Annotation of ttbar/p20_taujets_note/Tools.tex, revision 1.1

1.1     ! uid12904    1: 
        !             2: \section{Tools}
        !             3: 
        !             4: 
        !             5: \subsection{Object ID}
        !             6: 
        !             7: 
        !             8: \subsubsection{\label{sub:tau--ID}$\tau$ ID}
        !             9: 
        !            10: 
        !            11: \paragraph{Tau decay modes}
        !            12: 
        !            13: The $\tau$ lepton have several decay channels, classified by the
        !            14: number of charged particles (tracks) associated with it \cite{PDG}
        !            15: :
        !            16: 
        !            17: \begin{itemize}
        !            18: \item electron + muon ($\tau\rightarrow e\nu_{e}\nu_{\tau}$ or $\tau\rightarrow\mu\nu_{\mu}\nu_{\tau})$,
        !            19: BR = 35\% 
        !            20: \item charged hadron ($\tau\rightarrow\pi^{-}\nu_{\tau}$), BR =12\% 
        !            21: \item charged hadron + $\geq1$ neutral particle (i.e. $\tau\rightarrow\rho^{-}\nu_{\tau}\rightarrow\pi^{0}n+\pi^{-}\nu_{\tau}$)
        !            22: , BR = 38\% 
        !            23: \item 3 charged hadrons + $\geq0$ neutral hadrons, BR = 15\% (so-called
        !            24: {}``3-prong'' decays) 
        !            25: \end{itemize}
        !            26: 
        !            27: \paragraph{Tau ID variables}
        !            28: 
        !            29: At D0 $\tau$s are identified in their hadronic modes (contributing
        !            30: to inefficiency of id) as narrow (0.3 cone) jets,isolated and matched
        !            31: to a charged track. The (most important) discriminating variables
        !            32: are \cite{tau ID}:
        !            33: 
        !            34: \begin{itemize}
        !            35: \item Profile - $\frac{E_{T}^{1}+E_{T}^{0}}{\sum_{i}E_{T}^{i}}$, where
        !            36: $E_{T}^{i}$ is the $E_{T}$ of the ith highest $E_{T}$ tower in
        !            37: the cluster 
        !            38: \item Isolation, defined as $\frac{E(0.5)-E(0.3)}{E(0.3)}$, where $E(R)$
        !            39: is the energy contained in a radius of R around cal cluster centroid 
        !            40: \item Track isolation, defined as $\sum p_{T}$ of non-$\tau$ tracks in
        !            41: cone of 0.5 around the calorimeter cluster centroid 
        !            42: \end{itemize}
        !            43: Using these and other variables, 2 Neural Networks are trained to
        !            44: identify 3 types of $\tau$ ($\pi$-type, $\rho$-type and 3-prong)
        !            45: 
        !            46: The output of these NN provides a set of 3 variables (nnout 1... 3)
        !            47: to be used to select $\tau$ in the event. The high values of NN have
        !            48: to correspond to the physical $\tau$ leptons, while the low ones
        !            49: should indicate fakes. For more details, see \cite{tau ID}.
        !            50: 
        !            51: 
        !            52: \paragraph{Energy Scale}
        !            53: 
        !            54: In \cite{ingo1} the process $Z\rightarrow\tau\tau$ had been studied.
        !            55: In particular the Figure 4 of that note demonstrates an excellent
        !            56: agreement between the data and $Z\rightarrow\tau\tau$ MC in distribution
        !            57: of the invariant mass of the $\tau$ pair. Figure 15 of \cite{ingo2}
        !            58: shows other important properties ($P_{T}$ of $\tau$ and $\not E_{T}$)
        !            59: which also agree very well. Since no energy correction had been applied
        !            60: to the $\tau$ in this work, one can conclude that we can take the
        !            61: energy scale of $\tau$ ID to be 1.
        !            62: 
        !            63: 
        !            64: \paragraph{Performance }
        !            65: 
        !            66: The $\tau$ NN had been trained and optimized for the low jet multiplicity
        !            67: events (i.e. $Z\rightarrow\tau\tau$). We wanted to compare its performance
        !            68: for the high multiplicity signal (top) that we are searching for here.
        !            69: 
        !            70: In order to evaluate the ID efficiency reliably one has to match the
        !            71: reconstructed $\tau$ candidate with the true $\tau$ from MC. We
        !            72: start with all the $\tau$ candidates in an event, regardless of the
        !            73: quality. We then want to select those that can be with high confidence
        !            74: correspond to the real $\tau$ leptons. The assumption is that those
        !            75: $\tau$ candidates, whose energy and direction matched to a physical
        !            76: $\tau$ are indeed representing the detector signature of this particle.
        !            77: We can then determine how well does the $\tau$ ID identify this $\tau$
        !            78: lepton. Figure \ref{cap:Matching-of-MC} illustrates the matching
        !            79: procedure - the $\tau$ candidates with $\Delta R$ from a real MC
        !            80: $\tau$ of 0.05 and $\Delta P$ of 10 GeV are deemed to be the {}``real''
        !            81: matched $\tau$
        !            82: 
        !            83: For such $\tau$ we plotted the NN for different $\tau$ types (Fig
        !            84: \ref{cap:NN-for-matched}). From these one can determine the efficiency
        !            85: of $\tau$ ID for various cuts on NN (Fig \ref{tauID}).
        !            86: 
        !            87: %
        !            88: \begin{figure}
        !            89: \subfigure[$\Delta R$ between reco $\tau$ and MC $\tau$]{\includegraphics[scale=0.3]{plots_for_talk/drmin}}\subfigure[$\Delta R$ between reco $\tau$ and MC $\tau$ (low values)]{\includegraphics[scale=0.3]{plots_for_talk/drmin_zoomed}}
        !            90: 
        !            91: \subfigure[Difference in energy between reco and MC $\tau$]{\includegraphics[scale=0.3]{plots_for_talk/dpmin}}\subfigure[Difference in energy between MC and reco $\tau$ that were matched in angle]{\includegraphics[scale=0.3]{plots_for_talk/dpmin005}}
        !            92: 
        !            93: 
        !            94: \caption{Matching of MC $\tau$ and reco $\tau$. Black is $Z\rightarrow\tau\tau$,
        !            95: red is $t\overline{t}\rightarrow\tau+jets$The histograms are normalized
        !            96: to 1 to enable comparision.}
        !            97: 
        !            98: \label{cap:Matching-of-MC} 
        !            99: \end{figure}
        !           100: 
        !           101: 
        !           102: %
        !           103: \begin{figure}
        !           104: \subfigure[NN for ALL types]{\includegraphics[scale=0.3]{plots_for_talk/nnmatched}}\subfigure[NN for type 1]{\includegraphics[scale=0.3]{plots_for_talk/nn1matched}}
        !           105: 
        !           106: \subfigure[NN type 2]{\includegraphics[scale=0.3]{plots_for_talk/nn2matched}}\subfigure[NN for type 3]{\includegraphics[scale=0.3]{plots_for_talk/nn3matched}}
        !           107: 
        !           108: 
        !           109: \caption{NN for matched $\tau$. Black is $Z\rightarrow\tau\tau$, red is
        !           110: $t\overline{t}\rightarrow\tau+jets$. The histograms are normalized
        !           111: to 1 to enable comparision.}
        !           112: 
        !           113: \label{cap:NN-for-matched} 
        !           114: \end{figure}
        !           115: 
        !           116: 
        !           117: %
        !           118: \begin{figure}
        !           119: \subfigure[ALL types]{\includegraphics[scale=0.3]{plots_for_talk/eff0}}\subfigure[Type 1]{\includegraphics[scale=0.3]{plots_for_talk/eff1}}
        !           120: 
        !           121: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots_for_talk/eff2}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots_for_talk/eff3}}
        !           122: 
        !           123: 
        !           124: \caption{$\tau$ ID Efficiencies for different types. Black is $Z\rightarrow\tau\tau$,
        !           125: red is $t\overline{t}\rightarrow\tau+jets$}
        !           126: 
        !           127: \label{tauID} 
        !           128: \end{figure}
        !           129: 
        !           130: 
        !           131: In order to choose the best cut on $\tau$ NN one has to also consider
        !           132: the fake rate (the number of fake $\tau$ candidates passing the ID
        !           133: requirements successfully). For this purpose we had examined the $\tau$
        !           134: candidates in the preselected ALLJET data sample (the details of preselection
        !           135: are described in section \ref{sub:Preselection}). Since this dataset
        !           136: is QCD dominated (no more then 0.2\% of electroweak is expected) we
        !           137: can safely assume all $\tau$ in it to be fake (this assumption will
        !           138: be employed again for our QCD background estimation in section \ref{sub:QCD-modeling}).
        !           139: Figure \ref{cap:NN-for-fake} shows the distribution of NN for the
        !           140: $\tau$. From this we can determine the fake rate dependence on NN
        !           141: cut (Fig \ref{tauID_Fake}). We can note that type 3 has noticeably
        !           142: higher fake rate. This is to be expected, since most jets have higher
        !           143: track multiplicities than type 1 and 2 $\tau$ making it harder for
        !           144: them to pass $\tau$ ID requirements.
        !           145: 
        !           146: %
        !           147: \begin{figure}
        !           148: \subfigure[NN for ALL types]{\includegraphics[scale=0.3]{plots/NN0fakeNN}}\subfigure[NN for type 1]{\includegraphics[scale=0.3]{plots/NN1akeNN}}
        !           149: 
        !           150: \subfigure[NN type 2]{\includegraphics[scale=0.3]{plots/NN2akeNN}}\subfigure[NN for type 3]{\includegraphics[scale=0.3]{plots/NN3akeNN}}
        !           151: 
        !           152: 
        !           153: \caption{NN for fake $\tau$}
        !           154: 
        !           155: \label{cap:NN-for-fake} 
        !           156: \end{figure}
        !           157: 
        !           158: 
        !           159: %
        !           160: \begin{figure}
        !           161: \subfigure[ALL types]{\includegraphics[scale=0.3]{plots/NN0fake}}\subfigure[Type 1]{\includegraphics[scale=0.3]{plots/NN1fake}}
        !           162: 
        !           163: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NN2fake}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NN3fake}}
        !           164: 
        !           165: 
        !           166: \caption{$\tau$ ID Fake Rate for different types}
        !           167: 
        !           168: \label{tauID_Fake} 
        !           169: \end{figure}
        !           170: 
        !           171: 
        !           172: On Fig \ref{tauID_Fake_Eff} we plot the fake rate vs. efficiency
        !           173: of the $\tau$ ID for our channel. From this we can select the optimal
        !           174: selection cut on $\tau$ NN, based on the $\tau$ID significance,
        !           175: defined as $\frac{Number\, of\, real\, taus}{\sqrt{Number\, of\, real+Number\, fakes}}$
        !           176: (Fig \ref{tauID_Fake_signif}). It is computed on our preselected
        !           177: analysis data set (section \ref{sub:Preselection})
        !           178: 
        !           179: We can conclude that D0 $\tau$ ID algorithm has efficiency for $t\bar{t}$
        !           180: comparable with $Z\rightarrow\tau\tau$. The optimal cut on $\tau$
        !           181: NN appears to be 0.95 for all the types.
        !           182: 
        !           183: %
        !           184: \begin{figure}
        !           185: \subfigure[ALL types]{\includegraphics[scale=0.3]{plots/NN0fake_eff}}\subfigure[Type 1]{\includegraphics[scale=0.3]{plots/NN1fake_eff}}
        !           186: 
        !           187: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NN2fake_eff}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NN3fake_eff}}
        !           188: 
        !           189: 
        !           190: \caption{$\tau$ ID Efficiency vs. the Fake rate. Type 2 is the cleanest,
        !           191: type 3 has highest fake rate, as expected}
        !           192: 
        !           193: \label{tauID_Fake_Eff} 
        !           194: \end{figure}
        !           195: 
        !           196: 
        !           197: %
        !           198: \begin{figure}
        !           199: \subfigure[ALL types]{\includegraphics[scale=0.3]{plots/NN0fake_signif}}\subfigure[Type 1]{\includegraphics[scale=0.3]{plots/NN1fake_signif}}
        !           200: 
        !           201: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NN2fake_signif}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NN3fake_signif}}
        !           202: 
        !           203: 
        !           204: \caption{$\tau$ ID Significance vs. the NN cut. The 0.95 cut appears to be
        !           205: advantageous for all the types}
        !           206: 
        !           207: \label{tauID_Fake_signif} 
        !           208: \end{figure}
        !           209: 
        !           210: 
        !           211: 
        !           212: \subsubsection{\label{sub:B-tagging}B-tagging}
        !           213: 
        !           214: The chosen b-tagging algorithm is Secondary Vertex Tagger (SVT) \cite{b-ID}.
        !           215: It is characterized by high (compared to other taggers) purity, which
        !           216: is essential for such QCD-dominated channel as ours.
        !           217: 
        !           218: The algorithm reconstructs secondary vertices inside a jet, using
        !           219: the jet's associated tracks. The tracks are also required to pass
        !           220: a set of cuts outlined in Table \ref{cap:The-standard-cuts}. Then,
        !           221: the decay length significance is computed. If the jet has this significance
        !           222: grater then 7 (for SVT TIGHT) it is considered b-tagged.
        !           223: 
        !           224: As can be seen from Figures \ref{cap:SVT-Signifficance} and \ref{cap:SVT-Signifficance_data},
        !           225: the TIGHT cut is most appropriate for our signal.
        !           226: 
        !           227: %
        !           228: \begin{table}
        !           229: \begin{tabular}{|l|l|l|l|}
        !           230: \hline 
        !           231: {\large SVT}&
        !           232: &
        !           233: &
        !           234: \tabularnewline
        !           235: \hline 
        !           236: &
        !           237: LOOSE &
        !           238: MEDIUM &
        !           239: TIGHT\tabularnewline
        !           240: \hline 
        !           241: Number of SMT hits &
        !           242: 2 &
        !           243: 2 &
        !           244: 2\tabularnewline
        !           245: \hline 
        !           246: $P_{T}$ of tracks &
        !           247: 1 GeV/c &
        !           248: 1 GeV/c &
        !           249: 1 GeV/c\tabularnewline
        !           250: \hline 
        !           251: impact parameter significance of tracks &
        !           252: 3 &
        !           253: 3.5 &
        !           254: 3.5\tabularnewline
        !           255: \hline 
        !           256: track $\chi^{2}$&
        !           257: 10 &
        !           258: 10 &
        !           259: 10\tabularnewline
        !           260: \hline 
        !           261: max vertex $\chi^{2}$&
        !           262: 100 &
        !           263: 100 &
        !           264: 100\tabularnewline
        !           265: \hline 
        !           266: vertex collinearity &
        !           267: 0.9 &
        !           268: 0.9 &
        !           269: 0.9\tabularnewline
        !           270: \hline 
        !           271: max vertex decay length &
        !           272: 2.6cm &
        !           273: 2.6cm &
        !           274: 2.6cm\tabularnewline
        !           275: \hline 
        !           276: Decay Length Significance Cut &
        !           277: 5 &
        !           278: 6 &
        !           279: 7\tabularnewline
        !           280: \hline
        !           281: \end{tabular}
        !           282: 
        !           283: 
        !           284: \caption{The standard cuts on SVT \cite{b-ID}}
        !           285: 
        !           286: \label{cap:The-standard-cuts} 
        !           287: \end{table}
        !           288: 
        !           289: 
        !           290: %
        !           291: \begin{figure}
        !           292: \includegraphics[scale=0.5]{MS_thesis/proposal_plots/svt}
        !           293: 
        !           294: 
        !           295: \caption{SVT Decay Length Significance for the b-jets in $t\overline{t}\rightarrow\mu+jets$
        !           296: MC}
        !           297: 
        !           298: \label{cap:SVT-Signifficance} 
        !           299: \end{figure}
        !           300: 
        !           301: 
        !           302: %
        !           303: \begin{figure}
        !           304: \subfigure[SVT significance across the entire range]{\includegraphics[scale=0.3]{plots/svt_data}}\subfigure[SVT significance at values near 0]{\includegraphics[scale=0.3]{plots/svt_data_zoomed}}
        !           305: 
        !           306: 
        !           307: \caption{SVT Decay Length Significance for all the jets in the ALLJET skim
        !           308: data.}
        !           309: 
        !           310: \label{cap:SVT-Signifficance_data} 
        !           311: \end{figure}
        !           312: 
        !           313: 
        !           314: 
        !           315: \paragraph{Taggability}
        !           316: 
        !           317: In order to reconstruct a secondary vertex in a jet, the jet must
        !           318: contain at least 2 tracks. If such tracks are found and their $P_{T}$
        !           319: is greater then 0.5 GeV the jet is called taggable. In MC it is important
        !           320: to distinguish the taggability from the tagging efficiency, since
        !           321: the later depends on the jet's flavor.
        !           322: 
        !           323: 
        !           324: \paragraph{B-tagging efficiency}
        !           325: 
        !           326: It is known that b-tagging applied directly to MC gives an overestimated
        !           327: efficiency. In order to account for this factor SVT had been parameterized
        !           328: on $t\overline{t}\rightarrow\mu+jets$ MC and $\mu+jets$ data to
        !           329: compute the correction factor, which has to be applied to MC. As result
        !           330: we obtain the MC tagging probability and data corrected one (Figure
        !           331: \ref{bID}). It can be noted that the data corrected efficiency is
        !           332: indeed noticeably (>30\%) lower then what we would expect by applying
        !           333: SVT directly to MC.
        !           334: 
        !           335: 
        !           336: \paragraph{C-tagging efficiency}
        !           337: 
        !           338: An assumption is made that the correction factor obtained by dividing
        !           339: the semi-leptonic b-tagging efficiency in data to the one in MC also
        !           340: is correct for c-jets. Hence the MC-obtained inclusive c-taging efficiency
        !           341: is multiplied by this factor (and by it's taggability too) in order
        !           342: to estimate the c-tagging probability
        !           343: 
        !           344: 
        !           345: \paragraph{Light jet tagging efficiency}
        !           346: 
        !           347: The b-tag fake rate from light quarks is computed by measuring the
        !           348: negative tag rate. It is defined by the rate of appearance of secondary
        !           349: vertices with negative decay length significance. It is assumed that
        !           350: the light quarks have equal chances to produce SV with positive and
        !           351: negative decay length significance (due to finite resolution effects)
        !           352: while the heavy flavor jets can only produce SV with positive decay
        !           353: length significance. This however is not quite true and a special
        !           354: scaling factor ($SF_{hf}$) is introduced to correct for the fraction
        !           355: of heavy flavors among the jets with the negative decay length significance.
        !           356: Another correction is for the presence of the long lived particles
        !           357: in light jets ($SF_{ll}$). Both factors are derived from Monte Carlo.
        !           358: 
        !           359: %
        !           360: \begin{figure}
        !           361: \subfigure[SVT efficiency]{\includegraphics[scale=0.3]{plots/SVTeff_pt}}\subfigure[SVT efficiency]{\includegraphics[scale=0.3]{plots/SVTeff_eta}}
        !           362: 
        !           363: \subfigure[SVT efficiency parametrized on data]{\includegraphics[scale=0.3]{plots/SVTeff}}\subfigure[SVT efficiency parametrized on MC]{\includegraphics[scale=0.3]{plots/SVTeffMC}}
        !           364: 
        !           365: 
        !           366: \caption{SVT Efficiency for $t\overline{t}\rightarrow\tau+jets$ MC. Red is
        !           367: MC parameterization black is data-corrected. Flavor depancance is
        !           368: taken into account. The lower plots show 2D parametrizations}
        !           369: 
        !           370: \label{bID} 
        !           371: \end{figure}
        !           372: 
        !           373: 
        !           374: 
        !           375: \paragraph{Event tagging efficiency}
        !           376: 
        !           377: The tag rates and the taggability had been combined and used to predict
        !           378: the probability for a jet to be b-tagged (b-tagging weight). The final
        !           379: resulting per-event probability of having at least one such a tag
        !           380: for the $t\overline{t}\rightarrow\tau+jets$ MC is plotted on Figure
        !           381: \ref{cap:The-probability-to}
        !           382: 
        !           383: %
        !           384: \begin{figure}
        !           385: \includegraphics[scale=0.5]{plots/ttb_eventprobtag}
        !           386: 
        !           387: 
        !           388: \caption{The probability to tag at least one jet with SVT for $t\overline{t}\rightarrow\tau+jets$
        !           389: MC}
        !           390: 
        !           391: \label{cap:The-probability-to} 
        !           392: \end{figure}
        !           393: 
        !           394: 
        !           395: Finally it has to be noted that we tried to avoid th overlap between
        !           396: $\tau$ ID and b-tagging. That is we remove the jets, matched to a
        !           397: 0.8 $\tau$ candidate within $\Delta R$ = 0.5
        !           398: 
        !           399: 
        !           400: \subsection{Trigger}
        !           401: 
        !           402: 
        !           403: \subsubsection{\label{sub:Running-trigsim}Running TRIGSIM}
        !           404: 
        !           405: In order to search for a signal one has to collect the data with a
        !           406: chosen set of triggers. We want to find such a combination so to maximize
        !           407: the fraction of signal events written out.
        !           408: 
        !           409: For that purpose the trigger simulation program was run on the MC
        !           410: signal. The following efficiencies were obtained (for 12.30 version
        !           411: of the global D0 trigger definition list) (Table \ref{cap:Event-overlaps-between})
        !           412: 
        !           413: %
        !           414: \begin{table}
        !           415: \begin{tabular}{|l||l||}
        !           416: \hline 
        !           417: {\large Trigger}&
        !           418: {\large Fraction of events passing}\tabularnewline
        !           419: \hline 
        !           420: 4JT12 &
        !           421: 0.74$\pm$0.05\tabularnewline
        !           422: 3J15\_2J25\_PVZ &
        !           423: 0.73$\pm$0.05\tabularnewline
        !           424: MHT30\_3CJT5&
        !           425: 0.68$\pm$0.04\tabularnewline
        !           426: MU\_JT20\_L2M0&
        !           427: 0.30$\pm$0.01\tabularnewline
        !           428: \hline 
        !           429: \multicolumn{1}{|l|}{MU\_JT20\_L2M0 \&\& MHT30\_3CJT5}&
        !           430: \multicolumn{1}{||l||}{0.2$\pm$0.01}\tabularnewline
        !           431: \hline 
        !           432: \multicolumn{1}{||l}{MHT30\_3CJT5 \&\& 4JT12}&
        !           433: \multicolumn{1}{||l||}{0.4$\pm$0.04 }\tabularnewline
        !           434: \hline 
        !           435: \multicolumn{1}{||l}{4JT12 \&\& 3J15\_2J25\_PVZ}&
        !           436: \multicolumn{1}{||l||}{0.67$\pm$0.04}\tabularnewline
        !           437: \hline
        !           438: \end{tabular}
        !           439: 
        !           440: 
        !           441: \caption{Trigger efficiencies and event overlaps between the most efficient
        !           442: (for selecting $t\overline{t}\rightarrow\tau+jets$) unprescaled triggers.
        !           443: As one can see 3J15\_2J25\_PVZ has large overlap with 4JT12, and since
        !           444: 4JT12 is better studied it has been chosen for this analysis.}
        !           445: 
        !           446: \label{cap:Event-overlaps-between} 
        !           447: \end{table}
        !           448: 
        !           449: 
        !           450: Taking this into account, we are left with 3 triggers, giving altogether
        !           451: \textasciitilde{}85\% efficiency:
        !           452: 
        !           453: $\mathit{MHT30\_3CJT5}$ - $\not\!\! E_{T}$ trigger, requiring at
        !           454: least 30 GeV at level 3, which leads to \textasciitilde{}30\% inefficiency,
        !           455: since our missing $E_{T}$ peaks around 50 GeV
        !           456: 
        !           457: $Description$: {\large L1}: At least three Calorimeter trigger towers
        !           458: with $E_{T}$$>$5 GeV. {\large L2}: Require jet $E_{T}$$>$20. {\large L3}:
        !           459: Vector $H_{T}$ sum $>$30 GeV. Also, one in 4000 events is recorded
        !           460: and marked as {}``unbiased''
        !           461: 
        !           462: $\mathit{4JT12}$ - Trigger designed for the $t\bar{t}\rightarrow jets$
        !           463: analysis \cite{alljet}. Meets all the jet number requirements, but
        !           464: doesn't often have high enough $\not E_{T}$
        !           465: 
        !           466: $Description$: {\large L1}: At least three Calorimeter JET trigger
        !           467: towers having $E_{T}$$>$5 GeV. {\large L2}: Three JET candidates
        !           468: with $E_{T}$$>$8 GeV and HT $>$ 50 GeV. {\large L3}: Four $|$$\eta$$|$$<$3.6
        !           469: jet candidates with $E_{T}$$>$10 GeV found using a simple cone algorithm.
        !           470: Three of those jets must have $E_{T}$$>$15 GeV. Record one in 500
        !           471: events marked as 'unbiased'.
        !           472: 
        !           473: $\mathit{MU\_JT20\_L2M0}\mathbb{\,\,}$- Muon trigger with $<$20\%
        !           474: efficiency for our signal, but it's unprescaled and has little overlap
        !           475: with others
        !           476: 
        !           477: $Description$: {\large L1}: A single muon trigger based on muon scintillator
        !           478: and also requiring one Calorimeter JET trigger tower with $E_{T}$>3
        !           479: GeV. {\large L2}: At least one muon found meeting MEDIUM quality requirements
        !           480: but no pT or region requirement. Also require at least one jet with
        !           481: $E_{T}$>10 GeV. {\large L3}: At least one jet with $E_{T}$>20 GeV
        !           482: is found using a simple cone algorithm. Additionally, one in 500 of
        !           483: all events is recorded and marked as 'unbiased'.
        !           484: 
        !           485: 
        !           486: \subsubsection{Triggers in version 13}
        !           487: 
        !           488: A new trigger list has recently been used for D0 data-taking. It includes
        !           489: a number of new triggers and modifications to existing ones. Running
        !           490: TRIGSIM on this triglist we discover that the triggers that were best
        !           491: in v12 ($\mathit{4JT12}$ and $\mathit{MHT30\_3CJT5}$) are also most
        !           492: efficient in v13. In fact, OR of just these two triggers gives 90$\pm$5\%
        !           493: efficiency. The names and definitions of these triggers had changed:
        !           494: 
        !           495: 4JT12 became JT2\_4JT12L\_HT. An additional $H_{T}$ cut of 120 GeV
        !           496: is being applied:
        !           497: 
        !           498: $Description$: {\large L1}: Three calorimeter trigger towers with
        !           499: $E_{T}$>5 GeV. {\large L2}: Pass events with at least three JET candidates
        !           500: with $E_{T}$>6 GeV and $H_{T}$, formed with jets above 6 GeV, greater
        !           501: than 70 GeV. {\large L3}: Requires at least four jets with $E_{T}$
        !           502: > 12 GeV and at at least three jets with $E_{T}$ > 15 GeV. Also require
        !           503: at least two jets to have $E_{T}$ > 25 GeV . Event $H_{T}$ (calculated
        !           504: using all jets with $E_{T}$>9 GeV) > 120 GeV .
        !           505: 
        !           506: MHT30\_3CJT5 became JT2\_MHT25\_HT.
        !           507: 
        !           508: $Description$:: {\large L1}: Three calorimeter trigger towers with
        !           509: $E_{T}$>4 GeV, |$\eta$|<2.4, and two calorimeter trigger towers
        !           510: with $E_{T}$>5 GeV. {\large L2}: Pass events with at least three
        !           511: JET candidates with $E_{T}$>6 GeV and $H_{T}$, formed with jets
        !           512: above 6 GeV, greater than 70 GeV {\large L3}: Vector $H_{T}$ sum
        !           513: for the event must be above 25 GeV. Also require event scalar $H_{T}$
        !           514: (calculated using all jets with $E_{T}$>9 GeV) > 125 GeV.
        !           515: 
        !           516: 
        !           517: \subsubsection{Turn-on curves}
        !           518: 
        !           519: These features are reflected in the corresponding turn-on curves (integrated
        !           520: efficiencies of signal) . Such a curve for MHT30 and 4JT12 triggers
        !           521: is shown on Figure \ref{trig}.%
        !           522: \begin{figure}
        !           523: \includegraphics[scale=0.8]{MS_thesis/proposal_plots/MET_eff_new__7}
        !           524: 
        !           525: \includegraphics[scale=0.6]{MS_thesis/proposal_plots/4JT12jet3pt}
        !           526: 
        !           527: 
        !           528: \caption{Integrated trigger efficiency for MHT30 and 4JT12 triggers for the
        !           529: $t\overline{t}\rightarrow\tau+jets$ MC, obtained using TRIGSIM.}
        !           530: 
        !           531: \begin{centering}\label{trig}\par\end{centering}
        !           532: \end{figure}
        !           533: 
        !           534: 
        !           535: 
        !           536: \subsubsection{Trigger simulation}
        !           537: 
        !           538: At the time of the analysis TRIGSIM had not reached the state in which
        !           539: it could reliably reproduce the trigger efficiency on data. Therefore,
        !           540: the accepted practice is to parameterize the trigger turn-ons on data
        !           541: and apply this parameterization to MC files.
        !           542: 
        !           543: Such procedure was performed with the top\_trigger package \cite{top_trigger}.
        !           544: On Figure \ref{cap:The-trigger-efficiency} one can see the results
        !           545: of a test to check the validity of such approach. We used the dataset
        !           546: collected by a single muon trigger (MU\_JT20\_L2M0). We can assume
        !           547: that such data has little bias with respect to the 4JT10 trigger.
        !           548: Hence, if we count the number of the 4 jet events that passed 4JT10
        !           549: and compare it with the top\_trigger prediction for the same events
        !           550: we can check how well does top\_trigger perform. As can be noted from
        !           551: Figure \ref{cap:The-trigger-efficiency} the agreement is fairly good,
        !           552: especially in the region which we use in this analysis (we require
        !           553: jets to have $P_{T}>20$ GeV). The efficiency turn-on curve, produced
        !           554: by top\_trigger is shown on Fig. \ref{cap:The-trigger-efficiency_MC}
        !           555: and is in agreement with the TRIGSIM (Fig. \ref{trig}).
        !           556: 
        !           557: %
        !           558: \begin{figure}
        !           559: \includegraphics[scale=0.7]{plots/4JT10_MULOOSE}
        !           560: 
        !           561: 
        !           562: \caption{The integrated trigger efficiency closure plot. Black is the MU\_JT20\_L2M0
        !           563: data, red is top\_trigger prediction for this data.}
        !           564: 
        !           565: \label{cap:The-trigger-efficiency} 
        !           566: \end{figure}
        !           567: 
        !           568: 
        !           569: %
        !           570: \begin{figure}
        !           571: \includegraphics[scale=0.7]{plots/4JT12_EFF_toptrig}
        !           572: 
        !           573: 
        !           574: \caption{The integrated trigger efficiency for the $t\overline{t}\rightarrow\tau+jets$
        !           575: MC obtained using top\_trigger. }
        !           576: 
        !           577: \label{cap:The-trigger-efficiency_MC} 
        !           578: \end{figure}
        !           579: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>