Diff for /ttbar/p20_taujets_note/Systematics.tex between versions 1.1 and 1.2

version 1.1, 2011/05/18 21:30:39 version 1.2, 2011/06/01 01:20:54
Line 1 Line 1
 \newpage  \newpage
 \section{Systematic uncertainties}  \section{Systematic uncertainties}
   
 Several factors contribute to systematic uncertainties in the measurement. Here we describe such uncertainties.  The following components are added in quadrature to estimate the total systematic uncertainty.
   
 \subsection{JES}  \subsection{Jet Energy Scale}
   
 \noindent The jet energy scale (JES) systematic is determined by shifiting the jet energy scale   \noindent The jet energy scale (JES) systematic is determined by shifiting the jet energy scale 
 by $\pm 1 \sigma$ in all MC samples.  by $\pm 1 \sigma$ in all MC samples.
   
   
 \subsection{TES}  \subsection{Tau Energy Scale}
   
 \noindent The tau energy scale (TES) systematic is determined by shifiting the tau energy scale   \noindent The tau energy scale (TES) systematic is determined by shifiting the tau energy scale 
 by its uncertainty as given in \cite{tes_sys}.  by its uncertainty as given in \cite{tes_sys}.
Line 21  by its uncertainty as given in \cite{tes Line 21  by its uncertainty as given in \cite{tes
 resolution by $\pm 1 \sigma$ in all MC samples.  resolution by $\pm 1 \sigma$ in all MC samples.
   
 \subsection{Trigger}  \subsection{Trigger}
 \noindent Each event was corrected by the ratio of the actual and predicted trigger result as a function of $H_{T}$, which was  \noindent For this systematics, the level of agreement (as a function of $H_T$) when applying the trigger
   turn-on curves to 4-jet data events was measured. We then used the ratio between the predicted and the 
   actual trigger decision as a function of $H_T$ to assign a error due to the trigger modeling. All MC events
   were re-weighted by this ratio as a function of $H_T$, which was
 used based on the fact that the agreement varies as function of it.   used based on the fact that the agreement varies as function of it. 
   
   
Line 32  using different fragmentation functions. Line 35  using different fragmentation functions.
 \subsection{\boldmath $b$-tagging}  \subsection{\boldmath $b$-tagging}
   
 \noindent b-tagging uncertainty effects are taken into account by varying the  \noindent b-tagging uncertainty effects are taken into account by varying the
 systematic and statistical errors on the MC tagging weights.  systematic and statistical uncertainties on the MC tagging weights.
   
 These errors (which are computed using standard D\O\ b ID group tools) arise form several independent sources \cite{bID-p20}:  These uncertainties (which are computed using standard D0 b ID group tools) arise form several independent sources \cite{bID-p20}:
   
 \begin{itemize}  \begin{itemize}
 \item B-jet tagging parameterization.   \item B-jet tagging parameterization. 
Line 44  These errors (which are computed using s Line 47  These errors (which are computed using s
 %are derived from the statistical error due to finite MC statistics.   %are derived from the statistical error due to finite MC statistics. 
 \item Semi-leptonic b-tagging efficiency parameterization in MC and in data  \item Semi-leptonic b-tagging efficiency parameterization in MC and in data
 (System 8).   (System 8). 
 \item Taggability. This includes the statistical error due to finite statistic  \item Taggability. This includes the statistical uncertainty due to finite statistic
 in the samples from which it had been derived and systematic, reflecting  in the samples from which it had been derived and systematic, reflecting
 the (neglected) taggability dependence on the jet multiplicity.   the (neglected) taggability dependence on the jet multiplicity. 
 \end{itemize}  \end{itemize}
   
   
 \subsection{\boldmath $\tau$ ID systematics}  \subsection{\boldmath $\tau$ identification}
   
 \noindent Here we include systematics associated to the NN cut (NN $>$ 0.90 for taus types 1 and 2 and NN $>$ 0.95 for taus type 3)   \noindent Here we include systematics associated to the NN cut (NN $>$ 0.90 for taus types 1 and 2 and NN $>$ 0.95 for taus type 3) 
 applied to select hadronic taus. As recommended by the $\tau $-ID group  applied to select hadronic taus. As recommended by the $\tau $-ID group
 these systematics are 9.5\%, 3.5\% and 5.0\% for taus type 1, 2 and 3 respectively. However in this analysis we chose   these systematics are 9.5\%, 3.5\% and 5.0\% for taus type 1, 2 and 3 respectively. However in this analysis we chose 
 treat taus types 1 and 2 together. This led us to combine their uncertainties in the following way  to treat taus types 1 and 2 together. This led us to combine their uncertainties in the following way
   
 \begin{center}  \begin{center}
 \begin{equation}  \begin{equation}
 sys_{12} = \displaystyle \sqrt{\epsilon_{1}^{2}*f_{1}^{2} + \epsilon_{2}^{2}*f_{2}^{2}}  sys_{12} = \displaystyle \sqrt{\epsilon_{1}^{2} \cdot f_{1}^{2} + \epsilon_{2}^{2} \cdot f_{2}^{2}}
 \end{equation}  \end{equation}
 \end{center}  \end{center}
   
Line 67  sys_{12} = \displaystyle \sqrt{\epsilon_ Line 70  sys_{12} = \displaystyle \sqrt{\epsilon_
 $f_{1}$ and $f_{2}$ are the fractions of taus types 1 (0.16) and 2 (0.84) respectively.  $f_{1}$ and $f_{2}$ are the fractions of taus types 1 (0.16) and 2 (0.84) respectively.
   
   
 \subsection{\label{sub:qcd_syst}QCD systematics}  \subsection{\label{sub:qcd_syst}QCD modeling}
 As explained in the section \ref{sub:Variables} we use the control (b-veto) data set to   As explained in the section \ref{sub:Variables} we use the control (b-veto) sample to 
 validate our method of modeling the multijet background. Therefore we have to   validate our method of modeling the multijet background. Therefore we have to 
 use the same sample to evaluate the associated uncertainties. The way it was   use the same sample to evaluate the associated uncertainties. We did this
 done is by reweighting topological event NN for QCD template   by reweighting topological event NN for QCD template 
 (``loose-tight'' $\tau$), so that it matches the one for ``tight'' $\tau$ data exactly   (``loose-tight'' $\tau$), so that it matches the one for ``tight'' $\tau$ data exactly 
 (electroweak beckgrounds were subtracted).   (electroweak backgrounds were subtracted). 
 %Figure \ref{fig:qcd_reweight} shows that this scaling is close to 1, as it should be, since QCD template   %Figure \ref{fig:qcd_reweight} shows that this scaling is close to 1, as it should be, since QCD template 
 %models the QCD-dominated data very well.   %models the QCD-dominated data very well. 
   
 \subsection{W and Z scale factors}  \subsection{$W$ and $Z$ scale factors}
 We apply a ascale factor of 1.47 to both W + bb and W + cc events with an uncertainty of 15\%. At the same time a scales factors  We apply a scale factor of 1.47 to both $Wbb$ and $Wcc$ events with an uncertainty of 15\%. At the same time a scales factors
 of 1.52 and 1.67 are applied to Z + bb and Z + cc events, both with an uncertainty of 20\%.  of 1.52 and 1.67 are applied to $Zbb$ and $Zcc$ events, both with an uncertainty of 20\%.
   
   
 \subsection{Template statistics}  \subsection{Template statistics}
Line 90  varying the content of each bin of the Q Line 93  varying the content of each bin of the Q
 how the cross section result changed.  how the cross section result changed.
   
 \subsection{$t\bar{t}$ contamination in the loose-tight sample}  \subsection{$t\bar{t}$ contamination in the loose-tight sample}
 When measuring the cross-section we had to take into account the signal contamination in the loose-tight  When measuring the cross section we had to take into account the signal contamination in the loose-tight
 sample we use to model QCD in the high NN region. The systematic uncertainty in this case  sample we use to model QCD in the high NN region. The systematic uncertainty in this case
 is calculated by varying the final assumed cross section by $\pm 1 \sigma$, re-estimating the signal contamination  is calculated by varying the final assumed cross section by $\pm 1 \sigma$, re-estimating the signal contamination
 and finally measuring the up and down values of the cross section.  and finally measuring the up and down values of the cross section.
Line 98  and finally measuring the up and down va Line 101  and finally measuring the up and down va
 \subsection{PDF}  \subsection{PDF}
 Systematics on Parton Distribution Functions (PDF) are estimated by reweighting signal $t\bar{t}$ MC from  Systematics on Parton Distribution Functions (PDF) are estimated by reweighting signal $t\bar{t}$ MC from
 CTEQ6L1 to CTEQ6.1m and its twenty error PDF's. The reweighting of the PDF's is done by using {\tt caf\_pdfreweight}  CTEQ6L1 to CTEQ6.1m and its twenty error PDF's. The reweighting of the PDF's is done by using {\tt caf\_pdfreweight}
 package tool on Pythia $t\bar{t}$ MC. We then assigned the relative PDF uncertainty obtained with Pythia on the Alpgen  package tool on {\sc PYTHIA} $t\bar{t}$ MC. We then assigned the relative PDF uncertainty obtained with {\sc PYTHIA}
 $t\bar{t}$ MC.  on the {\sc ALPGEN} $t\bar{t}$ MC.
   
 \subsection{Luminosity}  \subsection{Luminosity}
 Here we take the D\O\ standard measured uncertainty on luminosity of 6.1$\%$ .  Here we take the D0 standard measured uncertainty on luminosity of 6.1$\%$ .
   
   
 Tables \ref{cap:Syst1} and \ref{cap:Syst2} summarize all of these uncertainty sources and shows how the resulting cross section shifts.  Tables \ref{cap:Syst1} and \ref{cap:Syst2} summarize all of these uncertainty sources and shows how the resulting cross section shifts.
Line 186  Channel& Line 189  Channel&
 {\footnotesize $_{+0.097, -0.084}$ }&  {\footnotesize $_{+0.097, -0.084}$ }&
 {\footnotesize $_{+0.188, -0.198}$ }&  {\footnotesize $_{+0.188, -0.198}$ }&
 {\footnotesize $_{+0.092, -0.081}$ }\\  {\footnotesize $_{+0.092, -0.081}$ }\\
   \hline
   {\footnotesize TOTAL }&
   {\footnotesize $_{+0.839, -0.791}$ }&
   {\footnotesize $_{+0.882, -0.820}$ }&
   {\footnotesize $_{+0.843, -0.779}$ }\\
   
 \end{tabular}{\footnotesize \par}  \end{tabular}{\footnotesize \par}
 %\end{ruledtabular}  %\end{ruledtabular}
Line 262  Channel& Line 270  Channel&
 {\footnotesize $_{+0.097, -0.084}$ }&  {\footnotesize $_{+0.097, -0.084}$ }&
 {\footnotesize $_{+0.188, -0.198}$ }&  {\footnotesize $_{+0.188, -0.198}$ }&
 {\footnotesize $_{+0.092, -0.081}$ }\\  {\footnotesize $_{+0.092, -0.081}$ }\\
   \hline
   {\footnotesize TOTAL }&
   {\footnotesize $_{+0.653, -0.613}$ }&
   {\footnotesize $_{+0.616, -0.607}$ }&
   {\footnotesize $_{+0.624, -0.596}$ }\\
   
 \end{tabular}{\footnotesize \par}  \end{tabular}{\footnotesize \par}
 %\end{ruledtabular}  %\end{ruledtabular}
Line 271  Channel& Line 284  Channel&
   
   
 \clearpage  \clearpage
   \section{Conclusion}
   
   In this analysis we presented of the $\sigma_{t\bar{t}}$ in the tau + jets channel using 4951.86 pb$^{-1}$
   of integrated luminosity. This cross section was $8.46\;\;_{-1.33}^{+1.38}\;\;({\textrm{stat}})$.
   
   \clearpage
   

Removed from v.1.1  
changed lines
  Added in v.1.2


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>