Annotation of ttbar/p20_taujets_note/Strategy_and_Dataset.tex, revision 1.1.1.1

1.1       uid12904    1: 
                      2: \section{Strategy}
                      3: 
                      4: 
                      5: \subsection{\label{sub:Signal-characteristics}Signal characteristics}
                      6: 
                      7: 
                      8: \subsubsection{Parton level MC}
                      9: 
                     10: First of all we want to examine the properties of our signal. For
                     11: these purposes we used MC simulated samples (\textasciitilde{}10K
                     12: events each) generated with ALPGEN \cite{ALPGEN} interfaced to Pythia
                     13: \cite{PYTHIA} for showering and fragmentation.
                     14: 
                     15: 
                     16: \paragraph{$t\bar{t}$}
                     17: 
                     18: First of all we wanted to look at the properties of the top quark
                     19: itself. Figure \ref{t-jets} shows the $\eta$, $\phi$ and $P_{T}$
                     20: distributions.
                     21: 
                     22: %
                     23: \begin{figure}
                     24: \subfigure[$P_{T}$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_tjets}}\subfigure[$\eta$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_tjets}}
                     25: 
                     26: \subfigure[$\phi$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_tjets}}
                     27: 
                     28: 
                     29: \caption{Properties of t-quarks at the parton level in signal MC sample, $P_{T}$>
                     30: 15 GeV}
                     31: 
                     32: \begin{centering}\label{t-jets}\par\end{centering}
                     33: \end{figure}
                     34: 
                     35: 
                     36: 
                     37: \paragraph{$\tau$ and $\not\!\! E_{T}$}
                     38: 
                     39: The unique property of $\tau$ (compared to other leptons) is that
                     40: it emits neutrino in its decay before it even reaches detector volume,
                     41: contributing to the missing energy of the event. For this reason the
                     42: $\tau$, available for measurement is not the same as physical $\tau$
                     43: produced. Figure \ref{cap:MC taus} demonstrates how a sizable fraction
                     44: of $\tau$ momentum goes missing. The plots of $\tau$ $\eta$ (Figure
                     45: \ref{cap:MC taus}) and transverse mass with $\not\!\! E_{T}$ thus
                     46: are done for the visible part of $\tau$
                     47: 
                     48: This is to be compared with the $e+jets$ channel (Figure \ref{cap:MC elecs}).
                     49: As one can observe, the {}``total'' $\tau$ leptons behave very
                     50: simmilar to electrons, as of cause expected. However, after taking
                     51: into account the lost part of the $\tau$ energy situation becomes
                     52: very different.
                     53: 
                     54: %
                     55: \begin{figure}
                     56: \subfigure[Parton level  $\not E_{T}$  for the signal MC  (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/met_mc}}
                     57: \subfigure[mT of MC $\tau$ and  $\not E_{T} $ (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/mt_tau_met_mc}}
                     58: 
                     59: \subfigure[$\eta$  of the MC $\tau$ in signal MC (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_tau_mc}}
                     60: \subfigure[$P_{T}$ of the MC $\tau$ in signal MC (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_tau_mc}}
                     61: 
                     62: \subfigure[Visible energy fraction of $\tau$ in signal MC]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/visable_fraction}}
                     63: 
                     64: 
                     65: \caption{Properties of $\not\!\! E_{T}$ and $\tau$ at the parton level in
                     66: signal MC sample}
                     67: 
                     68: \begin{centering}\label{cap:MC taus}\par\end{centering}
                     69: \end{figure}
                     70: 
                     71: 
                     72: %
                     73: \begin{figure}
                     74: \subfigure[Parton level  $\not E_{T}$  for the signal MC  (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/met_mc_elec}}
                     75: \subfigure[mT of MC electron and  $\not E_{T} $ (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/mt_tau_met_mc_elec}}
                     76: 
                     77: \subfigure[$\eta$  of the MC electron in signal MC (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_tau_mc_elec}}
                     78: \subfigure[$P_{T}$ of the MC electron in signal MC (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_tau_mc_elec}}
                     79: 
                     80: 
                     81: \caption{Properties of $\not\!\! E_{T}$ and electron at the parton level
                     82: in $t\bar{t}\rightarrow e+jets$ MC sample}
                     83: 
                     84: \begin{centering}\label{cap:MC elecs}\par\end{centering}
                     85: \end{figure}
                     86: 
                     87: 
                     88: 
                     89: \paragraph{Jets}
                     90: 
                     91: b - jets are shown on Figure \ref{b-jets} while the product of W
                     92: decay are shown on Figure \ref{not b-jets}. This however doesn't
                     93: account for all the jets that will be reconstructed. Figure \ref{not b-jets-all}
                     94: demonstrates all the non-b quarks and gluons in a $t\bar{t}$ event.
                     95: 
                     96: %
                     97: \begin{figure}
                     98: \subfigure[Number of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/nbquarks}}
                     99: \subfigure[$P_{T}$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_bjets}}
                    100: 
                    101: \subfigure[$\eta$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_bjets}}
                    102: \subfigure[$\phi$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_bjets}}
                    103: 
                    104: 
                    105: \caption{Properties of b-quarks at the parton level in signal MC sample, $P_{T}$>
                    106: 15 GeV}
                    107: 
                    108: \begin{centering}\label{b-jets}\par\end{centering}
                    109: \end{figure}
                    110: 
                    111: 
                    112: %
                    113: \begin{figure}
                    114: \subfigure[Number of light quarks from the W decay]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/nlightquarks}}
                    115: \subfigure[$P_{T}$ of light quarks from the W decay]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_notbjets}}
                    116: 
                    117: \subfigure[$\eta$ of light quarks from the W decay]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_notbjets}}
                    118: \subfigure[$\phi$ of light quarks from the W decay]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_notbjets}}
                    119: 
                    120: 
                    121: \caption{Properties of light quarks from the W decay at the parton level in
                    122: signal MC sample, $P_{T}$> 15 GeV}
                    123: 
                    124: \begin{centering}\label{not b-jets}\par\end{centering}
                    125: \end{figure}
                    126: 
                    127: 
                    128: %
                    129: \begin{figure}
                    130: \subfigure[Number of not b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/nlightquarks_all}}
                    131: \subfigure[$P_{T}$ of not b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_notbjets_all}}
                    132: 
                    133: \subfigure[$\eta$ of not b-quarks ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_notbjets_all}}
                    134: \subfigure[$\phi$ of not b-quarks ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_notbjets_all}}
                    135: 
                    136: 
                    137: \caption{Properties of all the light quarks and gluons in an event at the
                    138: parton level in signal MC sample, $P_{T}$> 15 GeV}
                    139: 
                    140: \begin{centering}\label{not b-jets-all}\par\end{centering}
                    141: \end{figure}
                    142: 
                    143: 
                    144: 
                    145: \subsubsection{Detector signature (reconstructed Monte Carlo)}
                    146: 
                    147: Now we need to find out how well our experiment observes and reconstructs
                    148: this physical process. The $t\bar{t}\rightarrow\tau+jets$ Monte Carlo
                    149: file was processed through the detailed D0 Detector simulation. Jets
                    150: are reconstructed, using 0.5 radius cone (in $\eta-\phi$). Taus are
                    151: identified using tau ID algorithm and we apply 0.8 cut on the $\tau$
                    152: selection neural net (section \ref{sub:tau--ID}).
                    153: 
                    154: 
                    155: \paragraph{$\tau$ and $\not\!\! E_{T}$}
                    156: 
                    157: We can see that for reconstructed $\tau$'s $mT(of$ $\tau$ $and$
                    158: $\not E_{T})$ (Figure \ref{cap:reco tau}) doesn't look as good as
                    159: for MC taus (Figure \ref{cap:MC taus}). We observe a noticeable \char`\"{}tail\char`\"{}
                    160: above 80 GeV.
                    161: 
                    162: %
                    163: \begin{figure}
                    164: \subfigure[Reconstructed  $\not E_{T}$  for the signal MC  ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/met_reco}}
                    165: \subfigure[mT of MC $\tau$ and  $\not E_{T} $ reconstructed  ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/mt_tau_met_reco}}
                    166: 
                    167: \subfigure[$\eta$  of the MC tau in signal MC reconstructed  ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_tau_reco}}
                    168: \subfigure[ $P_{T}$ of the $\tau$ ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_tau_reco}}
                    169: 
                    170: 
                    171: \caption{Properties of detector reconstructed $\not\!\! E_{T}$ and $\tau$
                    172: in signal MC sample}
                    173: 
                    174: \begin{centering}\label{cap:reco tau}\par\end{centering}
                    175: \end{figure}
                    176: 
                    177: 
                    178: 
                    179: \paragraph{Jets}
                    180: 
                    181: Before b-tagging (section \ref{sub:B-tagging}) one can't separate
                    182: b-jets from non-b jets, so we don't make a distinction at this point.
                    183: Most important variables are the number of jets and $\eta$ and $P_{T}$
                    184: distributions (Figure \ref{jets1}).
                    185: 
                    186: %
                    187: \begin{figure}
                    188: \subfigure[Number of jets]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/njets}}
                    189: \subfigure[$P_{T}$ of jets]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jetpt}}
                    190: 
                    191: \subfigure[$\eta$ of jets]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_jets}}
                    192: \subfigure[$\phi$ of jets]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_jets}}
                    193: 
                    194: 
                    195: \caption{Properties of the jets in signal MC sample, $P_{T}$> 15 GeV}
                    196: 
                    197: \begin{centering}\label{jets1}\par\end{centering}
                    198: \end{figure}
                    199: 
                    200: 
                    201: Jets are arranged in the order of their $P_{T}$: leading (highest),
                    202: sub-leading etc. We can see on Figure \ref{jets1} that we typically
                    203: have 4 or 5 jets in an event. It is interesting to compare the leading
                    204: jet to the fourth and fifth jets (Figure \ref{jets2}). We can see
                    205: that jets after the third are very soft, as expected.
                    206: 
                    207: %
                    208: \begin{figure}
                    209: \subfigure[1st jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet0pt}}
                    210: \subfigure[2nd jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet1pt}}
                    211: 
                    212: \subfigure[3rd jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet2pt}}
                    213: \subfigure[4th jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet3pt}}
                    214: 
                    215: \subfigure[5th jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet4pt}}
                    216: 
                    217: 
                    218: \caption{$P_{T}$ distributions for jets in signal MC sample (including $\tau$)}
                    219: 
                    220: \begin{centering}\label{jets2}\par\end{centering}
                    221: \end{figure}
                    222: 
                    223: 
                    224: 
                    225: \subsection{Backgrounds}
                    226: 
                    227: Two main distinctive features of the signal limit the spectrum of
                    228: important backgrounds. In order to be relevant the process must have
                    229: high (>3) number of jets as well as sizable (>15 GeV) $\not\!\! E_{T}$.
                    230: All the candidate processes are listed in Table \ref{backgrounds}.
                    231: The cross section listed include the branching fractions into $\tau$
                    232: 
                    233: We can conclude that two dominant background sources are QCD ({}``fake
                    234: $\tau$'') and W+4jets. These two sources were taken into account
                    235: in these analysis.
                    236: 
                    237: %
                    238: \begin{table}
                    239: \begin{tabular}{|l|l|c|}
                    240: \hline 
                    241: \multicolumn{1}{||l|}{Background}&
                    242: \multicolumn{1}{||l|}{Description}&
                    243: \multicolumn{1}{||l||}{Cross Section}\tabularnewline
                    244: \hline 
                    245: $W+jjjj\rightarrow\tau\nu jjjj$&
                    246: Has identical signature to the signal&
                    247: $\sim$18 pb \tabularnewline
                    248: \hline 
                    249: $Z/\gamma+jjj\rightarrow\tau\tau jjj$ &
                    250: $\tau$ is usually found as a jet&
                    251: $\sim$2.6 pb\tabularnewline
                    252: \hline 
                    253: $WZ\rightarrow\tau\nu jj$&
                    254: needs two extra jet (can be gluon emission) &
                    255: $\sim$0.2 pb\tabularnewline
                    256: \hline 
                    257: $WW\rightarrow\tau\nu jj$&
                    258: needs two extra jet (can be gluon emission) &
                    259: $\sim$0.5 pb\tabularnewline
                    260: \hline 
                    261: single top &
                    262: small cross section, but has b-jets &
                    263: $\sim$0.5 pb\tabularnewline
                    264: \hline 
                    265: QCD &
                    266: Any 4-jet event, that doesn't have a real $\tau$ in it&
                    267: $>$100 nb \tabularnewline
                    268: \hline
                    269: \end{tabular}\centering
                    270: 
                    271: 
                    272: \caption{Background sources, relevant for the $\tau+jets$ analysis. Branching
                    273: into hadronic $\tau$ had been applied \cite{l+jets}}
                    274: 
                    275: \label{backgrounds} 
                    276: \end{table}
                    277: 
                    278: 
                    279: 
                    280: \section{Dataset}
                    281: 
                    282: As will be demonstrated in section \ref{sub:Running-trigsim} the
                    283: optimal (that is most efficient) combination of triggers for this
                    284: analysis is:
                    285: 
                    286: \begin{itemize}
                    287: \item The Higgs Missing $H_{T}$ trigger (MHT30\_3CJT5) 
                    288: \item The ALLJET trigger (4JT10) 
                    289: \end{itemize}
                    290: Together they yield over 85\% signal acceptance and they'd been running
                    291: unprescaled for most of D0 stable operation.
                    292: 
                    293: The data skim, utilizing both of these triggers would be optimal for
                    294: this analysis. Until the technical issues involved in its production
                    295: are fully resolved, we are using the ALLJET skim \cite{Luminosity},
                    296: which only contains the data, collected by the 4JT10 (and its subsequent
                    297: versions).
                    298: 
                    299: Such skim is only 70\% efficient for the signal, but it's the closest
                    300: available for our needs at the moment. The full PASS2 ALLJET skim
                    301: had been processed through the standard D0 top group data quality
                    302: criteria, discarding bad luminosity blocks, at the same time computing
                    303: the recorded lumi. The results are represented in table \ref{lumi1}.
                    304: Therefore the total luminosity available for the analysis amounts
                    305: to $349\pm23$ $pb^{-1}$ \cite{alljet}
                    306: 
                    307: %
                    308: \begin{table}
                    309: \begin{tabular}{|c|c|c|c|}
                    310: \hline 
                    311: Stage&
                    312: Luminosity ($pb^{-1})$&
                    313: Relative Size (\%)&
                    314: Absolute Size (\%)\tabularnewline
                    315: \hline
                    316: \hline 
                    317: Delivered&
                    318: 482.6&
                    319: 100&
                    320: 100\tabularnewline
                    321: \hline 
                    322: Recorded&
                    323: 411.6&
                    324: 85.3&
                    325: 85.3\tabularnewline
                    326: \hline 
                    327: Good&
                    328: 352.5&
                    329: 85.6&
                    330: 73.0\tabularnewline
                    331: \hline 
                    332: Reconstructed&
                    333: 349.3&
                    334: 99.1&
                    335: 72.4\tabularnewline
                    336: \hline
                    337: \end{tabular}
                    338: 
                    339: 
                    340: \caption{The results of luminosity calculation for the PASS2 ALLJET top skim}
                    341: 
                    342: \label{lumi1} 
                    343: \end{table}
                    344: 
                    345: 
                    346: The table \ref{lumi2} demonstrates the breakdown of this luminosity
                    347: between the different trigger versions.
                    348: 
                    349: %
                    350: \begin{table}
                    351: \begin{tabular}{|c|c|c|}
                    352: \hline 
                    353: Trigger version&
                    354: Trigger name&
                    355: Luminosity ($pb^{-1})$\tabularnewline
                    356: \hline
                    357: \hline 
                    358: 8.0&
                    359: 4JT10&
                    360: 19.4\tabularnewline
                    361: \hline 
                    362: 9.0&
                    363: 4JT10&
                    364: 21.2\tabularnewline
                    365: \hline 
                    366: 10.0&
                    367: 4JT10&
                    368: 15.1\tabularnewline
                    369: \hline 
                    370: 11.0&
                    371: 4JT10&
                    372: 57.3\tabularnewline
                    373: \hline 
                    374: 12.0&
                    375: 4JT12&
                    376: 196\tabularnewline
                    377: \hline 
                    378: 13.0&
                    379: JT2\_4JT12L\_HT&
                    380: 13.5\tabularnewline
                    381: \hline 
                    382: 13.1&
                    383: JT2\_4JT12L\_HT&
                    384: 27.8\tabularnewline
                    385: \hline 
                    386: 13.3&
                    387: JT2\_4JT12L\_HT&
                    388: 0\tabularnewline
                    389: \hline
                    390: \end{tabular}
                    391: 
                    392: 
                    393: \caption{Luminosity of the ALLJET skim for different D0 trigger list versions}
                    394: 
                    395: \label{lumi2} 
                    396: \end{table}
                    397: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>