--- ttbar/p20_taujets_note/Dataset.tex 2011/05/18 21:30:39 1.1.1.1 +++ ttbar/p20_taujets_note/Dataset.tex 2011/06/01 01:20:54 1.2 @@ -4,9 +4,9 @@ \subsection{\label{sub:datasample}\boldmath Data Sample} -\noindent For this analysis the framework used was vjets\_cafe v04-00-08 (Release p21.18.00) +\noindent For this analysis we used the vjets\_cafe v04-00-08 framework (Release p21.18.00) and the data set consisted of 3JET skim produced by the commom samples group -\cite{3jet_data} and recorded between August 2002 and May 2010 (runs 151817 - 258547). +and recorded between August 2002 and May 2010 (runs 151817 - 258547) \cite{3jet_data}. \begin{itemize} @@ -26,13 +26,13 @@ In this analysis we chose the three jets This particular trigger was chosen based on our needs of looking for events with multiple jets and -the fact that it represents a gain of 20\% efficiency on signal selection if compared to previous p17 analysis. -Since the efficiencies for such trigger are not currently part of caf\_trigger package, +the fact that it represents a gain of 10\% efficiency on signal selection if compared to previous p17 analysis. +Since the efficiency of this trigger is not part of caf\_trigger package, in this analysis we benefit from the trigger modelling provided by the $hbb$ group \cite{bIDH_note} for the $\phi b \rightarrow b\bar{b}b$ analysis. Trigger weight distributions for all MC samples used in the analysis as a function of the number of b-tagged jets are found in %Appendix \ref{app:trig_eff} and summarized in Table \ref{trig_weight}: -Appendix \ref{app:trig_eff} and Table II summarizes their mean values: +Appendix \ref{app:trig_eff} and Table 2 summarizes their mean values: @@ -52,11 +52,11 @@ $t\overline{t}\rightarrow\mu+jets$ &\mul $t\overline{t}\rightarrow l+l$ &\multicolumn{1}{c|}{0.7274} &\multicolumn{1}{c|}{0.7915} &\multicolumn{1}{c|}{0.8223} &\multicolumn{1}{c|}{0.8302} \\ -$Wjj+jets\rightarrow$ $l\nu+jj+jets$ &\multicolumn{1}{c|}{0.5821} &\multicolumn{1}{c|}{0.6337} &\multicolumn{1}{c|}{0.6586}&\multicolumn{1}{c|}{0.6652} \\ +$Wjj+jets\rightarrow$ $\ell\nu+jj+jets$ &\multicolumn{1}{c|}{0.5821} &\multicolumn{1}{c|}{0.6337} &\multicolumn{1}{c|}{0.6586}&\multicolumn{1}{c|}{0.6652} \\ -$Wbb+jets\rightarrow$ $l\nu+bb+jets$ &\multicolumn{1}{c|}{0.5948} &\multicolumn{1}{c|}{0.6475}&\multicolumn{1}{c|}{0.6729}&\multicolumn{1}{c|}{0.6796} \\ +$Wbb+jets\rightarrow$ $\ell\nu+bb+jets$ &\multicolumn{1}{c|}{0.5948} &\multicolumn{1}{c|}{0.6475}&\multicolumn{1}{c|}{0.6729}&\multicolumn{1}{c|}{0.6796} \\ -$Wcc+jets\rightarrow$ $l\nu+cc+jets$ &\multicolumn{1}{c|}{0.5912} &\multicolumn{1}{c|}{0.6435}&\multicolumn{1}{c|}{0.6687}&\multicolumn{1}{c|}{0.6754} \\ +$Wcc+jets\rightarrow$ $\ell\nu+cc+jets$ &\multicolumn{1}{c|}{0.5912} &\multicolumn{1}{c|}{0.6435}&\multicolumn{1}{c|}{0.6687}&\multicolumn{1}{c|}{0.6754} \\ $Zjj+jets\rightarrow$ $ee+jj+jets$ &\multicolumn{1}{c|}{0.6769} &\multicolumn{1}{c|}{0.7363}&\multicolumn{1}{c|}{0.7646}&\multicolumn{1}{c|}{0.7719} \\ @@ -98,58 +98,55 @@ data sample. Table \ref{lumi} shows the \begin{tabular}{|crrrr|} %\begin{center} \hline -Trigger version& -Trigger name& -Delivered $\mathcal{L}$ ($pb^{-1})$& -Recorded $\mathcal{L}$ ($pb^{-1})$& -Reconstructed $\mathcal{L}$ ($pb^{-1})$ +Trigger version &\multicolumn{1}{c}{Trigger name} &\multicolumn{1}{c}{Delivered $\mathcal{L}$ ($\mbox{pb}^{-1})$} &\multicolumn{1}{c}{Recorded $\mathcal{L}$ ($\mbox{pb}^{-1})$} &\multicolumn{1}{c|}{Reconstructed $\mathcal{L}$ ($\mbox{pb}^{-1})$} + \tabularnewline \hline \hline -V15.0 - V15.99& JT2\_3JT15L\_IP\_VX& 1682.08& 1544.71& 1385.99 +V15.0 - V15.99 &\multicolumn{1}{c}{JT2\_3JT15L\_IP\_VX} &\multicolumn{1}{c}{1682.08} &\multicolumn{1}{c}{1544.71} &\multicolumn{1}{c|}{1385.99} \tabularnewline -V16.0 - V16.99& JT2\_3JT15L\_IP\_VX& 4059.92& 3887.95& 3565.86 +V16.0 - V16.99 &\multicolumn{1}{c}{JT2\_3JT15L\_IP\_VX} &\multicolumn{1}{c}{4059.92} &\multicolumn{1}{c}{3887.95} &\multicolumn{1}{c|}{3565.86} \tabularnewline \hline -T O T A L& & 5742.00& 5432.66& 4951.85 +T O T A L &\multicolumn{1}{c}{} &\multicolumn{1}{c}{5742.00} &\multicolumn{1}{c}{5432.66} &\multicolumn{1}{c|}{4951.85} \tabularnewline \hline %\end{center} \end{tabular} %\end{ruledtabular} -\caption{The results of luminosity calculation for the Run2b 3JET data skim for different D0 trigger list versions} +\caption{The results of luminosity calculation for the Run IIb 3JET data skim for different D0 trigger list versions} \label{lumi} \end{table} -\newpage +%\newpage \subsection{\label{sub:background}\boldmath Backgrounds} -In this analysis the largest background sources are QCD ({}``fake -$\tau$''), which is estimated from data and $W/Z$+jets, which are simulated Monte Carlo samples. -Other backgrounds that were not included in this analysis due to their small contribution are single top and diboson production. -A list of backgrounds sources is found in Section III of \cite{p17_note}. +The largest sources of background to our signal are QCD ({}``fake +$\tau$'') and $W/Z$+jets. We estimate the first from data and the second using Monte Carlo simulation. +Other sources such as single top and diboson production are small enough to be ignored. +A list of backgrounds process is found in Section III of \cite{p17_note}. In the following sections we describe both signal and background simulation. \subsection{\label{sub:mcsample}\boldmath Monte Carlo Samples} -\noindent We use p20 certified MC samples as produced by CSG and caffed with p21.11.00 (version3) \cite{3jet_mc}. +\noindent We use p20 certified MC samples as produced by CSG and reconstructed with p21.11.00 (version3) \cite{3jet_mc}. All $W/Z$ and $t\bar{t}$ were generated with ALPGEN v2.11 \cite{alpgen} interfaced with Pythia v6.409 \cite{pythia} for production of parton-level showers and hadronization. -EvtGen \cite{evtgen} is used to model b hadrons decays and TAUOLA \cite{tauola} used to model tau leptons decays. +EvtGen \cite{evtgen} is used to model b hadrons decays and TAUOLA \cite{tauola} is used to model tau leptons decays. \noindent ALPGEN is a leading order (LL) generator. In order to correct it to match with -next-to-leading order (NLO) cross sections we apply {\it correction factors} and then provide -a correct normalization. These correction factors were taken from {\tt vjets$\_$cafe} framework and are described +next-to-leading order (NLO) cross sections we apply correction factors to MC samples in order to get +the correct normalization. These correction factors were taken from {\tt vjets$\_$cafe} framework and are described in Ref.\cite{kfactor}. There are two kinds of correction factors: {\it k-factors}, which -are the result of the ratio between NLO and LL cross sections ($\sigma_{NLO}/\sigma_{LL}$) and +are the result of the ratio between NLO and LO cross sections ($\sigma_{NLO}/\sigma_{LO}$) and {\it heavy flavor factors}, which are in turn the ratio between k-factors for $HF+0lp(incl)$ and $2lp(incl)$ process from MCFM \cite{mcfm}. Here $HF$ denotes $Z + bb$, $Z + cc$, $W + bb$ or $W + cc$ and $lp$ stands -for {\it light parton}. Heavy flavor factors are applied on the top of k-factors in order to provide the correct -normalization for process where heavy quarks are present. +for {\it light parton}. Heavy flavor factors are applied on top of k-factors in order to provide the correct +normalization for processes where heavy quarks are present. For $Z$ production, samples are split into $Z$ + light jets, $Z + bb$ and $Z + cc$. $Z$ + light parton cross sections are multiplied by a k-factor of 1.3, while $Z + bb$ and $Z+ cc$ are multiplied by additional @@ -159,32 +156,32 @@ case a k-factor of 1.3 is applied while both $W + bb$ and $W + cc$ samples. %Table \ref{kxsec} summarizes factors applied. -Table IV summarizes the correction factors applied. +Table 4 summarizes the correction factors applied. \begin{table}[htbp] \begin{center} \begin{tabular}{|c|r|} \hline -Process & k-factor \\ \hline +Process & correction factor \\ \hline \hline -W + light partons & \multicolumn{1}{c|}{1.3} \\ \hline +$W$ + light partons & \multicolumn{1}{c|}{1.3} \\ \hline -W + bb & \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline +$W + bb$ & \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline -W + cc & \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline +$W + cc$ & \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline -Z + light partons & \multicolumn{1}{c|}{1.3} \\ \hline +$Z$ + light partons & \multicolumn{1}{c|}{1.3} \\ \hline -Z + bb & \multicolumn{1}{c|}{1.3$\times$1.52} \\ \hline +$Z + bb$ & \multicolumn{1}{c|}{1.3$\times$1.52} \\ \hline -Z + cc & \multicolumn{1}{c|}{1.3$\times$1.67} \\ \hline +$Z + cc$ & \multicolumn{1}{c|}{1.3$\times$1.67} \\ \hline \end{tabular} \caption{k-factors for MC.} @@ -192,9 +189,9 @@ Z + cc & \multicolumn{1}{c|}{1.3$\t \label{kxsec} \end{table} -All MC samples used in this analysis are shown in Table \ref{used_mc} with theirs respective cross sections -and number of events. The cross sections shown are the averages of the cross-sections of -each set of MC process generated and are calculated from /caf$\_$mc$\_$util/mc$\_$sample$\_$info/MC.list +All MC samples used in this analysis are shown in Table \ref{used_mc} with their respective cross sections +and number of events. The cross sections shown are the averages of the cross sections of +each set of MC process generated and are calculated from /caf$\_$mc$\_$util/mc$\_$sample$\_$info/MC.list \cite{caf_mc_util}. \clearpage @@ -203,65 +200,65 @@ each set of MC process generated and are \begin{tabular}{|crr|} \hline Sample & $\sigma(pb)$ & \# of Events \\ \hline -$t+t+0lp-l\nu+2b+2lpc\_\mbox{excl}\_m172$ & 1.392196 & $ 793267 $ \\ -$t+t+1lp-l\nu+2b+3lpc\_\mbox{excl}\_m172$ & .576927 & $ 456317 $ \\ -$t+t+2lp-l\nu+2b+4lpc\_\mbox{incl}\_m172$ & .281831 & $ 277912 $ \\ -$\mbox{W}+0lp\rightarrow lnu+0lp\_\mbox{excl}$ & 4530.269741 & $ 47070044 $ \\ -$\mbox{W}+1lp\rightarrow lnu+1lp\_\mbox{excl}$ & 1283.094130 & $ 20683540 $ \\ -$\mbox{W}+2lp\rightarrow lnu+2lp\_\mbox{excl}$ & 306.073315 & $ 19686862 $ \\ -$\mbox{W}+3lp\rightarrow lnu+3lp\_\mbox{excl}$ & 73.494491 & $ 4269023 $ \\ -$\mbox{W}+4lp\rightarrow lnu+4lp\_\mbox{excl}$ & 16.958254 & $ 3084707 $\\ -$\mbox{W}+5lp\rightarrow lnu+5lp\_\mbox{incl}$ & 5.218917 & $ 2565942 $ \\ -$\mbox{W}+2b+0lp\rightarrow l\nu+2b+0lp\_\mbox{excl}$ & 9.315458 & $ 1120570 $ \\ -$\mbox{W}+2b+1lp\rightarrow l\nu+2b+1lp\_\mbox{excl}$ & 4.288365 & $ 812095 $ \\ -$\mbox{W}+2b+2lp\rightarrow l\nu+2b+2lp\_\mbox{excl}$ & 1.554786 & $ 563315 $ \\ -$\mbox{W}+2b+3lp\rightarrow l\nu+2b+3lp\_\mbox{incl}$ & 0.716175& $ 464475 $ \\ -$\mbox{W}+2b+0lp\rightarrow l\nu+2c+0lp\_\mbox{excl}$ & 24.404153 & $ 934253 $ \\ -$\mbox{W}+2b+1lp\rightarrow l\nu+2c+1lp\_\mbox{excl}$ & 13.486806 & $ 738709 $ \\ -$\mbox{W}+2b+2lp\rightarrow l\nu+2c+2lp\_\mbox{excl}$ & 5.459005 & $ 554236 $ \\ -$\mbox{W}+2b+3lp\rightarrow l\nu+2c+3lp\_\mbox{incl}$ & 2.526973 & $ 469900 $ \\ -$\gamma \mbox{Z}+0lp\rightarrow ee+0lp\_\mbox{excl}\_75\_130$ & 132.086811 & $ 1212214 $ \\ -$\gamma \mbox{Z}+1lp\rightarrow ee+1lp\_\mbox{excl}\_75\_130$ & 40.060963 & $ 599588 $ \\ -$\gamma \mbox{Z}+2lp\rightarrow ee+2lp\_\mbox{excl}\_75\_130$ & 9.981935 & $ 298494 $ \\ -$\gamma \mbox{Z}+3lp\rightarrow ee+3lp\_\mbox{incl}\_75\_130$ & 3.297072 & $ 150267 $ \\ -$\gamma \mbox{Z}+2b+0lp\rightarrow ee+2b+0lp\_\mbox{excl}\_75\_130$ & 0.400826 & $ 200121 $ \\ -$\gamma \mbox{Z}+2b+1lp\rightarrow ee+2b+1lp\_\mbox{excl}\_75\_130$ & 0.173438 & $ 97474 $ \\ -$\gamma \mbox{Z}+2b+2lp\rightarrow ee+2b+2lp\_\mbox{incl}\_75\_130$ & 0.107248 & $ 48269 $ \\ -$\gamma \mbox{Z}+2c+0lp\rightarrow ee+2c+0lp\_\mbox{excl}\_75\_130$ & 0.900923 & $ 182485 $ \\ -$\gamma \mbox{Z}+2c+1lp\rightarrow ee+2c+1lp\_\mbox{excl}\_75\_130$ & 0.506337 & $ 89293 $ \\ -$\gamma \mbox{Z}+2b+2lp\rightarrow ee+2b+2lp\_\mbox{incl}\_75\_130$ & 0.285871 & $ 47357 $ \\ -$\gamma \mbox{Z}+0lp\rightarrow \mu \mu+0lp\_\mbox{excl}\_75\_130$ & 133.850906 & $ 1553222 $ \\ -$\gamma \mbox{Z}+1lp\rightarrow \mu \mu+1lp\_\mbox{excl}\_75\_130$ & 41.677185 & $ 639392 $ \\ -$\gamma \mbox{Z}+2lp\rightarrow \mu \mu+2lp\_\mbox{excl}\_75\_130$ & 9.822132 & $ 446737 $ \\ -$\gamma \mbox{Z}+3lp\rightarrow \mu \mu+3lp\_\mbox{incl}\_75\_130$ & 3.195801 & $ 172628 $ \\ -$\gamma \mbox{Z}+2b+0lp\rightarrow \mu \mu+2b+0lp\_\mbox{excl}\_75\_130$ & 0.424239 & $ 210139 $ \\ -$\gamma \mbox{Z}+2b+1lp\rightarrow \mu \mu+2b+1lp\_\mbox{excl}\_75\_130$ & 0.195271 & $ 101055 $ \\ -$\gamma \mbox{Z}+2b+2lp\rightarrow \mu \mu+2b+2lp\_\mbox{incl}\_75\_130$ & 0.099004 & $ 49600 $ \\ -$\gamma \mbox{Z}+2c+0lp\rightarrow \mu \mu+2c+0lp\_\mbox{excl}\_75\_130$ & 0.932203 & $ 193928 $ \\ -$\gamma \mbox{Z}+2c+1lp\rightarrow \mu \mu+2c+1lp\_\mbox{excl}\_75\_130$ & 0.548182 & $ 92744 $ \\ -$\gamma \mbox{Z}+2b+2lp\rightarrow \mu \mu+2b+2lp\_\mbox{incl}\_75\_130$ & 0.280795 & $ 51277 $ \\ -$\gamma \mbox{Z}+0lp\rightarrow \tau \tau+0lp\_\mbox{excl}\_75\_130$ & 131.564780 & $ 1556389 $ \\ -$\gamma \mbox{Z}+1lp\rightarrow \tau \tau+1lp\_\mbox{excl}\_75\_130$ & 40.300291 & $ 595169 $ \\ -$\gamma \mbox{Z}+2lp\rightarrow \tau \tau+2lp\_\mbox{excl}\_75\_130$ & 10.072067 & $ 305312 $ \\ -$\gamma \mbox{Z}+3lp\rightarrow \tau \tau+3lp\_\mbox{excl}\_75\_130$ & 3.089442 & $ 205365 $ \\ -$\gamma \mbox{Z}+2b+0lp\rightarrow \tau \tau+2b+0lp\_\mbox{excl}\_75\_130$ & 0.423679 & $ 196943 $ \\ -$\gamma \mbox{Z}+2b+1lp\rightarrow \tau \tau+2b+1lp\_\mbox{excl}\_75\_130$ & 0.196527 & $ 103105 $ \\ -$\gamma \mbox{Z}+2b+2lp\rightarrow \tau \tau+2b+2lp\_\mbox{incl}\_75\_130$ & 0.103561 & $ 48476 $ \\ -$\gamma \mbox{Z}+2c+0lp\rightarrow \tau \tau+2c+0lp\_\mbox{excl}\_75\_130$ & 0.898135 & $ 260243 $ \\ -$\gamma \mbox{Z}+2c+1lp\rightarrow \tau \tau+2c+1lp\_\mbox{excl}\_75\_130$ & 0.487548 & $ 100802 $ \\ -$\gamma \mbox{Z}+2b+2lp\rightarrow \tau \tau+2b+2lp\_\mbox{incl}\_75\_130$ & 0.297808 & $ 50711 $ \\ -$\gamma \mbox{Z}+0lp\rightarrow \nu \nu+0lp\_\mbox{excl}$ & 806.552968 & $ 2368495 $ \\ -$\gamma \mbox{Z}+1lp\rightarrow \nu \nu+1lp\_\mbox{excl}$ & 244.651772 & $ 2591505 $ \\ -$\gamma \mbox{Z}+2lp\rightarrow \nu \nu+2lp\_\mbox{excl}$ & 61.014112 & $ 657110 $ \\ -$\gamma \mbox{Z}+3lp\rightarrow \nu \nu+3lp\_\mbox{excl}$ & 14.091090 & $ 194705 $ \\ -$\gamma \mbox{Z}+4lp\rightarrow \nu \nu+4lp\_\mbox{excl}$ & 3.277295 & $ 100158 $ \\ -$\gamma \mbox{Z}+5lp\rightarrow \nu \nu+5lp\_\mbox{incl}$ & 0.936465 & $ 49660 $ \\ -$\gamma \mbox{Z}+2b+0lp\rightarrow \nu \nu+2b+0lp\_\mbox{excl}$ & 2.562976 & $ 375572$ \\ -$\gamma \mbox{Z}+2b+1lp\rightarrow \nu \nu+2b+1lp\_\mbox{excl}$ & 1.143703 & $ 180558 $ \\ -$\gamma \mbox{Z}+2b+2lp\rightarrow \nu \nu+2b+2lp\_\mbox{incl}$ & 0.617265 & $ 91588 $ \\ -$\gamma \mbox{Z}+2c+0lp\rightarrow \nu \nu+2c+0lp\_\mbox{excl}$ & 5.634504 & $ 376456 $ \\ -$\gamma \mbox{Z}+2c+1lp\rightarrow \nu \nu+2c+1lp\_\mbox{excl}$ & 3.002712 & $ 199012 $ \\ -$\gamma \mbox{Z}+2b+2lp\rightarrow \nu \nu+2b+2lp\_\mbox{incl}$ & 1.635746 & $ 96147 $ \\\hline +$t\bar{t}+0lp-\ell\nu+b\bar{b}+2lpc\_\mbox{excl}\_m172.5$ & 1.392196 & $ 793267 $ \\ +$t\bar{t}+1lp-\ell\nu+b\bar{b}+3lpc\_\mbox{excl}\_m172.5$ & .576927 & $ 456317 $ \\ +$t\bar{t}+2lp-\ell\nu+b\bar{b}+4lpc\_\mbox{incl}\_m172.5$ & .281831 & $ 277912 $ \\ +$W+0lp\rightarrow \ell\nu+0lp\_\mbox{excl}$ & 4530.269741 & $ 47070044 $ \\ +$W+1lp\rightarrow \ell\nu+1lp\_\mbox{excl}$ & 1283.094130 & $ 20683540 $ \\ +$W+2lp\rightarrow \ell\nu+2lp\_\mbox{excl}$ & 306.073315 & $ 19686862 $ \\ +$W+3lp\rightarrow \ell\nu+3lp\_\mbox{excl}$ & 73.494491 & $ 4269023 $ \\ +$W+4lp\rightarrow \ell\nu+4lp\_\mbox{excl}$ & 16.958254 & $ 3084707 $\\ +$W+5lp\rightarrow \ell\nu+5lp\_\mbox{incl}$ & 5.218917 & $ 2565942 $ \\ +$W+b\bar{b}+0lp\rightarrow \ell\nu+b\bar{b}+0lp\_\mbox{excl}$ & 9.315458 & $ 1120570 $ \\ +$W+b\bar{b}+1lp\rightarrow \ell\nu+b\bar{b}+1lp\_\mbox{excl}$ & 4.288365 & $ 812095 $ \\ +$W+b\bar{b}+2lp\rightarrow \ell\nu+b\bar{b}+2lp\_\mbox{excl}$ & 1.554786 & $ 563315 $ \\ +$W+b\bar{b}+3lp\rightarrow \ell\nu+b\bar{b}+3lp\_\mbox{incl}$ & 0.716175& $ 464475 $ \\ +$W+c\bar{c}+0lp\rightarrow \ell\nu+c\bar{c}+0lp\_\mbox{excl}$ & 24.404153 & $ 934253 $ \\ +$W+c\bar{c}+1lp\rightarrow \ell\nu+c\bar{c}+1lp\_\mbox{excl}$ & 13.486806 & $ 738709 $ \\ +$W+c\bar{c}+2lp\rightarrow \ell\nu+c\bar{c}+2lp\_\mbox{excl}$ & 5.459005 & $ 554236 $ \\ +$W+c\bar{c}+3lp\rightarrow \ell\nu+c\bar{c}+3lp\_\mbox{incl}$ & 2.526973 & $ 469900 $ \\ +$\gamma /Z+0lp\rightarrow ee+0lp\_\mbox{excl}\_75\_130$ & 132.086811 & $ 1212214 $ \\ +$\gamma /Z+1lp\rightarrow ee+1lp\_\mbox{excl}\_75\_130$ & 40.060963 & $ 599588 $ \\ +$\gamma /Z+2lp\rightarrow ee+2lp\_\mbox{excl}\_75\_130$ & 9.981935 & $ 298494 $ \\ +$\gamma /Z+3lp\rightarrow ee+3lp\_\mbox{incl}\_75\_130$ & 3.297072 & $ 150267 $ \\ +$\gamma /Z+b\bar{b}+0lp\rightarrow ee+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.400826 & $ 200121 $ \\ +$\gamma /Z+b\bar{b}+1lp\rightarrow ee+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.173438 & $ 97474 $ \\ +$\gamma /Z+b\bar{b}+2lp\rightarrow ee+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.107248 & $ 48269 $ \\ +$\gamma /Z+c\bar{c}+0lp\rightarrow ee+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.900923 & $ 182485 $ \\ +$\gamma /Z+c\bar{c}+1lp\rightarrow ee+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.506337 & $ 89293 $ \\ +$\gamma /Z+c\bar{c}+2lp\rightarrow ee+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.285871 & $ 47357 $ \\ +$\gamma /Z+0lp\rightarrow \mu \mu+0lp\_\mbox{excl}\_75\_130$ & 133.850906 & $ 1553222 $ \\ +$\gamma /Z+1lp\rightarrow \mu \mu+1lp\_\mbox{excl}\_75\_130$ & 41.677185 & $ 639392 $ \\ +$\gamma /Z+2lp\rightarrow \mu \mu+2lp\_\mbox{excl}\_75\_130$ & 9.822132 & $ 446737 $ \\ +$\gamma /Z+3lp\rightarrow \mu \mu+3lp\_\mbox{incl}\_75\_130$ & 3.195801 & $ 172628 $ \\ +$\gamma /Z+b\bar{b}+0lp\rightarrow \mu \mu+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.424239 & $ 210139 $ \\ +$\gamma /Z+b\bar{b}+1lp\rightarrow \mu \mu+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.195271 & $ 101055 $ \\ +$\gamma /Z+b\bar{b}+2lp\rightarrow \mu \mu+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.099004 & $ 49600 $ \\ +$\gamma /Z+c\bar{c}+0lp\rightarrow \mu \mu+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.932203 & $ 193928 $ \\ +$\gamma /Z+c\bar{c}+1lp\rightarrow \mu \mu+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.548182 & $ 92744 $ \\ +$\gamma /Z+c\bar{c}+2lp\rightarrow \mu \mu+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.280795 & $ 51277 $ \\ +$\gamma /Z+0lp\rightarrow \tau \tau+0lp\_\mbox{excl}\_75\_130$ & 131.564780 & $ 1556389 $ \\ +$\gamma /Z+1lp\rightarrow \tau \tau+1lp\_\mbox{excl}\_75\_130$ & 40.300291 & $ 595169 $ \\ +$\gamma /Z+2lp\rightarrow \tau \tau+2lp\_\mbox{excl}\_75\_130$ & 10.072067 & $ 305312 $ \\ +$\gamma /Z+3lp\rightarrow \tau \tau+3lp\_\mbox{excl}\_75\_130$ & 3.089442 & $ 205365 $ \\ +$\gamma /Z+b\bar{b}+0lp\rightarrow \tau \tau+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.423679 & $ 196943 $ \\ +$\gamma /Z+b\bar{b}+1lp\rightarrow \tau \tau+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.196527 & $ 103105 $ \\ +$\gamma /Z+b\bar{b}+2lp\rightarrow \tau \tau+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.103561 & $ 48476 $ \\ +$\gamma /Z+c\bar{c}+0lp\rightarrow \tau \tau+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.898135 & $ 260243 $ \\ +$\gamma /Z+c\bar{c}+1lp\rightarrow \tau \tau+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.487548 & $ 100802 $ \\ +$\gamma /Z+c\bar{c}+2lp\rightarrow \tau \tau+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.297808 & $ 50711 $ \\ +$Z+0lp\rightarrow \nu \nu+0lp\_\mbox{excl}$ & 806.552968 & $ 2368495 $ \\ +$Z+1lp\rightarrow \nu \nu+1lp\_\mbox{excl}$ & 244.651772 & $ 2591505 $ \\ +$Z+2lp\rightarrow \nu \nu+2lp\_\mbox{excl}$ & 61.014112 & $ 657110 $ \\ +$Z+3lp\rightarrow \nu \nu+3lp\_\mbox{excl}$ & 14.091090 & $ 194705 $ \\ +$Z+4lp\rightarrow \nu \nu+4lp\_\mbox{excl}$ & 3.277295 & $ 100158 $ \\ +$Z+5lp\rightarrow \nu \nu+5lp\_\mbox{incl}$ & 0.936465 & $ 49660 $ \\ +$Z+b\bar{b}+0lp\rightarrow \nu \nu+b\bar{b}+0lp\_\mbox{excl}$ & 2.562976 & $ 375572$ \\ +$Z+b\bar{b}+1lp\rightarrow \nu \nu+b\bar{b}+1lp\_\mbox{excl}$ & 1.143703 & $ 180558 $ \\ +$Z+b\bar{b}+2lp\rightarrow \nu \nu+b\bar{b}+2lp\_\mbox{incl}$ & 0.617265 & $ 91588 $ \\ +$Z+c\bar{c}+0lp\rightarrow \nu \nu+c\bar{c}+0lp\_\mbox{excl}$ & 5.634504 & $ 376456 $ \\ +$Z+c\bar{c}+1lp\rightarrow \nu \nu+c\bar{c}+1lp\_\mbox{excl}$ & 3.002712 & $ 199012 $ \\ +$Z+c\bar{c}+2lp\rightarrow \nu \nu+c\bar{c}+2lp\_\mbox{incl}$ & 1.635746 & $ 96147 $ \\\hline \end{tabular} \caption{MC Samples. Here $l$ stands for the three lepton flavor ($e$, $\mu$ and $\tau$). $\tau$ decays are not restricted.} @@ -273,35 +270,39 @@ $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \ \subsection{\label{sub:mcsample_xseccorr}\boldmath MC samples corrections} -Standard D\O\ corrections are applied to MC in order to obtain a better MC-data agreement \cite{top_sys}. +Standard D0 corrections are applied to MC in order to obtain a better MC-data agreement \cite{top_sys}. -\noindent {\bf Trigger efficiency}: an additional scale factor (weight) is applied to MC to account for the trigger efficiency in data. -Further details are given in Section \ref{sec:trig_param}. +\noindent {\bf Trigger efficiency}: an additional scale factor (weight) is applied to MC to account for the trigger +efficiency in data. Further details are given in Section \ref{sec:trig_param}. -\noindent {\bf Luminosity reweighting}: in order to reproduce luminosity effects from real data, simulated samples are overlaid to Zero Bias data -Due to a difference in intantaneous luminosity between the overlay and real data, the luminosity profile of all +\noindent {\bf Luminosity reweighting}: properly model the occurence of multiple interactions +at higher instantaneous luminosities, simulated samples +are overlaid on Zero Bias data. Due to a difference in instantaneous luminosity between the overlay and +real data, the luminosity profile of all MC samples is reweighted to match the luminosity profile in data \cite{lumireweight}. -\noindent {\bf Primary vertex reweighting}: $z$ vertex distributions are different between data and MC.This difference is corrected by reweighting +\noindent {\bf Primary vertex reweighting}: vertex $z$ distributions are different between data and MC. +This difference is corrected by reweighting MC $z$ vertex distributions using the reweight processor from the {\tt caf\_mc\_util} package \cite{PVz_re}. -\noindent {\bf $W$ and $Z$ $p_{T}$ reweighting}: for both $W$ + jets and $Z$ + jets, the $p_{T}$ distribution from MC samples is reweighted to match -the equivalent distribution in data, accordingly to the standard way \cite{WZPt_re}. +\noindent {\bf $W$ and $Z$ $p_{T}$ reweighting}: for both $W$ + jets and $Z$ + jets, the $p_{T}$ +distribution from MC samples is reweighted to match +the equivalent distributions in data, accordingly to the standard way \cite{WZPt_re}. -\noindent {\bf b fragmentation}: the systematics on the reweight of the b-fragmentation function from the default in Pythia +\noindent {\bf $b$ fragmentation}: the systematics on the reweight of the b-fragmentation function from the default in Pythia to the value tuned to reproduce collider data was assumed to be the symmetrized difference between the AOD and SLD tunes \cite{bfrag}. -\noindent {\bf Jet Shifting Smearing and Removing (JSSR)}: due to differences in energy scale, resolution, reconstruction and identification +\noindent {\bf Jet Shifting Smearing and Removal (JSSR)}: due to differences in energy scale, resolution, +reconstruction and identification between data and MC, MC jets are shifted, smeared and possibly removed using standard JSSR -processor \cite{jssr}. In this analysis shifting is turned off to signal $t\bar{t}$ -and on to $W/Z$ + jets samples. +processor \cite{jssr}. In this analysis shifting is turned {\it off} to signal $t\bar{t}$ +and {\it on} to $W/Z$ + jets samples. -\noindent {\bf Tau Energy Scale (TES)}: due to the analysis sensitivity to any difference between data and MC -in the energy scale of taus decaying hadronically we apply a $E/p$ correction to this energy scale -as described in \cite{tes}. +\noindent {\bf Tau Energy Scale (TES)}: A $E/p$ correction is applied to the energy of the hadronically decaying +taus as described in \cite{tes}. %\subsubsection{\label{sub:hadtau_corr}\boldmath Hadronic $\tau$ corrections}