Diff for /ttbar/p20_taujets_note/Dataset.tex between versions 1.1 and 1.2

version 1.1, 2011/05/18 21:30:39 version 1.2, 2011/06/01 01:20:54
Line 4 Line 4
   
 \subsection{\label{sub:datasample}\boldmath Data Sample}  \subsection{\label{sub:datasample}\boldmath Data Sample}
   
 \noindent For this analysis the framework used was vjets\_cafe v04-00-08 (Release p21.18.00)  \noindent For this analysis we used the vjets\_cafe v04-00-08 framework (Release p21.18.00)
 and the data set consisted of 3JET skim produced by the commom samples group  and the data set consisted of 3JET skim produced by the commom samples group
 \cite{3jet_data} and recorded between August 2002 and May 2010 (runs 151817 - 258547).  and recorded between August 2002 and May 2010 (runs 151817 - 258547) \cite{3jet_data}.
   
   
 \begin{itemize}  \begin{itemize}
Line 26  In this analysis we chose the three jets Line 26  In this analysis we chose the three jets
   
   
 This particular trigger was chosen based on our needs of looking for events with multiple jets and  This particular trigger was chosen based on our needs of looking for events with multiple jets and
 the fact that it represents a gain of 20\% efficiency on signal selection if compared to previous p17 analysis.  the fact that it represents a gain of 10\% efficiency on signal selection if compared to previous p17 analysis.
 Since the efficiencies for such trigger are not currently part of caf\_trigger package,   Since the efficiency of this trigger is not part of caf\_trigger package, 
 in this analysis we benefit from the trigger modelling provided by the $hbb$ group \cite{bIDH_note}  in this analysis we benefit from the trigger modelling provided by the $hbb$ group \cite{bIDH_note}
 for the $\phi b \rightarrow b\bar{b}b$ analysis. Trigger weight distributions for all  for the $\phi b \rightarrow b\bar{b}b$ analysis. Trigger weight distributions for all
 MC samples used in the analysis as a function of the number of b-tagged jets  are found in   MC samples used in the analysis as a function of the number of b-tagged jets  are found in 
 %Appendix \ref{app:trig_eff} and summarized in Table \ref{trig_weight}:  %Appendix \ref{app:trig_eff} and summarized in Table \ref{trig_weight}:
 Appendix \ref{app:trig_eff} and Table II summarizes their mean values:  Appendix \ref{app:trig_eff} and Table 2 summarizes their mean values:
   
   
   
Line 52  $t\overline{t}\rightarrow\mu+jets$ &\mul Line 52  $t\overline{t}\rightarrow\mu+jets$ &\mul
   
 $t\overline{t}\rightarrow l+l$ &\multicolumn{1}{c|}{0.7274}  &\multicolumn{1}{c|}{0.7915} &\multicolumn{1}{c|}{0.8223} &\multicolumn{1}{c|}{0.8302} \\  $t\overline{t}\rightarrow l+l$ &\multicolumn{1}{c|}{0.7274}  &\multicolumn{1}{c|}{0.7915} &\multicolumn{1}{c|}{0.8223} &\multicolumn{1}{c|}{0.8302} \\
   
 $Wjj+jets\rightarrow$ $l\nu+jj+jets$ &\multicolumn{1}{c|}{0.5821}  &\multicolumn{1}{c|}{0.6337} &\multicolumn{1}{c|}{0.6586}&\multicolumn{1}{c|}{0.6652} \\  $Wjj+jets\rightarrow$ $\ell\nu+jj+jets$ &\multicolumn{1}{c|}{0.5821}  &\multicolumn{1}{c|}{0.6337} &\multicolumn{1}{c|}{0.6586}&\multicolumn{1}{c|}{0.6652} \\
   
 $Wbb+jets\rightarrow$ $l\nu+bb+jets$ &\multicolumn{1}{c|}{0.5948}  &\multicolumn{1}{c|}{0.6475}&\multicolumn{1}{c|}{0.6729}&\multicolumn{1}{c|}{0.6796} \\  $Wbb+jets\rightarrow$ $\ell\nu+bb+jets$ &\multicolumn{1}{c|}{0.5948}  &\multicolumn{1}{c|}{0.6475}&\multicolumn{1}{c|}{0.6729}&\multicolumn{1}{c|}{0.6796} \\
   
 $Wcc+jets\rightarrow$ $l\nu+cc+jets$ &\multicolumn{1}{c|}{0.5912}  &\multicolumn{1}{c|}{0.6435}&\multicolumn{1}{c|}{0.6687}&\multicolumn{1}{c|}{0.6754} \\  $Wcc+jets\rightarrow$ $\ell\nu+cc+jets$ &\multicolumn{1}{c|}{0.5912}  &\multicolumn{1}{c|}{0.6435}&\multicolumn{1}{c|}{0.6687}&\multicolumn{1}{c|}{0.6754} \\
   
 $Zjj+jets\rightarrow$ $ee+jj+jets$ &\multicolumn{1}{c|}{0.6769}  &\multicolumn{1}{c|}{0.7363}&\multicolumn{1}{c|}{0.7646}&\multicolumn{1}{c|}{0.7719} \\  $Zjj+jets\rightarrow$ $ee+jj+jets$ &\multicolumn{1}{c|}{0.6769}  &\multicolumn{1}{c|}{0.7363}&\multicolumn{1}{c|}{0.7646}&\multicolumn{1}{c|}{0.7719} \\
   
Line 98  data sample. Table \ref{lumi} shows the Line 98  data sample. Table \ref{lumi} shows the
 \begin{tabular}{|crrrr|}  \begin{tabular}{|crrrr|}
 %\begin{center}  %\begin{center}
 \hline   \hline 
 Trigger version&  Trigger version &\multicolumn{1}{c}{Trigger name} &\multicolumn{1}{c}{Delivered $\mathcal{L}$ ($\mbox{pb}^{-1})$} &\multicolumn{1}{c}{Recorded $\mathcal{L}$ ($\mbox{pb}^{-1})$} &\multicolumn{1}{c|}{Reconstructed $\mathcal{L}$ ($\mbox{pb}^{-1})$}
 Trigger name&  
 Delivered $\mathcal{L}$ ($pb^{-1})$&   
 Recorded $\mathcal{L}$ ($pb^{-1})$&   
 Reconstructed $\mathcal{L}$ ($pb^{-1})$  
 \tabularnewline  \tabularnewline
 \hline  \hline
 \hline   \hline 
 V15.0 - V15.99& JT2\_3JT15L\_IP\_VX&            1682.08&  1544.71&  1385.99  V15.0 - V15.99 &\multicolumn{1}{c}{JT2\_3JT15L\_IP\_VX} &\multicolumn{1}{c}{1682.08} &\multicolumn{1}{c}{1544.71} &\multicolumn{1}{c|}{1385.99}
 \tabularnewline  \tabularnewline
 V16.0 - V16.99& JT2\_3JT15L\_IP\_VX&            4059.92&  3887.95&  3565.86  V16.0 - V16.99 &\multicolumn{1}{c}{JT2\_3JT15L\_IP\_VX} &\multicolumn{1}{c}{4059.92} &\multicolumn{1}{c}{3887.95} &\multicolumn{1}{c|}{3565.86}
 \tabularnewline  \tabularnewline
 \hline  \hline
 T O T A L&         &              5742.00& 5432.66&  4951.85  T O T A L &\multicolumn{1}{c}{}         &\multicolumn{1}{c}{5742.00} &\multicolumn{1}{c}{5432.66} &\multicolumn{1}{c|}{4951.85}
 \tabularnewline  \tabularnewline
 \hline  \hline
 %\end{center}  %\end{center}
 \end{tabular}  \end{tabular}
 %\end{ruledtabular}  %\end{ruledtabular}
 \caption{The results of luminosity calculation for the Run2b 3JET data skim for different D0 trigger list versions}  \caption{The results of luminosity calculation for the Run IIb 3JET data skim for different D0 trigger list versions}
 \label{lumi}   \label{lumi} 
 \end{table}  \end{table}
   
 \newpage  %\newpage
   
 \subsection{\label{sub:background}\boldmath Backgrounds}  \subsection{\label{sub:background}\boldmath Backgrounds}
   
 In this analysis the largest background sources are QCD ({}``fake  The largest sources of background to our signal are QCD ({}``fake
 $\tau$''), which is estimated from data and  $W/Z$+jets, which are simulated Monte Carlo samples.  $\tau$'') and  $W/Z$+jets. We estimate the first from data and the second using Monte Carlo simulation.
 Other backgrounds that were not included in this analysis due to their small contribution are single top and diboson production.  Other sources such as single top and diboson production are small enough to be ignored.
 A list of backgrounds sources is found in Section III of \cite{p17_note}.  A list of backgrounds process is found in Section III of \cite{p17_note}.
 In the following sections we describe both signal and background simulation.  In the following sections we describe both signal and background simulation.
   
   
 \subsection{\label{sub:mcsample}\boldmath Monte Carlo Samples}  \subsection{\label{sub:mcsample}\boldmath Monte Carlo Samples}
   
 \noindent We use p20 certified MC samples as produced by CSG and caffed with p21.11.00 (version3) \cite{3jet_mc}.   \noindent We use p20 certified MC samples as produced by CSG and reconstructed with p21.11.00 (version3) \cite{3jet_mc}. 
 All $W/Z$ and $t\bar{t}$ were   All $W/Z$ and $t\bar{t}$ were 
 generated with ALPGEN v2.11 \cite{alpgen} interfaced with Pythia v6.409 \cite{pythia}   generated with ALPGEN v2.11 \cite{alpgen} interfaced with Pythia v6.409 \cite{pythia} 
 for production of parton-level showers and hadronization.  for production of parton-level showers and hadronization.
 EvtGen \cite{evtgen} is used to model b hadrons decays and TAUOLA \cite{tauola} used to model tau leptons decays.  EvtGen \cite{evtgen} is used to model b hadrons decays and TAUOLA \cite{tauola} is used to model tau leptons decays.
   
   
 \noindent ALPGEN is a leading order (LL) generator. In order to correct it to match with   \noindent ALPGEN is a leading order (LL) generator. In order to correct it to match with 
 next-to-leading order (NLO) cross sections we apply {\it correction factors}  and then provide  next-to-leading order (NLO) cross sections we apply correction factors to MC samples in order to get
 a correct normalization. These correction factors were taken from {\tt vjets$\_$cafe} framework and are described   the correct normalization. These correction factors were taken from {\tt vjets$\_$cafe} framework and are described 
 in Ref.\cite{kfactor}. There are two kinds of correction factors: {\it k-factors}, which  in Ref.\cite{kfactor}. There are two kinds of correction factors: {\it k-factors}, which
 are the result of the ratio between NLO and LL cross sections ($\sigma_{NLO}/\sigma_{LL}$) and  are the result of the ratio between NLO and LO cross sections ($\sigma_{NLO}/\sigma_{LO}$) and
 {\it heavy flavor factors}, which are in turn the ratio between k-factors for $HF+0lp(incl)$  {\it heavy flavor factors}, which are in turn the ratio between k-factors for $HF+0lp(incl)$
 and $2lp(incl)$ process from MCFM \cite{mcfm}. Here $HF$ denotes $Z + bb$, $Z + cc$, $W + bb$ or $W + cc$ and $lp$ stands  and $2lp(incl)$ process from MCFM \cite{mcfm}. Here $HF$ denotes $Z + bb$, $Z + cc$, $W + bb$ or $W + cc$ and $lp$ stands
 for {\it light parton}. Heavy flavor factors are applied on the top of k-factors in order to provide the correct  for {\it light parton}. Heavy flavor factors are applied on top of k-factors in order to provide the correct
 normalization for process where heavy quarks are present.  normalization for processes where heavy quarks are present.
 For $Z$ production, samples are split   For $Z$ production, samples are split 
 into $Z$ + light jets, $Z + bb$ and $Z + cc$. $Z$ + light parton  into $Z$ + light jets, $Z + bb$ and $Z + cc$. $Z$ + light parton
 cross sections are multiplied by a k-factor of 1.3, while $Z + bb$ and $Z+ cc$ are multiplied by additional  cross sections are multiplied by a k-factor of 1.3, while $Z + bb$ and $Z+ cc$ are multiplied by additional
Line 159  case a k-factor of 1.3 is applied while Line 156  case a k-factor of 1.3 is applied while
 both $W + bb$ and $W + cc$ samples.  both $W + bb$ and $W + cc$ samples.
 %Table \ref{kxsec} summarizes factors applied.  %Table \ref{kxsec} summarizes factors applied.
   
 Table IV summarizes the correction factors applied.  Table 4 summarizes the correction factors applied.
   
 \begin{table}[htbp]  \begin{table}[htbp]
 \begin{center}  \begin{center}
 \begin{tabular}{|c|r|} \hline  \begin{tabular}{|c|r|} \hline
 Process   & k-factor        \\ \hline  Process   & correction factor        \\ \hline
   
 \hline  \hline
   
   
 W + light partons     &  \multicolumn{1}{c|}{1.3}   \\ \hline  $W$ + light partons     &  \multicolumn{1}{c|}{1.3}   \\ \hline
   
   
 W + bb      &  \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline  $W + bb$      &  \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline
   
   
 W + cc     &  \multicolumn{1}{c|}{1.3$\times$1.47}   \\ \hline  $W + cc$     &  \multicolumn{1}{c|}{1.3$\times$1.47}   \\ \hline
   
   
 Z + light partons     &  \multicolumn{1}{c|}{1.3}   \\ \hline  $Z$ + light partons     &  \multicolumn{1}{c|}{1.3}   \\ \hline
   
   
 Z + bb      &  \multicolumn{1}{c|}{1.3$\times$1.52} \\ \hline  $Z + bb$      &  \multicolumn{1}{c|}{1.3$\times$1.52} \\ \hline
   
   
 Z + cc     &  \multicolumn{1}{c|}{1.3$\times$1.67}   \\ \hline  $Z + cc$     &  \multicolumn{1}{c|}{1.3$\times$1.67}   \\ \hline
   
 \end{tabular}  \end{tabular}
 \caption{k-factors for MC.}  \caption{k-factors for MC.}
Line 192  Z + cc     &  \multicolumn{1}{c|}{1.3$\t Line 189  Z + cc     &  \multicolumn{1}{c|}{1.3$\t
 \label{kxsec}   \label{kxsec} 
 \end{table}  \end{table}
   
 All MC samples used in this analysis are shown in Table \ref{used_mc} with theirs respective cross sections   All MC samples used in this analysis are shown in Table \ref{used_mc} with their respective cross sections 
 and number of events. The cross sections shown are the averages of the cross-sections of  and number of events. The cross sections shown are the averages of the cross sections of
 each set of MC process generated and are calculated from /caf$\_$mc$\_$util/mc$\_$sample$\_$info/MC.list  each set of MC process generated and are calculated from /caf$\_$mc$\_$util/mc$\_$sample$\_$info/MC.list \cite{caf_mc_util}.
   
 \clearpage  \clearpage
   
Line 203  each set of MC process generated and are Line 200  each set of MC process generated and are
 \begin{tabular}{|crr|}  \begin{tabular}{|crr|}
 \hline  \hline
 Sample & $\sigma(pb)$ & \# of Events \\ \hline  Sample & $\sigma(pb)$ & \# of Events \\ \hline
 $t+t+0lp-l\nu+2b+2lpc\_\mbox{excl}\_m172$  & 1.392196 &  $ 793267 $ \\   $t\bar{t}+0lp-\ell\nu+b\bar{b}+2lpc\_\mbox{excl}\_m172.5$  & 1.392196 &  $ 793267 $ \\ 
 $t+t+1lp-l\nu+2b+3lpc\_\mbox{excl}\_m172$ & .576927 &  $ 456317 $  \\  $t\bar{t}+1lp-\ell\nu+b\bar{b}+3lpc\_\mbox{excl}\_m172.5$ & .576927 &  $ 456317 $  \\
 $t+t+2lp-l\nu+2b+4lpc\_\mbox{incl}\_m172$ & .281831 &  $ 277912 $   \\  $t\bar{t}+2lp-\ell\nu+b\bar{b}+4lpc\_\mbox{incl}\_m172.5$ & .281831 &  $ 277912 $   \\
 $\mbox{W}+0lp\rightarrow lnu+0lp\_\mbox{excl}$ & 4530.269741 &  $ 47070044 $ \\  $W+0lp\rightarrow \ell\nu+0lp\_\mbox{excl}$ & 4530.269741 &  $ 47070044 $ \\
 $\mbox{W}+1lp\rightarrow lnu+1lp\_\mbox{excl}$  & 1283.094130 &  $ 20683540 $ \\   $W+1lp\rightarrow \ell\nu+1lp\_\mbox{excl}$  & 1283.094130 &  $ 20683540 $ \\ 
 $\mbox{W}+2lp\rightarrow lnu+2lp\_\mbox{excl}$ & 306.073315 &  $ 19686862 $  \\   $W+2lp\rightarrow \ell\nu+2lp\_\mbox{excl}$ & 306.073315 &  $ 19686862 $  \\ 
 $\mbox{W}+3lp\rightarrow lnu+3lp\_\mbox{excl}$ & 73.494491 &  $ 4269023 $  \\   $W+3lp\rightarrow \ell\nu+3lp\_\mbox{excl}$ & 73.494491 &  $ 4269023 $  \\ 
 $\mbox{W}+4lp\rightarrow lnu+4lp\_\mbox{excl}$ & 16.958254 &  $ 3084707 $\\   $W+4lp\rightarrow \ell\nu+4lp\_\mbox{excl}$ & 16.958254 &  $ 3084707 $\\ 
 $\mbox{W}+5lp\rightarrow lnu+5lp\_\mbox{incl}$ & 5.218917 &  $ 2565942 $ \\   $W+5lp\rightarrow \ell\nu+5lp\_\mbox{incl}$ & 5.218917 &  $ 2565942 $ \\ 
 $\mbox{W}+2b+0lp\rightarrow l\nu+2b+0lp\_\mbox{excl}$  & 9.315458 &  $ 1120570 $ \\  $W+b\bar{b}+0lp\rightarrow \ell\nu+b\bar{b}+0lp\_\mbox{excl}$  & 9.315458 &  $ 1120570 $ \\
 $\mbox{W}+2b+1lp\rightarrow l\nu+2b+1lp\_\mbox{excl}$ & 4.288365 &  $ 812095 $ \\  $W+b\bar{b}+1lp\rightarrow \ell\nu+b\bar{b}+1lp\_\mbox{excl}$ & 4.288365 &  $ 812095 $ \\
 $\mbox{W}+2b+2lp\rightarrow l\nu+2b+2lp\_\mbox{excl}$ & 1.554786 &  $ 563315 $ \\   $W+b\bar{b}+2lp\rightarrow \ell\nu+b\bar{b}+2lp\_\mbox{excl}$ & 1.554786 &  $ 563315 $ \\ 
 $\mbox{W}+2b+3lp\rightarrow l\nu+2b+3lp\_\mbox{incl}$ & 0.716175& $ 464475 $ \\  $W+b\bar{b}+3lp\rightarrow \ell\nu+b\bar{b}+3lp\_\mbox{incl}$ & 0.716175& $ 464475 $ \\
 $\mbox{W}+2b+0lp\rightarrow l\nu+2c+0lp\_\mbox{excl}$ & 24.404153 &  $ 934253 $ \\  $W+c\bar{c}+0lp\rightarrow \ell\nu+c\bar{c}+0lp\_\mbox{excl}$ & 24.404153 &  $ 934253 $ \\
 $\mbox{W}+2b+1lp\rightarrow l\nu+2c+1lp\_\mbox{excl}$ & 13.486806 &  $ 738709 $ \\  $W+c\bar{c}+1lp\rightarrow \ell\nu+c\bar{c}+1lp\_\mbox{excl}$ & 13.486806 &  $ 738709 $ \\
 $\mbox{W}+2b+2lp\rightarrow l\nu+2c+2lp\_\mbox{excl}$ & 5.459005 &  $ 554236 $ \\  $W+c\bar{c}+2lp\rightarrow \ell\nu+c\bar{c}+2lp\_\mbox{excl}$ & 5.459005 &  $ 554236 $ \\
 $\mbox{W}+2b+3lp\rightarrow l\nu+2c+3lp\_\mbox{incl}$ & 2.526973 &  $ 469900 $ \\  $W+c\bar{c}+3lp\rightarrow \ell\nu+c\bar{c}+3lp\_\mbox{incl}$ & 2.526973 &  $ 469900 $ \\
 $\gamma \mbox{Z}+0lp\rightarrow ee+0lp\_\mbox{excl}\_75\_130$ & 132.086811 &  $ 1212214 $ \\  $\gamma /Z+0lp\rightarrow ee+0lp\_\mbox{excl}\_75\_130$ & 132.086811 &  $ 1212214 $ \\
 $\gamma \mbox{Z}+1lp\rightarrow ee+1lp\_\mbox{excl}\_75\_130$ & 40.060963 &  $ 599588 $ \\  $\gamma /Z+1lp\rightarrow ee+1lp\_\mbox{excl}\_75\_130$ & 40.060963 &  $ 599588 $ \\
 $\gamma \mbox{Z}+2lp\rightarrow ee+2lp\_\mbox{excl}\_75\_130$ & 9.981935 &  $ 298494 $ \\  $\gamma /Z+2lp\rightarrow ee+2lp\_\mbox{excl}\_75\_130$ & 9.981935 &  $ 298494 $ \\
 $\gamma \mbox{Z}+3lp\rightarrow ee+3lp\_\mbox{incl}\_75\_130$ & 3.297072 &  $ 150267 $ \\  $\gamma /Z+3lp\rightarrow ee+3lp\_\mbox{incl}\_75\_130$ & 3.297072 &  $ 150267 $ \\
 $\gamma \mbox{Z}+2b+0lp\rightarrow ee+2b+0lp\_\mbox{excl}\_75\_130$ & 0.400826 &  $ 200121 $ \\  $\gamma /Z+b\bar{b}+0lp\rightarrow ee+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.400826 &  $ 200121 $ \\
 $\gamma \mbox{Z}+2b+1lp\rightarrow ee+2b+1lp\_\mbox{excl}\_75\_130$ & 0.173438 &  $ 97474 $ \\  $\gamma /Z+b\bar{b}+1lp\rightarrow ee+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.173438 &  $ 97474 $ \\
 $\gamma \mbox{Z}+2b+2lp\rightarrow ee+2b+2lp\_\mbox{incl}\_75\_130$ & 0.107248 &  $ 48269 $ \\  $\gamma /Z+b\bar{b}+2lp\rightarrow ee+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.107248 &  $ 48269 $ \\
 $\gamma \mbox{Z}+2c+0lp\rightarrow ee+2c+0lp\_\mbox{excl}\_75\_130$ & 0.900923 &  $ 182485 $ \\  $\gamma /Z+c\bar{c}+0lp\rightarrow ee+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.900923 &  $ 182485 $ \\
 $\gamma \mbox{Z}+2c+1lp\rightarrow ee+2c+1lp\_\mbox{excl}\_75\_130$ & 0.506337 &  $ 89293 $ \\  $\gamma /Z+c\bar{c}+1lp\rightarrow ee+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.506337 &  $ 89293 $ \\
 $\gamma \mbox{Z}+2b+2lp\rightarrow ee+2b+2lp\_\mbox{incl}\_75\_130$ & 0.285871 &  $ 47357 $ \\  $\gamma /Z+c\bar{c}+2lp\rightarrow ee+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.285871 &  $ 47357 $ \\
 $\gamma \mbox{Z}+0lp\rightarrow \mu \mu+0lp\_\mbox{excl}\_75\_130$ & 133.850906 &  $ 1553222 $ \\  $\gamma /Z+0lp\rightarrow \mu \mu+0lp\_\mbox{excl}\_75\_130$ & 133.850906 &  $ 1553222 $ \\
 $\gamma \mbox{Z}+1lp\rightarrow \mu \mu+1lp\_\mbox{excl}\_75\_130$ & 41.677185 &  $ 639392 $ \\  $\gamma /Z+1lp\rightarrow \mu \mu+1lp\_\mbox{excl}\_75\_130$ & 41.677185 &  $ 639392 $ \\
 $\gamma \mbox{Z}+2lp\rightarrow \mu \mu+2lp\_\mbox{excl}\_75\_130$ & 9.822132 &  $ 446737 $ \\  $\gamma /Z+2lp\rightarrow \mu \mu+2lp\_\mbox{excl}\_75\_130$ & 9.822132 &  $ 446737 $ \\
 $\gamma \mbox{Z}+3lp\rightarrow \mu \mu+3lp\_\mbox{incl}\_75\_130$ & 3.195801 &  $ 172628 $ \\  $\gamma /Z+3lp\rightarrow \mu \mu+3lp\_\mbox{incl}\_75\_130$ & 3.195801 &  $ 172628 $ \\
 $\gamma \mbox{Z}+2b+0lp\rightarrow \mu \mu+2b+0lp\_\mbox{excl}\_75\_130$ & 0.424239 &  $ 210139 $ \\  $\gamma /Z+b\bar{b}+0lp\rightarrow \mu \mu+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.424239 &  $ 210139 $ \\
 $\gamma \mbox{Z}+2b+1lp\rightarrow \mu \mu+2b+1lp\_\mbox{excl}\_75\_130$ & 0.195271 &  $ 101055 $ \\  $\gamma /Z+b\bar{b}+1lp\rightarrow \mu \mu+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.195271 &  $ 101055 $ \\
 $\gamma \mbox{Z}+2b+2lp\rightarrow \mu \mu+2b+2lp\_\mbox{incl}\_75\_130$ & 0.099004 &  $ 49600 $ \\  $\gamma /Z+b\bar{b}+2lp\rightarrow \mu \mu+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.099004 &  $ 49600 $ \\
 $\gamma \mbox{Z}+2c+0lp\rightarrow \mu \mu+2c+0lp\_\mbox{excl}\_75\_130$ & 0.932203 &  $ 193928 $ \\  $\gamma /Z+c\bar{c}+0lp\rightarrow \mu \mu+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.932203 &  $ 193928 $ \\
 $\gamma \mbox{Z}+2c+1lp\rightarrow \mu \mu+2c+1lp\_\mbox{excl}\_75\_130$ & 0.548182 &  $ 92744 $ \\  $\gamma /Z+c\bar{c}+1lp\rightarrow \mu \mu+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.548182 &  $ 92744 $ \\
 $\gamma \mbox{Z}+2b+2lp\rightarrow \mu \mu+2b+2lp\_\mbox{incl}\_75\_130$ & 0.280795 &  $ 51277 $ \\  $\gamma /Z+c\bar{c}+2lp\rightarrow \mu \mu+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.280795 &  $ 51277 $ \\
 $\gamma \mbox{Z}+0lp\rightarrow \tau \tau+0lp\_\mbox{excl}\_75\_130$ & 131.564780 &  $ 1556389 $ \\  $\gamma /Z+0lp\rightarrow \tau \tau+0lp\_\mbox{excl}\_75\_130$ & 131.564780 &  $ 1556389 $ \\
 $\gamma \mbox{Z}+1lp\rightarrow \tau \tau+1lp\_\mbox{excl}\_75\_130$ & 40.300291 &  $ 595169 $ \\  $\gamma /Z+1lp\rightarrow \tau \tau+1lp\_\mbox{excl}\_75\_130$ & 40.300291 &  $ 595169 $ \\
 $\gamma \mbox{Z}+2lp\rightarrow \tau \tau+2lp\_\mbox{excl}\_75\_130$ & 10.072067 &  $ 305312 $ \\  $\gamma /Z+2lp\rightarrow \tau \tau+2lp\_\mbox{excl}\_75\_130$ & 10.072067 &  $ 305312 $ \\
 $\gamma \mbox{Z}+3lp\rightarrow \tau \tau+3lp\_\mbox{excl}\_75\_130$ & 3.089442 &  $ 205365 $ \\  $\gamma /Z+3lp\rightarrow \tau \tau+3lp\_\mbox{excl}\_75\_130$ & 3.089442 &  $ 205365 $ \\
 $\gamma \mbox{Z}+2b+0lp\rightarrow \tau \tau+2b+0lp\_\mbox{excl}\_75\_130$ & 0.423679 &  $ 196943 $ \\  $\gamma /Z+b\bar{b}+0lp\rightarrow \tau \tau+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.423679 &  $ 196943 $ \\
 $\gamma \mbox{Z}+2b+1lp\rightarrow \tau \tau+2b+1lp\_\mbox{excl}\_75\_130$ & 0.196527 &  $ 103105 $ \\  $\gamma /Z+b\bar{b}+1lp\rightarrow \tau \tau+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.196527 &  $ 103105 $ \\
 $\gamma \mbox{Z}+2b+2lp\rightarrow \tau \tau+2b+2lp\_\mbox{incl}\_75\_130$ & 0.103561 &  $ 48476 $ \\  $\gamma /Z+b\bar{b}+2lp\rightarrow \tau \tau+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.103561 &  $ 48476 $ \\
 $\gamma \mbox{Z}+2c+0lp\rightarrow \tau \tau+2c+0lp\_\mbox{excl}\_75\_130$ & 0.898135 &  $ 260243 $ \\  $\gamma /Z+c\bar{c}+0lp\rightarrow \tau \tau+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.898135 &  $ 260243 $ \\
 $\gamma \mbox{Z}+2c+1lp\rightarrow \tau \tau+2c+1lp\_\mbox{excl}\_75\_130$ & 0.487548 &  $ 100802 $ \\  $\gamma /Z+c\bar{c}+1lp\rightarrow \tau \tau+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.487548 &  $ 100802 $ \\
 $\gamma \mbox{Z}+2b+2lp\rightarrow \tau \tau+2b+2lp\_\mbox{incl}\_75\_130$ & 0.297808 &  $ 50711 $ \\   $\gamma /Z+c\bar{c}+2lp\rightarrow \tau \tau+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.297808 &  $ 50711 $ \\ 
 $\gamma \mbox{Z}+0lp\rightarrow \nu \nu+0lp\_\mbox{excl}$ & 806.552968 &  $ 2368495 $ \\  $Z+0lp\rightarrow \nu \nu+0lp\_\mbox{excl}$ & 806.552968 &  $ 2368495 $ \\
 $\gamma \mbox{Z}+1lp\rightarrow \nu \nu+1lp\_\mbox{excl}$ & 244.651772 &  $ 2591505 $ \\  $Z+1lp\rightarrow \nu \nu+1lp\_\mbox{excl}$ & 244.651772 &  $ 2591505 $ \\
 $\gamma \mbox{Z}+2lp\rightarrow \nu \nu+2lp\_\mbox{excl}$ & 61.014112 &  $ 657110 $ \\  $Z+2lp\rightarrow \nu \nu+2lp\_\mbox{excl}$ & 61.014112 &  $ 657110 $ \\
 $\gamma \mbox{Z}+3lp\rightarrow \nu \nu+3lp\_\mbox{excl}$ & 14.091090 &  $ 194705 $ \\  $Z+3lp\rightarrow \nu \nu+3lp\_\mbox{excl}$ & 14.091090 &  $ 194705 $ \\
 $\gamma \mbox{Z}+4lp\rightarrow \nu \nu+4lp\_\mbox{excl}$ & 3.277295 &  $ 100158 $ \\  $Z+4lp\rightarrow \nu \nu+4lp\_\mbox{excl}$ & 3.277295 &  $ 100158 $ \\
 $\gamma \mbox{Z}+5lp\rightarrow \nu \nu+5lp\_\mbox{incl}$ & 0.936465 &  $ 49660 $ \\  $Z+5lp\rightarrow \nu \nu+5lp\_\mbox{incl}$ & 0.936465 &  $ 49660 $ \\
 $\gamma \mbox{Z}+2b+0lp\rightarrow \nu \nu+2b+0lp\_\mbox{excl}$ & 2.562976 &  $ 375572$ \\  $Z+b\bar{b}+0lp\rightarrow \nu \nu+b\bar{b}+0lp\_\mbox{excl}$ & 2.562976 &  $ 375572$ \\
 $\gamma \mbox{Z}+2b+1lp\rightarrow \nu \nu+2b+1lp\_\mbox{excl}$ & 1.143703 &  $ 180558 $ \\  $Z+b\bar{b}+1lp\rightarrow \nu \nu+b\bar{b}+1lp\_\mbox{excl}$ & 1.143703 &  $ 180558 $ \\
 $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \nu+2b+2lp\_\mbox{incl}$ & 0.617265 &  $ 91588 $ \\  $Z+b\bar{b}+2lp\rightarrow \nu \nu+b\bar{b}+2lp\_\mbox{incl}$ & 0.617265 &  $ 91588 $ \\
 $\gamma \mbox{Z}+2c+0lp\rightarrow \nu \nu+2c+0lp\_\mbox{excl}$ & 5.634504 &  $ 376456 $ \\  $Z+c\bar{c}+0lp\rightarrow \nu \nu+c\bar{c}+0lp\_\mbox{excl}$ & 5.634504 &  $ 376456 $ \\
 $\gamma \mbox{Z}+2c+1lp\rightarrow \nu \nu+2c+1lp\_\mbox{excl}$ & 3.002712 &  $ 199012 $ \\  $Z+c\bar{c}+1lp\rightarrow \nu \nu+c\bar{c}+1lp\_\mbox{excl}$ & 3.002712 &  $ 199012 $ \\
 $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \nu+2b+2lp\_\mbox{incl}$ & 1.635746 &  $ 96147 $ \\\hline  $Z+c\bar{c}+2lp\rightarrow \nu \nu+c\bar{c}+2lp\_\mbox{incl}$ & 1.635746 &  $ 96147 $ \\\hline
   
 \end{tabular}  \end{tabular}
 \caption{MC Samples. Here $l$ stands for the three lepton flavor ($e$, $\mu$ and $\tau$). $\tau$ decays are not restricted.}    \caption{MC Samples. Here $l$ stands for the three lepton flavor ($e$, $\mu$ and $\tau$). $\tau$ decays are not restricted.}  
Line 273  $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \ Line 270  $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \
   
 \subsection{\label{sub:mcsample_xseccorr}\boldmath MC samples corrections}  \subsection{\label{sub:mcsample_xseccorr}\boldmath MC samples corrections}
   
 Standard D\O\ corrections are applied to MC in order to obtain a better MC-data agreement \cite{top_sys}.  Standard D0 corrections are applied to MC in order to obtain a better MC-data agreement \cite{top_sys}.
   
   
 \noindent {\bf Trigger efficiency}: an additional scale factor (weight) is applied to MC to account for the trigger efficiency in data.   \noindent {\bf Trigger efficiency}: an additional scale factor (weight) is applied to MC to account for the trigger 
 Further details are given in Section \ref{sec:trig_param}.  efficiency in data. Further details are given in Section \ref{sec:trig_param}.
   
 \noindent {\bf Luminosity reweighting}: in order to reproduce luminosity effects from real data, simulated samples are overlaid to Zero Bias data  \noindent {\bf Luminosity reweighting}: properly model the occurence of multiple interactions
 Due to a difference in intantaneous luminosity between the overlay and real data, the luminosity profile of all  at higher instantaneous luminosities, simulated samples 
   are overlaid on Zero Bias data. Due to a difference in instantaneous luminosity between the overlay and 
   real data, the luminosity profile of all
 MC samples is reweighted to match the luminosity profile in data \cite{lumireweight}.  MC samples is reweighted to match the luminosity profile in data \cite{lumireweight}.
   
 \noindent {\bf Primary vertex reweighting}: $z$ vertex distributions are different between data and MC.This difference is corrected by reweighting  \noindent {\bf Primary vertex reweighting}: vertex $z$  distributions are different between data and MC.
   This difference is corrected by reweighting
 MC $z$ vertex distributions using the reweight processor from the {\tt caf\_mc\_util} package \cite{PVz_re}.  MC $z$ vertex distributions using the reweight processor from the {\tt caf\_mc\_util} package \cite{PVz_re}.
   
 \noindent {\bf $W$ and $Z$ $p_{T}$ reweighting}: for both $W$ + jets and $Z$ + jets, the $p_{T}$ distribution from MC samples is reweighted to match   \noindent {\bf $W$ and $Z$ $p_{T}$ reweighting}: for both $W$ + jets and $Z$ + jets, the $p_{T}$ 
 the equivalent distribution in data, accordingly to the standard way \cite{WZPt_re}.  distribution from MC samples is reweighted to match 
   the equivalent distributions in data, accordingly to the standard way \cite{WZPt_re}.
   
 \noindent {\bf b fragmentation}: the systematics on the reweight of the b-fragmentation function from the default in Pythia  \noindent {\bf $b$ fragmentation}: the systematics on the reweight of the b-fragmentation function from the default in Pythia
 to the value tuned to reproduce collider data was assumed to be the symmetrized difference between  to the value tuned to reproduce collider data was assumed to be the symmetrized difference between
 the AOD and SLD tunes \cite{bfrag}.  the AOD and SLD tunes \cite{bfrag}.
   
 \noindent {\bf Jet Shifting Smearing and Removing (JSSR)}: due to differences in energy scale, resolution, reconstruction and identification  \noindent {\bf Jet Shifting Smearing and Removal (JSSR)}: due to differences in energy scale, resolution, 
   reconstruction and identification
 between data and MC, MC jets are shifted, smeared and possibly removed using standard JSSR   between data and MC, MC jets are shifted, smeared and possibly removed using standard JSSR 
 processor \cite{jssr}. In this analysis shifting is turned off to signal $t\bar{t}$  processor \cite{jssr}. In this analysis shifting is turned {\it off} to signal $t\bar{t}$
 and on to $W/Z$ + jets samples.  and {\it on} to $W/Z$ + jets samples.
   
   
 \noindent {\bf Tau Energy Scale (TES)}: due to the analysis sensitivity to any difference between data and MC  \noindent {\bf Tau Energy Scale (TES)}: A $E/p$ correction is applied to the energy of the hadronically decaying
 in the energy scale of taus decaying hadronically we apply a $E/p$ correction to this energy scale  taus as described in \cite{tes}.
 as described in \cite{tes}.  
   
 %\subsubsection{\label{sub:hadtau_corr}\boldmath Hadronic $\tau$ corrections}  %\subsubsection{\label{sub:hadtau_corr}\boldmath Hadronic $\tau$ corrections}
   

Removed from v.1.1  
changed lines
  Added in v.1.2


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>