Diff for /ttbar/p20_taujets_note/Summary.tex between versions 1.1 and 1.2

version 1.1, 2011/05/18 21:30:40 version 1.2, 2011/06/01 01:20:54
Line 1 Line 1
 \section{\label{sub:xsect}Cross section}  \section{\label{sub:xsect}Cross section}
   
 Having presented the preselection yelds on Section \ref{sub:Preselection} we now show the results of the   Having presented the preselection yelds on Section \ref{sub:Preselection} we now show the results of the 
 efficiencies for $\tau$ ID, b-tagging and trigger for all $t\bar{t}$ channels  efficiencies for $\tau$ ID, b-tagging and trigger for all $t\bar{t}$ channels (only statistical uncertainties are shown).
   
   
 \begin{table}[h]  \begin{table}[h]
Line 14  Trigger  &  $ 84.54 \pm 0.55 \ $ &  $ 18 Line 14  Trigger  &  $ 84.54 \pm 0.55 \ $ &  $ 18
 b-tagging  &  $ 61.82 \pm 0.55 \ $ &  $ 11.61 \pm 0.16\ $  \\ \hline  b-tagging  &  $ 61.82 \pm 0.55 \ $ &  $ 11.61 \pm 0.16\ $  \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{$t\overline{t}\rightarrow\tau+jets$ final cut flow for taus types 1 and 2}   \caption{$t\overline{t}\rightarrow\tau+jets$ cut flow for taus of Types 1 and 2.} 
 %\end{center}  %\end{center}
 \label{taujets_final12}  \label{taujets_final12}
 \end{table}  \end{table}
Line 30  Trigger  &  $ 84.79 \pm 0.75 \ $ &  $ 10 Line 30  Trigger  &  $ 84.79 \pm 0.75 \ $ &  $ 10
 b-tagging  &  $ 59.63 \pm 0.75 \ $ &  $ 6.26 \pm 0.13\ $  \\ \hline  b-tagging  &  $ 59.63 \pm 0.75 \ $ &  $ 6.26 \pm 0.13\ $  \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{$t\overline{t}\rightarrow\tau+jets$ final cut flow for taus type 3}   \caption{$t\overline{t}\rightarrow\tau+jets$  cut flow for taus of Type 3} 
 %\end{center}  %\end{center}
 \label{taujets_final3}  \label{taujets_final3}
 \end{table}  \end{table}
Line 46  Trigger  &  $ 83.40 \pm 0.81 \ $ &  $ 9. Line 46  Trigger  &  $ 83.40 \pm 0.81 \ $ &  $ 9.
 b-tagging  &  $ 61.30 \pm 0.82 \ $ &  $ 5.52 \pm 0.12\ $  \\ \hline  b-tagging  &  $ 61.30 \pm 0.82 \ $ &  $ 5.52 \pm 0.12\ $  \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{$t\overline{t}\rightarrow e+jets$ final cut flow for taus types 1 and 2}   \caption{$t\overline{t}\rightarrow e+jets$ cut flow for taus of Types 1 and 2} 
 %\end{center}  %\end{center}
 \label{elecjets_final12}  \label{elecjets_final12}
 \end{table}  \end{table}
Line 61  Trigger  &  $ 83.62 \pm 1.77 \ $ &  $ 1. Line 61  Trigger  &  $ 83.62 \pm 1.77 \ $ &  $ 1.
 b-tagging  &  $ 58.26 \pm 1.76 \ $ &  $ 1.10 \pm 0.06\ $  \\ \hline  b-tagging  &  $ 58.26 \pm 1.76 \ $ &  $ 1.10 \pm 0.06\ $  \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{$t\overline{t}\rightarrow e+jets$ final cut flow for taus type 3}   \caption{$t\overline{t}\rightarrow e+jets$ cut flow for taus of Type 3} 
 %\end{center}  %\end{center}
 \label{elecjets_final3}  \label{elecjets_final3}
 \end{table}  \end{table}
Line 79  Trigger  &  $ 84.44 \pm 2.13 \ $ &  $ 2. Line 79  Trigger  &  $ 84.44 \pm 2.13 \ $ &  $ 2.
 b-tagging  &  $ 61.25 \pm 2.16 \ $ &  $ 1.75 \pm 0.11\ $  \\ \hline  b-tagging  &  $ 61.25 \pm 2.16 \ $ &  $ 1.75 \pm 0.11\ $  \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{$t\overline{t}\rightarrow \mu +jets$ final cut flow for taus types 1 and 2.}   \caption{$t\overline{t}\rightarrow \mu +jets$ cut flow for taus of Types 1 and 2.} 
 %\end{center}  %\end{center}
 \label{muonjets_final12}  \label{muonjets_final12}
 \end{table}  \end{table}
Line 95  Trigger  &  $ 82.79 \pm 2.04 \ $ &  $ 3. Line 95  Trigger  &  $ 82.79 \pm 2.04 \ $ &  $ 3.
 b-tagging  &  $ 58.11 \pm 2.05 \ $ &  $ 1.87 \pm 0.11\ $  \\ \hline  b-tagging  &  $ 58.11 \pm 2.05 \ $ &  $ 1.87 \pm 0.11\ $  \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{$t\overline{t}\rightarrow \mu +jets$ final cut flow for taus type 3}   \caption{$t\overline{t}\rightarrow \mu +jets$ cut flow for taus of Type 3.} 
 %\end{center}  %\end{center}
 \label{muonjets_final3}  \label{muonjets_final3}
 \end{table}  \end{table}
Line 111  Trigger  &  $ 79.56 \pm 0.90 \ $ &  $ 16 Line 111  Trigger  &  $ 79.56 \pm 0.90 \ $ &  $ 16
 b-tagging  &  $ 62.83 \pm 0.92 \ $ &  $ 10.59 \pm 0.25\ $  \\ \hline  b-tagging  &  $ 62.83 \pm 0.92 \ $ &  $ 10.59 \pm 0.25\ $  \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{$t\overline{t}\rightarrow dilepton$ final cut flow for taus types 1 and 2}   \caption{$t\overline{t}\rightarrow dilepton$ cut flow for taus of Types 1 and 2.} 
 %\end{center}  %\end{center}
 \label{dilep_final12}  \label{dilep_final12}
 \end{table}  \end{table}
Line 129  Trigger  &  $ 78.78 \pm 1.08 \ $ &  $ 11 Line 129  Trigger  &  $ 78.78 \pm 1.08 \ $ &  $ 11
 b-tagging  &  $ 63.62 \pm 1.11 \ $ &  $ 7.38 \pm 0.22\ $  \\ \hline  b-tagging  &  $ 63.62 \pm 1.11 \ $ &  $ 7.38 \pm 0.22\ $  \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{$t\overline{t}\rightarrow dilepton$ final cut flow for taus type 3.}   \caption{$t\overline{t}\rightarrow dilepton$ cut flow for taus of Type 3.} 
 %\end{center}  %\end{center}
 \label{dilep_final3}  \label{dilep_final3}
 \end{table}  \end{table}
Line 150  $t\overline{t}\rightarrow e+jets$  &  $ Line 150  $t\overline{t}\rightarrow e+jets$  &  $
 $t\overline{t}\rightarrow \mu +jets$  &  $ 1.67 \pm 0.01 $ &  $ 3.38 \pm 0.19 $ & $ 2.86 \pm 0.17 $ & $ 1.75 \pm 0.11 $\\  $t\overline{t}\rightarrow \mu +jets$  &  $ 1.67 \pm 0.01 $ &  $ 3.38 \pm 0.19 $ & $ 2.86 \pm 0.17 $ & $ 1.75 \pm 0.11 $\\
 $t\overline{t}\rightarrow dilepton$   &  $ 1.36 \pm 0.01 $ &  $ 21.18 \pm 0.37 $ & $ 16.85 \pm 0.34 $ & $ 10.59 \pm 0.25 $\\ \hline  $t\overline{t}\rightarrow dilepton$   &  $ 1.36 \pm 0.01 $ &  $ 21.18 \pm 0.37 $ & $ 16.85 \pm 0.34 $ & $ 10.59 \pm 0.25 $\\ \hline
 \end{tabular}  \end{tabular}
 \caption{Summary of all selections for taus type 1 \& 2.}   \caption{Summary of all selections for taus of Types 1 and 2.} 
 %\end{center}  %\end{center}
 \label{summary12}  \label{summary12}
 \end{table}  \end{table}
Line 166  $t\overline{t}\rightarrow e+jets$  &  $ Line 166  $t\overline{t}\rightarrow e+jets$  &  $
 $t\overline{t}\rightarrow \mu +jets$  &  $ 1.67 \pm 0.01 $ &  $ 3.88 \pm 0.21 $ & $ 3.21 \pm 0.18 $ & $ 1.87 \pm 0.11 $\\  $t\overline{t}\rightarrow \mu +jets$  &  $ 1.67 \pm 0.01 $ &  $ 3.88 \pm 0.21 $ & $ 3.21 \pm 0.18 $ & $ 1.87 \pm 0.11 $\\
 $t\overline{t}\rightarrow dilepton$   &  $ 1.36 \pm 0.01 $ &  $ 14.73 \pm 0.34 $ & $ 11.60 \pm 0.30 $ & $ 7.38 \pm 0.22 $\\ \hline  $t\overline{t}\rightarrow dilepton$   &  $ 1.36 \pm 0.01 $ &  $ 14.73 \pm 0.34 $ & $ 11.60 \pm 0.30 $ & $ 7.38 \pm 0.22 $\\ \hline
 \end{tabular}  \end{tabular}
 \caption{Summary of all selections for taus type 3.}   \caption{Summary of all selections for taus of Type 3.} 
 %\end{center}  %\end{center}
 \label{summary3}  \label{summary3}
 \end{table}  \end{table}
   
 %\clearpage  %\clearpage
   
 Table below summarizes the number of events in each channel after final selection.  Table \ref{event yeild summary1} summarizes the number of events in each channel after the final selection.
   
   
 \begin{table}[h]  \begin{table}[h]
Line 248  S/B ratio& Line 248  S/B ratio&
 0.08\\  0.08\\
 \end{tabular}  \end{tabular}
 %\end{ruledtabular}  %\end{ruledtabular}
 \label{event yeild summary}   \label{event yeild summary1} 
 \end{table}  \end{table}
 %  %
   
Line 257  S/B ratio& Line 257  S/B ratio&
 %The cross section is defined as   %The cross section is defined as 
 %$\sigma=\frac{Number\, of\, signal\, events}{\varepsilon(t\bar{t})\cdot BR(t\bar{t}\rightarrow \tau+jets)\cdot Luminosity}$.   %$\sigma=\frac{Number\, of\, signal\, events}{\varepsilon(t\bar{t})\cdot BR(t\bar{t}\rightarrow \tau+jets)\cdot Luminosity}$. 
 %However, we are not simply doing a `counting experiment`, but want to utilize the entire range of NN output.   %However, we are not simply doing a `counting experiment`, but want to utilize the entire range of NN output. 
 The cross section was measured by minimizing the sum of  The cross section is measured by minimizing the sum of
 the negative log-likelihood functions for each bin of both the types 1 and 2 channel and the type 3 $\tau$ channel.  the negative log-likelihood functions for each bin of both the Types 1 and 2 channel and the Type 3 $\tau$ channel.
 These are functions used by MINUIT to perform fits shown in Figs \ref{fig:nnout_type2} and \ref{fig:nnout_type3}   These are functions used by MINUIT to perform fits shown in Figs \ref{fig:nnout_type2} and \ref{fig:nnout_type3} 
 in Section \ref{sub:NN-variables}. But there $L$ was function of $f(QCD)$ and now we want to use it to measure the cross   in Section \ref{sub:NN-variables}. But there $L$ was function of $f(QCD)$ and now we want to use it to measure the cross 
 section, so we must express it in terms of $\sigma(\ttbar)$:  section, so we must express it in terms of $\sigma(\ttbar)$:
 \begin{center}  \begin{center}
 \begin{equation}  \begin{equation}
 L(\sigma, \tilde{N}_{i}, N^{obs}_{i}) \equiv  -log(\prod_{i} \frac{\tilde{N}^{N^{obs}_{i}}_{i}}{N^{obs}_{i}!}  e^{-\tilde{N}_{i}})  L(\sigma, \tilde{N}_{i}, N^{obs}_{i}) \equiv  -\ln(\prod_{i} \frac{\tilde{N}^{N^{obs}_{i}}_{i}}{N^{obs}_{i}!}  e^{-\tilde{N}_{i}})
   \label{log_xsec}
 \end{equation}  \end{equation}
 \end{center}  \end{center}
   
 \noindent where \(\tilde{N}_{i} = \sigma \times BR \times \mathcal{L} \times \epsilon(t\bar{t})_{i} + N_{bkg}\) is number   \noindent where \(\tilde{N}_{i} = \sigma \times BR \times \mathcal{L} \times \epsilon(t\bar{t})_{i} + N_{bkg}\) is number 
 events predicted in bin i of the data NN distribution and \(N^{obs}_{i}\) is the actual count observed in that bin.  events predicted in bin $i$ of the data NN distribution and \(N^{obs}_{i}\) is the actual count observed in that bin.
 The cross-section is then the minimum value of each function. But, as stressed out in Section \ref{sub:Results-of-the},   The minimum value of the graph of the function in Eq \ref{log_xsec} is the cross section. 
 we have to take   But, as stressed out in Section \ref{sub:Results-of-the}, we have to take 
 into account both signal ($\ttbar$) and electroweak contamination in the loose-tight sample we   into account both signal ($\ttbar$) and electroweak contamination in the loose-tight sample we 
 use to model QCD in the high NN region used for   use to model QCD in the high NN region used for 
 the measurement. The electroweak component is small and therefore it is kept fixed during the fit and   the measurement. The electroweak component is small and therefore it is kept fixed during the fit and 
Line 282  when we assumed a $t\bar{t}$ cross secti Line 283  when we assumed a $t\bar{t}$ cross secti
 events for taus types 1 and 2 are actually $\ttbar$ events and 3.0\% (12.37 events) of 412.22 QCD events   events for taus types 1 and 2 are actually $\ttbar$ events and 3.0\% (12.37 events) of 412.22 QCD events 
 for taus type 3 are actually $\ttbar$   for taus type 3 are actually $\ttbar$ 
 events. 12.55 and 12.37 events represent increases of 9.43\% and 37.35\% on the number of signal events for types 1 and 2  events. 12.55 and 12.37 events represent increases of 9.43\% and 37.35\% on the number of signal events for types 1 and 2
 and type 3 respectively. However this is not the final measurement yet since the cross-section   and type 3 respectively. However this is not the final measurement yet since the cross section 
 measurement only makes sense if the cross-section we measure in the and is the same as the one we have assumed  measurement only makes sense if the cross section we measure in the and is the same as the one we have assumed
 to normalize $t\bar{t}$ MC samples. This means that we had to iterate back  to normalize $t\bar{t}$ MC samples. This means that we had to iterate back
 by normalizing the signal samples until we found a convergence of the cross-section. Table XXIII summarizes  by normalizing the signal samples until we found a convergence of the cross section. Table 33 summarizes
 the iteration process.  the iteration process.
   
 \begin{table}[htbp]  \begin{table}[htbp]
Line 309  Assumed $\sigma(\ttbar)$ (pb)  & signal Line 310  Assumed $\sigma(\ttbar)$ (pb)  & signal
 \multicolumn{1}{|c|}{8.46}  & \multicolumn{1}{c|}{6.2} & \multicolumn{1}{c|}{3.4} & \multicolumn{1}{c|}{8.46} \\ \hline  \multicolumn{1}{|c|}{8.46}  & \multicolumn{1}{c|}{6.2} & \multicolumn{1}{c|}{3.4} & \multicolumn{1}{c|}{8.46} \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{Cross-section iteration process.}  \caption{Cross section iteration process.}
 \end{center}  \end{center}
 \label{iteration1}   \label{iteration1} 
 \end{table}  \end{table}
   
 Table above shows that when we assumed a cross-section of 8.46 pb we measured the exact same value, which means that we had to take   Table \ref{iteration1} shows that when we assumed a cross section of 8.46 pb we measured the exact same value, which means that we had to take 
 into account signal contaminations of 6.2\% (14.40 events) and 3.4\% (14.02 events) for taus types 1 and 2 and 3 respectively.   into account signal contaminations of 6.2\% (14.40 events) and 3.4\% (14.02 events) for taus types 1 and 2 and 3 respectively. 
 This represents an increase in the number of signal events of 10.82\% for types 1 and 2 and 42.33\% for type 3.  This represents an increase in the number of signal events of 10.82\% for types 1 and 2 and 42.33\% for type 3.
 By considering such events as part of the signal $\ttbar$  sample we measure for the cross-sections:  By considering such events as part of the signal $\ttbar$  sample we measure for the cross sections:
   
 %\newpage   %\newpage 
   
   
 \begin{center}$\tau$+jets types 1 and 2 cross section: \[\sigma (t\overline{t}) =   \begin{center}$\tau$+jets types 1 and 2 cross section: \[\sigma (t\overline{t}) = 
 8.83\;\;_{-1.12}^{+1.14}\;\;({\textrm{stat}})\;\;_{-0.94}^{+0.89}\;\;({\textrm{syst}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]  8.83\;\;_{-1.12}^{+1.14}\;\;({\textrm{stat}})\;\;_{-0.79}^{+0.84}\;\;({\textrm{syst}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
  \par\end{center}   \par\end{center}
   
 \begin{center}$\tau$+jets type 3 cross section: \[\sigma (t\overline{t}) =   \begin{center}$\tau$+jets type 3 cross section: \[\sigma (t\overline{t}) = 
 6.06\;\;_{-2.62}^{+2.77}\;\;({\textrm{stat}})\;\;_{-0.99}^{+0.94}\;\;({\textrm{syst}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]  6.06\;\;_{-2.62}^{+2.77}\;\;({\textrm{stat}})\;\;_{-0.82}^{+0.88}\;\;({\textrm{syst}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
 \par\end{center}  \par\end{center}
   
   
   
 \begin{center}Combined cross section: \[\sigma (t\overline{t}) =   \begin{center}Combined cross section: \[\sigma (t\overline{t}) = 
 8.46\;\;_{-1.04}^{+1.06}\;\;({\textrm{stat}})\;\;_{-0.88}^{+0.92}\;\;({\textrm{syst}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb.}\]  8.46\;\;_{-1.04}^{+1.06}\;\;({\textrm{stat}})\;\;_{-0.78}^{+0.84}\;\;({\textrm{syst}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb.}\]
 \par\end{center}  \par\end{center}
   
 \noindent The correspondent likelihoods of these measurements are shown in Figures \ref{fig:type2_llhood}, \ref{fig:type3_llhood}  \noindent The correspondent negative log likelihoods of these measurements are shown in 
   Figures \ref{fig:type2_llhood}, \ref{fig:type3_llhood}
 and \ref{fig:type123_llhood}. Figures \ref{fig:xsec_pres2_llhood}, \ref{fig:xsec_pres3_llhood}   and \ref{fig:type123_llhood}. Figures \ref{fig:xsec_pres2_llhood}, \ref{fig:xsec_pres3_llhood} 
 and \ref{fig:xsec_pres123_llhood} show zoomed in graphs of the same likelihood functions described above.  and \ref{fig:xsec_pres123_llhood} show zoomed in graphs of the same likelihood functions described above.
   
Line 399  Further investigation showed that the cu Line 401  Further investigation showed that the cu
 discrepancy. Below we show the same measurement as done above but now with no NNelec cut applied.  discrepancy. Below we show the same measurement as done above but now with no NNelec cut applied.
   
   
 Table below summarizes the number of events in each channel after final selection.  Table \ref{event yeild summary2} summarizes the number of events in each channel after final selection.
   
   
 \begin{table}[h]  \begin{table}[h]
Line 474  S/B ratio& Line 476  S/B ratio&
 0.08\\  0.08\\
 \end{tabular}  \end{tabular}
 %\end{ruledtabular}  %\end{ruledtabular}
 \label{event yeild summary}   \label{event yeild summary2} 
 \end{table}  \end{table}
 %  %
   
Line 501  Assumed $\sigma(\ttbar)$ (pb)  & signal Line 503  Assumed $\sigma(\ttbar)$ (pb)  & signal
 \multicolumn{1}{|c|}{6.92}  & \multicolumn{1}{c|}{5.5} & \multicolumn{1}{c|}{2.8} & \multicolumn{1}{c|}{6.92} \\ \hline  \multicolumn{1}{|c|}{6.92}  & \multicolumn{1}{c|}{5.5} & \multicolumn{1}{c|}{2.8} & \multicolumn{1}{c|}{6.92} \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{Cross-section iteration process.}  \caption{Cross section iteration process.}
 \end{center}  \end{center}
 \label{iteration}   \label{iteration2} 
 \end{table}  \end{table}
   
   
Line 525  Assumed $\sigma(\ttbar)$ (pb)  & signal Line 527  Assumed $\sigma(\ttbar)$ (pb)  & signal
 \par\end{center}  \par\end{center}
   
   
 As we can see the statistical uncertainty decreases to 0.54 pb which is in a good agreement to what we would expect if compared   As we can see the statistical uncertainty decreases to 0.54 pb, which is in a good agreement with what we would expect if compared 
 to 1.2 pb measured in p17. Appendix \ref{app:xsec_nocont} shows cross sections measurements when signal contamination is not  to the 1.2 pb measured in p17. Appendix \ref{app:xsec_nocont} shows cross section measurements when signal contamination is not
 taken into account for both NNelec $>$ 0.9 and no NNelec cut applied. Once again we observed a discrepancy when NNelec is applied  taken into account for both NNelec $>$ 0.9 and no NNelec cut applied. Once again, we observed the difference caused by the 
 and the expected value when NNelec is not applied.  NNelec requirement.

Removed from v.1.1  
changed lines
  Added in v.1.2


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>