Annotation of ttbar/p20_taujets_note/Strategy_and_Dataset.tex, revision 1.1

1.1     ! uid12904    1: 
        !             2: \section{Strategy}
        !             3: 
        !             4: 
        !             5: \subsection{\label{sub:Signal-characteristics}Signal characteristics}
        !             6: 
        !             7: 
        !             8: \subsubsection{Parton level MC}
        !             9: 
        !            10: First of all we want to examine the properties of our signal. For
        !            11: these purposes we used MC simulated samples (\textasciitilde{}10K
        !            12: events each) generated with ALPGEN \cite{ALPGEN} interfaced to Pythia
        !            13: \cite{PYTHIA} for showering and fragmentation.
        !            14: 
        !            15: 
        !            16: \paragraph{$t\bar{t}$}
        !            17: 
        !            18: First of all we wanted to look at the properties of the top quark
        !            19: itself. Figure \ref{t-jets} shows the $\eta$, $\phi$ and $P_{T}$
        !            20: distributions.
        !            21: 
        !            22: %
        !            23: \begin{figure}
        !            24: \subfigure[$P_{T}$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_tjets}}\subfigure[$\eta$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_tjets}}
        !            25: 
        !            26: \subfigure[$\phi$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_tjets}}
        !            27: 
        !            28: 
        !            29: \caption{Properties of t-quarks at the parton level in signal MC sample, $P_{T}$>
        !            30: 15 GeV}
        !            31: 
        !            32: \begin{centering}\label{t-jets}\par\end{centering}
        !            33: \end{figure}
        !            34: 
        !            35: 
        !            36: 
        !            37: \paragraph{$\tau$ and $\not\!\! E_{T}$}
        !            38: 
        !            39: The unique property of $\tau$ (compared to other leptons) is that
        !            40: it emits neutrino in its decay before it even reaches detector volume,
        !            41: contributing to the missing energy of the event. For this reason the
        !            42: $\tau$, available for measurement is not the same as physical $\tau$
        !            43: produced. Figure \ref{cap:MC taus} demonstrates how a sizable fraction
        !            44: of $\tau$ momentum goes missing. The plots of $\tau$ $\eta$ (Figure
        !            45: \ref{cap:MC taus}) and transverse mass with $\not\!\! E_{T}$ thus
        !            46: are done for the visible part of $\tau$
        !            47: 
        !            48: This is to be compared with the $e+jets$ channel (Figure \ref{cap:MC elecs}).
        !            49: As one can observe, the {}``total'' $\tau$ leptons behave very
        !            50: simmilar to electrons, as of cause expected. However, after taking
        !            51: into account the lost part of the $\tau$ energy situation becomes
        !            52: very different.
        !            53: 
        !            54: %
        !            55: \begin{figure}
        !            56: \subfigure[Parton level  $\not E_{T}$  for the signal MC  (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/met_mc}}
        !            57: \subfigure[mT of MC $\tau$ and  $\not E_{T} $ (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/mt_tau_met_mc}}
        !            58: 
        !            59: \subfigure[$\eta$  of the MC $\tau$ in signal MC (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_tau_mc}}
        !            60: \subfigure[$P_{T}$ of the MC $\tau$ in signal MC (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_tau_mc}}
        !            61: 
        !            62: \subfigure[Visible energy fraction of $\tau$ in signal MC]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/visable_fraction}}
        !            63: 
        !            64: 
        !            65: \caption{Properties of $\not\!\! E_{T}$ and $\tau$ at the parton level in
        !            66: signal MC sample}
        !            67: 
        !            68: \begin{centering}\label{cap:MC taus}\par\end{centering}
        !            69: \end{figure}
        !            70: 
        !            71: 
        !            72: %
        !            73: \begin{figure}
        !            74: \subfigure[Parton level  $\not E_{T}$  for the signal MC  (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/met_mc_elec}}
        !            75: \subfigure[mT of MC electron and  $\not E_{T} $ (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/mt_tau_met_mc_elec}}
        !            76: 
        !            77: \subfigure[$\eta$  of the MC electron in signal MC (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_tau_mc_elec}}
        !            78: \subfigure[$P_{T}$ of the MC electron in signal MC (red is total, green- visible)]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_tau_mc_elec}}
        !            79: 
        !            80: 
        !            81: \caption{Properties of $\not\!\! E_{T}$ and electron at the parton level
        !            82: in $t\bar{t}\rightarrow e+jets$ MC sample}
        !            83: 
        !            84: \begin{centering}\label{cap:MC elecs}\par\end{centering}
        !            85: \end{figure}
        !            86: 
        !            87: 
        !            88: 
        !            89: \paragraph{Jets}
        !            90: 
        !            91: b - jets are shown on Figure \ref{b-jets} while the product of W
        !            92: decay are shown on Figure \ref{not b-jets}. This however doesn't
        !            93: account for all the jets that will be reconstructed. Figure \ref{not b-jets-all}
        !            94: demonstrates all the non-b quarks and gluons in a $t\bar{t}$ event.
        !            95: 
        !            96: %
        !            97: \begin{figure}
        !            98: \subfigure[Number of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/nbquarks}}
        !            99: \subfigure[$P_{T}$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_bjets}}
        !           100: 
        !           101: \subfigure[$\eta$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_bjets}}
        !           102: \subfigure[$\phi$ of b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_bjets}}
        !           103: 
        !           104: 
        !           105: \caption{Properties of b-quarks at the parton level in signal MC sample, $P_{T}$>
        !           106: 15 GeV}
        !           107: 
        !           108: \begin{centering}\label{b-jets}\par\end{centering}
        !           109: \end{figure}
        !           110: 
        !           111: 
        !           112: %
        !           113: \begin{figure}
        !           114: \subfigure[Number of light quarks from the W decay]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/nlightquarks}}
        !           115: \subfigure[$P_{T}$ of light quarks from the W decay]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_notbjets}}
        !           116: 
        !           117: \subfigure[$\eta$ of light quarks from the W decay]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_notbjets}}
        !           118: \subfigure[$\phi$ of light quarks from the W decay]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_notbjets}}
        !           119: 
        !           120: 
        !           121: \caption{Properties of light quarks from the W decay at the parton level in
        !           122: signal MC sample, $P_{T}$> 15 GeV}
        !           123: 
        !           124: \begin{centering}\label{not b-jets}\par\end{centering}
        !           125: \end{figure}
        !           126: 
        !           127: 
        !           128: %
        !           129: \begin{figure}
        !           130: \subfigure[Number of not b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/nlightquarks_all}}
        !           131: \subfigure[$P_{T}$ of not b-quarks]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_notbjets_all}}
        !           132: 
        !           133: \subfigure[$\eta$ of not b-quarks ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_notbjets_all}}
        !           134: \subfigure[$\phi$ of not b-quarks ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_notbjets_all}}
        !           135: 
        !           136: 
        !           137: \caption{Properties of all the light quarks and gluons in an event at the
        !           138: parton level in signal MC sample, $P_{T}$> 15 GeV}
        !           139: 
        !           140: \begin{centering}\label{not b-jets-all}\par\end{centering}
        !           141: \end{figure}
        !           142: 
        !           143: 
        !           144: 
        !           145: \subsubsection{Detector signature (reconstructed Monte Carlo)}
        !           146: 
        !           147: Now we need to find out how well our experiment observes and reconstructs
        !           148: this physical process. The $t\bar{t}\rightarrow\tau+jets$ Monte Carlo
        !           149: file was processed through the detailed D0 Detector simulation. Jets
        !           150: are reconstructed, using 0.5 radius cone (in $\eta-\phi$). Taus are
        !           151: identified using tau ID algorithm and we apply 0.8 cut on the $\tau$
        !           152: selection neural net (section \ref{sub:tau--ID}).
        !           153: 
        !           154: 
        !           155: \paragraph{$\tau$ and $\not\!\! E_{T}$}
        !           156: 
        !           157: We can see that for reconstructed $\tau$'s $mT(of$ $\tau$ $and$
        !           158: $\not E_{T})$ (Figure \ref{cap:reco tau}) doesn't look as good as
        !           159: for MC taus (Figure \ref{cap:MC taus}). We observe a noticeable \char`\"{}tail\char`\"{}
        !           160: above 80 GeV.
        !           161: 
        !           162: %
        !           163: \begin{figure}
        !           164: \subfigure[Reconstructed  $\not E_{T}$  for the signal MC  ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/met_reco}}
        !           165: \subfigure[mT of MC $\tau$ and  $\not E_{T} $ reconstructed  ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/mt_tau_met_reco}}
        !           166: 
        !           167: \subfigure[$\eta$  of the MC tau in signal MC reconstructed  ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_tau_reco}}
        !           168: \subfigure[ $P_{T}$ of the $\tau$ ]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/pt_tau_reco}}
        !           169: 
        !           170: 
        !           171: \caption{Properties of detector reconstructed $\not\!\! E_{T}$ and $\tau$
        !           172: in signal MC sample}
        !           173: 
        !           174: \begin{centering}\label{cap:reco tau}\par\end{centering}
        !           175: \end{figure}
        !           176: 
        !           177: 
        !           178: 
        !           179: \paragraph{Jets}
        !           180: 
        !           181: Before b-tagging (section \ref{sub:B-tagging}) one can't separate
        !           182: b-jets from non-b jets, so we don't make a distinction at this point.
        !           183: Most important variables are the number of jets and $\eta$ and $P_{T}$
        !           184: distributions (Figure \ref{jets1}).
        !           185: 
        !           186: %
        !           187: \begin{figure}
        !           188: \subfigure[Number of jets]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/njets}}
        !           189: \subfigure[$P_{T}$ of jets]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jetpt}}
        !           190: 
        !           191: \subfigure[$\eta$ of jets]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/eta_jets}}
        !           192: \subfigure[$\phi$ of jets]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/phi_jets}}
        !           193: 
        !           194: 
        !           195: \caption{Properties of the jets in signal MC sample, $P_{T}$> 15 GeV}
        !           196: 
        !           197: \begin{centering}\label{jets1}\par\end{centering}
        !           198: \end{figure}
        !           199: 
        !           200: 
        !           201: Jets are arranged in the order of their $P_{T}$: leading (highest),
        !           202: sub-leading etc. We can see on Figure \ref{jets1} that we typically
        !           203: have 4 or 5 jets in an event. It is interesting to compare the leading
        !           204: jet to the fourth and fifth jets (Figure \ref{jets2}). We can see
        !           205: that jets after the third are very soft, as expected.
        !           206: 
        !           207: %
        !           208: \begin{figure}
        !           209: \subfigure[1st jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet0pt}}
        !           210: \subfigure[2nd jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet1pt}}
        !           211: 
        !           212: \subfigure[3rd jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet2pt}}
        !           213: \subfigure[4th jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet3pt}}
        !           214: 
        !           215: \subfigure[5th jet]{\includegraphics[scale=0.3]{MS_thesis/proposal_plots/jet4pt}}
        !           216: 
        !           217: 
        !           218: \caption{$P_{T}$ distributions for jets in signal MC sample (including $\tau$)}
        !           219: 
        !           220: \begin{centering}\label{jets2}\par\end{centering}
        !           221: \end{figure}
        !           222: 
        !           223: 
        !           224: 
        !           225: \subsection{Backgrounds}
        !           226: 
        !           227: Two main distinctive features of the signal limit the spectrum of
        !           228: important backgrounds. In order to be relevant the process must have
        !           229: high (>3) number of jets as well as sizable (>15 GeV) $\not\!\! E_{T}$.
        !           230: All the candidate processes are listed in Table \ref{backgrounds}.
        !           231: The cross section listed include the branching fractions into $\tau$
        !           232: 
        !           233: We can conclude that two dominant background sources are QCD ({}``fake
        !           234: $\tau$'') and W+4jets. These two sources were taken into account
        !           235: in these analysis.
        !           236: 
        !           237: %
        !           238: \begin{table}
        !           239: \begin{tabular}{|l|l|c|}
        !           240: \hline 
        !           241: \multicolumn{1}{||l|}{Background}&
        !           242: \multicolumn{1}{||l|}{Description}&
        !           243: \multicolumn{1}{||l||}{Cross Section}\tabularnewline
        !           244: \hline 
        !           245: $W+jjjj\rightarrow\tau\nu jjjj$&
        !           246: Has identical signature to the signal&
        !           247: $\sim$18 pb \tabularnewline
        !           248: \hline 
        !           249: $Z/\gamma+jjj\rightarrow\tau\tau jjj$ &
        !           250: $\tau$ is usually found as a jet&
        !           251: $\sim$2.6 pb\tabularnewline
        !           252: \hline 
        !           253: $WZ\rightarrow\tau\nu jj$&
        !           254: needs two extra jet (can be gluon emission) &
        !           255: $\sim$0.2 pb\tabularnewline
        !           256: \hline 
        !           257: $WW\rightarrow\tau\nu jj$&
        !           258: needs two extra jet (can be gluon emission) &
        !           259: $\sim$0.5 pb\tabularnewline
        !           260: \hline 
        !           261: single top &
        !           262: small cross section, but has b-jets &
        !           263: $\sim$0.5 pb\tabularnewline
        !           264: \hline 
        !           265: QCD &
        !           266: Any 4-jet event, that doesn't have a real $\tau$ in it&
        !           267: $>$100 nb \tabularnewline
        !           268: \hline
        !           269: \end{tabular}\centering
        !           270: 
        !           271: 
        !           272: \caption{Background sources, relevant for the $\tau+jets$ analysis. Branching
        !           273: into hadronic $\tau$ had been applied \cite{l+jets}}
        !           274: 
        !           275: \label{backgrounds} 
        !           276: \end{table}
        !           277: 
        !           278: 
        !           279: 
        !           280: \section{Dataset}
        !           281: 
        !           282: As will be demonstrated in section \ref{sub:Running-trigsim} the
        !           283: optimal (that is most efficient) combination of triggers for this
        !           284: analysis is:
        !           285: 
        !           286: \begin{itemize}
        !           287: \item The Higgs Missing $H_{T}$ trigger (MHT30\_3CJT5) 
        !           288: \item The ALLJET trigger (4JT10) 
        !           289: \end{itemize}
        !           290: Together they yield over 85\% signal acceptance and they'd been running
        !           291: unprescaled for most of D0 stable operation.
        !           292: 
        !           293: The data skim, utilizing both of these triggers would be optimal for
        !           294: this analysis. Until the technical issues involved in its production
        !           295: are fully resolved, we are using the ALLJET skim \cite{Luminosity},
        !           296: which only contains the data, collected by the 4JT10 (and its subsequent
        !           297: versions).
        !           298: 
        !           299: Such skim is only 70\% efficient for the signal, but it's the closest
        !           300: available for our needs at the moment. The full PASS2 ALLJET skim
        !           301: had been processed through the standard D0 top group data quality
        !           302: criteria, discarding bad luminosity blocks, at the same time computing
        !           303: the recorded lumi. The results are represented in table \ref{lumi1}.
        !           304: Therefore the total luminosity available for the analysis amounts
        !           305: to $349\pm23$ $pb^{-1}$ \cite{alljet}
        !           306: 
        !           307: %
        !           308: \begin{table}
        !           309: \begin{tabular}{|c|c|c|c|}
        !           310: \hline 
        !           311: Stage&
        !           312: Luminosity ($pb^{-1})$&
        !           313: Relative Size (\%)&
        !           314: Absolute Size (\%)\tabularnewline
        !           315: \hline
        !           316: \hline 
        !           317: Delivered&
        !           318: 482.6&
        !           319: 100&
        !           320: 100\tabularnewline
        !           321: \hline 
        !           322: Recorded&
        !           323: 411.6&
        !           324: 85.3&
        !           325: 85.3\tabularnewline
        !           326: \hline 
        !           327: Good&
        !           328: 352.5&
        !           329: 85.6&
        !           330: 73.0\tabularnewline
        !           331: \hline 
        !           332: Reconstructed&
        !           333: 349.3&
        !           334: 99.1&
        !           335: 72.4\tabularnewline
        !           336: \hline
        !           337: \end{tabular}
        !           338: 
        !           339: 
        !           340: \caption{The results of luminosity calculation for the PASS2 ALLJET top skim}
        !           341: 
        !           342: \label{lumi1} 
        !           343: \end{table}
        !           344: 
        !           345: 
        !           346: The table \ref{lumi2} demonstrates the breakdown of this luminosity
        !           347: between the different trigger versions.
        !           348: 
        !           349: %
        !           350: \begin{table}
        !           351: \begin{tabular}{|c|c|c|}
        !           352: \hline 
        !           353: Trigger version&
        !           354: Trigger name&
        !           355: Luminosity ($pb^{-1})$\tabularnewline
        !           356: \hline
        !           357: \hline 
        !           358: 8.0&
        !           359: 4JT10&
        !           360: 19.4\tabularnewline
        !           361: \hline 
        !           362: 9.0&
        !           363: 4JT10&
        !           364: 21.2\tabularnewline
        !           365: \hline 
        !           366: 10.0&
        !           367: 4JT10&
        !           368: 15.1\tabularnewline
        !           369: \hline 
        !           370: 11.0&
        !           371: 4JT10&
        !           372: 57.3\tabularnewline
        !           373: \hline 
        !           374: 12.0&
        !           375: 4JT12&
        !           376: 196\tabularnewline
        !           377: \hline 
        !           378: 13.0&
        !           379: JT2\_4JT12L\_HT&
        !           380: 13.5\tabularnewline
        !           381: \hline 
        !           382: 13.1&
        !           383: JT2\_4JT12L\_HT&
        !           384: 27.8\tabularnewline
        !           385: \hline 
        !           386: 13.3&
        !           387: JT2\_4JT12L\_HT&
        !           388: 0\tabularnewline
        !           389: \hline
        !           390: \end{tabular}
        !           391: 
        !           392: 
        !           393: \caption{Luminosity of the ALLJET skim for different D0 trigger list versions}
        !           394: 
        !           395: \label{lumi2} 
        !           396: \end{table}
        !           397: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>