
                    541: and apply this parameterization to MC files.
                    542: 
                    543: Such procedure was performed with the top\_trigger package \cite{top_trigger}.
                    544: On Figure \ref{cap:The-trigger-efficiency} one can see the results
                    545: of a test to check the validity of such approach. We used the dataset
                    546: collected by a single muon trigger (MU\_JT20\_L2M0). We can assume
                    547: that such data has little bias with respect to the 4JT10 trigger.
                    548: Hence, if we count the number of the 4 jet events that passed 4JT10
                    549: and compare it with the top\_trigger prediction for the same events
                    550: we can check how well does top\_trigger perform. As can be noted from
                    551: Figure \ref{cap:The-trigger-efficiency} the agreement is fairly good,
                    552: especially in the region which we use in this analysis (we require
                    553: jets to have $P_{T}>20$ GeV). The efficiency turn-on curve, produced
                    554: by top\_trigger is shown on Fig. \ref{cap:The-trigger-efficiency_MC}
                    555: and is in agreement with the TRIGSIM (Fig. \ref{trig}).
                    556: 
                    557: %
                    558: \begin{figure}
                    559: \includegraphics[scale=0.7]{plots/4JT10_MULOOSE}
                    560: 
                    561: 
                    562: \caption{The integrated trigger efficiency closure plot. Black is the MU\_JT20\_L2M0
                    563: data, red is top\_trigger prediction for this data.}
                    564: 
                    565: \label{cap:The-trigger-efficiency} 
                    566: \end{figure}
                    567: 
                    568: 
                    569: %
                    570: \begin{figure}
                    571: \includegraphics[scale=0.7]{plots/4JT12_EFF_toptrig}
                    572: 
                    573: 
                    574: \caption{The integrated trigger efficiency for the $t\overline{t}\rightarrow\tau+jets$
                    575: MC obtained using top\_trigger. }
                    576: 
                    577: \label{cap:The-trigger-efficiency_MC} 
                    578: \end{figure}
                    579: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>