|
|
| version 1.1, 2011/05/18 21:30:39 | version 1.2, 2011/06/01 01:20:54 |
|---|---|
| Line 4 | Line 4 |
| \subsection{\label{sub:datasample}\boldmath Data Sample} | \subsection{\label{sub:datasample}\boldmath Data Sample} |
| \noindent For this analysis the framework used was vjets\_cafe v04-00-08 (Release p21.18.00) | \noindent For this analysis we used the vjets\_cafe v04-00-08 framework (Release p21.18.00) |
| and the data set consisted of 3JET skim produced by the commom samples group | and the data set consisted of 3JET skim produced by the commom samples group |
| \cite{3jet_data} and recorded between August 2002 and May 2010 (runs 151817 - 258547). | and recorded between August 2002 and May 2010 (runs 151817 - 258547) \cite{3jet_data}. |
| \begin{itemize} | \begin{itemize} |
| Line 26 In this analysis we chose the three jets | Line 26 In this analysis we chose the three jets |
| This particular trigger was chosen based on our needs of looking for events with multiple jets and | This particular trigger was chosen based on our needs of looking for events with multiple jets and |
| the fact that it represents a gain of 20\% efficiency on signal selection if compared to previous p17 analysis. | the fact that it represents a gain of 10\% efficiency on signal selection if compared to previous p17 analysis. |
| Since the efficiencies for such trigger are not currently part of caf\_trigger package, | Since the efficiency of this trigger is not part of caf\_trigger package, |
| in this analysis we benefit from the trigger modelling provided by the $hbb$ group \cite{bIDH_note} | in this analysis we benefit from the trigger modelling provided by the $hbb$ group \cite{bIDH_note} |
| for the $\phi b \rightarrow b\bar{b}b$ analysis. Trigger weight distributions for all | for the $\phi b \rightarrow b\bar{b}b$ analysis. Trigger weight distributions for all |
| MC samples used in the analysis as a function of the number of b-tagged jets are found in | MC samples used in the analysis as a function of the number of b-tagged jets are found in |
| %Appendix \ref{app:trig_eff} and summarized in Table \ref{trig_weight}: | %Appendix \ref{app:trig_eff} and summarized in Table \ref{trig_weight}: |
| Appendix \ref{app:trig_eff} and Table II summarizes their mean values: | Appendix \ref{app:trig_eff} and Table 2 summarizes their mean values: |
| Line 52 $t\overline{t}\rightarrow\mu+jets$ &\mul | Line 52 $t\overline{t}\rightarrow\mu+jets$ &\mul |
| $t\overline{t}\rightarrow l+l$ &\multicolumn{1}{c|}{0.7274} &\multicolumn{1}{c|}{0.7915} &\multicolumn{1}{c|}{0.8223} &\multicolumn{1}{c|}{0.8302} \\ | $t\overline{t}\rightarrow l+l$ &\multicolumn{1}{c|}{0.7274} &\multicolumn{1}{c|}{0.7915} &\multicolumn{1}{c|}{0.8223} &\multicolumn{1}{c|}{0.8302} \\ |
| $Wjj+jets\rightarrow$ $l\nu+jj+jets$ &\multicolumn{1}{c|}{0.5821} &\multicolumn{1}{c|}{0.6337} &\multicolumn{1}{c|}{0.6586}&\multicolumn{1}{c|}{0.6652} \\ | $Wjj+jets\rightarrow$ $\ell\nu+jj+jets$ &\multicolumn{1}{c|}{0.5821} &\multicolumn{1}{c|}{0.6337} &\multicolumn{1}{c|}{0.6586}&\multicolumn{1}{c|}{0.6652} \\ |
| $Wbb+jets\rightarrow$ $l\nu+bb+jets$ &\multicolumn{1}{c|}{0.5948} &\multicolumn{1}{c|}{0.6475}&\multicolumn{1}{c|}{0.6729}&\multicolumn{1}{c|}{0.6796} \\ | $Wbb+jets\rightarrow$ $\ell\nu+bb+jets$ &\multicolumn{1}{c|}{0.5948} &\multicolumn{1}{c|}{0.6475}&\multicolumn{1}{c|}{0.6729}&\multicolumn{1}{c|}{0.6796} \\ |
| $Wcc+jets\rightarrow$ $l\nu+cc+jets$ &\multicolumn{1}{c|}{0.5912} &\multicolumn{1}{c|}{0.6435}&\multicolumn{1}{c|}{0.6687}&\multicolumn{1}{c|}{0.6754} \\ | $Wcc+jets\rightarrow$ $\ell\nu+cc+jets$ &\multicolumn{1}{c|}{0.5912} &\multicolumn{1}{c|}{0.6435}&\multicolumn{1}{c|}{0.6687}&\multicolumn{1}{c|}{0.6754} \\ |
| $Zjj+jets\rightarrow$ $ee+jj+jets$ &\multicolumn{1}{c|}{0.6769} &\multicolumn{1}{c|}{0.7363}&\multicolumn{1}{c|}{0.7646}&\multicolumn{1}{c|}{0.7719} \\ | $Zjj+jets\rightarrow$ $ee+jj+jets$ &\multicolumn{1}{c|}{0.6769} &\multicolumn{1}{c|}{0.7363}&\multicolumn{1}{c|}{0.7646}&\multicolumn{1}{c|}{0.7719} \\ |
| Line 98 data sample. Table \ref{lumi} shows the | Line 98 data sample. Table \ref{lumi} shows the |
| \begin{tabular}{|crrrr|} | \begin{tabular}{|crrrr|} |
| %\begin{center} | %\begin{center} |
| \hline | \hline |
| Trigger version& | Trigger version &\multicolumn{1}{c}{Trigger name} &\multicolumn{1}{c}{Delivered $\mathcal{L}$ ($\mbox{pb}^{-1})$} &\multicolumn{1}{c}{Recorded $\mathcal{L}$ ($\mbox{pb}^{-1})$} &\multicolumn{1}{c|}{Reconstructed $\mathcal{L}$ ($\mbox{pb}^{-1})$} |
| Trigger name& | |
| Delivered $\mathcal{L}$ ($pb^{-1})$& | |
| Recorded $\mathcal{L}$ ($pb^{-1})$& | |
| Reconstructed $\mathcal{L}$ ($pb^{-1})$ | |
| \tabularnewline | \tabularnewline |
| \hline | \hline |
| \hline | \hline |
| V15.0 - V15.99& JT2\_3JT15L\_IP\_VX& 1682.08& 1544.71& 1385.99 | V15.0 - V15.99 &\multicolumn{1}{c}{JT2\_3JT15L\_IP\_VX} &\multicolumn{1}{c}{1682.08} &\multicolumn{1}{c}{1544.71} &\multicolumn{1}{c|}{1385.99} |
| \tabularnewline | \tabularnewline |
| V16.0 - V16.99& JT2\_3JT15L\_IP\_VX& 4059.92& 3887.95& 3565.86 | V16.0 - V16.99 &\multicolumn{1}{c}{JT2\_3JT15L\_IP\_VX} &\multicolumn{1}{c}{4059.92} &\multicolumn{1}{c}{3887.95} &\multicolumn{1}{c|}{3565.86} |
| \tabularnewline | \tabularnewline |
| \hline | \hline |
| T O T A L& & 5742.00& 5432.66& 4951.85 | T O T A L &\multicolumn{1}{c}{} &\multicolumn{1}{c}{5742.00} &\multicolumn{1}{c}{5432.66} &\multicolumn{1}{c|}{4951.85} |
| \tabularnewline | \tabularnewline |
| \hline | \hline |
| %\end{center} | %\end{center} |
| \end{tabular} | \end{tabular} |
| %\end{ruledtabular} | %\end{ruledtabular} |
| \caption{The results of luminosity calculation for the Run2b 3JET data skim for different D0 trigger list versions} | \caption{The results of luminosity calculation for the Run IIb 3JET data skim for different D0 trigger list versions} |
| \label{lumi} | \label{lumi} |
| \end{table} | \end{table} |
| \newpage | %\newpage |
| \subsection{\label{sub:background}\boldmath Backgrounds} | \subsection{\label{sub:background}\boldmath Backgrounds} |
| In this analysis the largest background sources are QCD ({}``fake | The largest sources of background to our signal are QCD ({}``fake |
| $\tau$''), which is estimated from data and $W/Z$+jets, which are simulated Monte Carlo samples. | $\tau$'') and $W/Z$+jets. We estimate the first from data and the second using Monte Carlo simulation. |
| Other backgrounds that were not included in this analysis due to their small contribution are single top and diboson production. | Other sources such as single top and diboson production are small enough to be ignored. |
| A list of backgrounds sources is found in Section III of \cite{p17_note}. | A list of backgrounds process is found in Section III of \cite{p17_note}. |
| In the following sections we describe both signal and background simulation. | In the following sections we describe both signal and background simulation. |
| \subsection{\label{sub:mcsample}\boldmath Monte Carlo Samples} | \subsection{\label{sub:mcsample}\boldmath Monte Carlo Samples} |
| \noindent We use p20 certified MC samples as produced by CSG and caffed with p21.11.00 (version3) \cite{3jet_mc}. | \noindent We use p20 certified MC samples as produced by CSG and reconstructed with p21.11.00 (version3) \cite{3jet_mc}. |
| All $W/Z$ and $t\bar{t}$ were | All $W/Z$ and $t\bar{t}$ were |
| generated with ALPGEN v2.11 \cite{alpgen} interfaced with Pythia v6.409 \cite{pythia} | generated with ALPGEN v2.11 \cite{alpgen} interfaced with Pythia v6.409 \cite{pythia} |
| for production of parton-level showers and hadronization. | for production of parton-level showers and hadronization. |
| EvtGen \cite{evtgen} is used to model b hadrons decays and TAUOLA \cite{tauola} used to model tau leptons decays. | EvtGen \cite{evtgen} is used to model b hadrons decays and TAUOLA \cite{tauola} is used to model tau leptons decays. |
| \noindent ALPGEN is a leading order (LL) generator. In order to correct it to match with | \noindent ALPGEN is a leading order (LL) generator. In order to correct it to match with |
| next-to-leading order (NLO) cross sections we apply {\it correction factors} and then provide | next-to-leading order (NLO) cross sections we apply correction factors to MC samples in order to get |
| a correct normalization. These correction factors were taken from {\tt vjets$\_$cafe} framework and are described | the correct normalization. These correction factors were taken from {\tt vjets$\_$cafe} framework and are described |
| in Ref.\cite{kfactor}. There are two kinds of correction factors: {\it k-factors}, which | in Ref.\cite{kfactor}. There are two kinds of correction factors: {\it k-factors}, which |
| are the result of the ratio between NLO and LL cross sections ($\sigma_{NLO}/\sigma_{LL}$) and | are the result of the ratio between NLO and LO cross sections ($\sigma_{NLO}/\sigma_{LO}$) and |
| {\it heavy flavor factors}, which are in turn the ratio between k-factors for $HF+0lp(incl)$ | {\it heavy flavor factors}, which are in turn the ratio between k-factors for $HF+0lp(incl)$ |
| and $2lp(incl)$ process from MCFM \cite{mcfm}. Here $HF$ denotes $Z + bb$, $Z + cc$, $W + bb$ or $W + cc$ and $lp$ stands | and $2lp(incl)$ process from MCFM \cite{mcfm}. Here $HF$ denotes $Z + bb$, $Z + cc$, $W + bb$ or $W + cc$ and $lp$ stands |
| for {\it light parton}. Heavy flavor factors are applied on the top of k-factors in order to provide the correct | for {\it light parton}. Heavy flavor factors are applied on top of k-factors in order to provide the correct |
| normalization for process where heavy quarks are present. | normalization for processes where heavy quarks are present. |
| For $Z$ production, samples are split | For $Z$ production, samples are split |
| into $Z$ + light jets, $Z + bb$ and $Z + cc$. $Z$ + light parton | into $Z$ + light jets, $Z + bb$ and $Z + cc$. $Z$ + light parton |
| cross sections are multiplied by a k-factor of 1.3, while $Z + bb$ and $Z+ cc$ are multiplied by additional | cross sections are multiplied by a k-factor of 1.3, while $Z + bb$ and $Z+ cc$ are multiplied by additional |
| Line 159 case a k-factor of 1.3 is applied while | Line 156 case a k-factor of 1.3 is applied while |
| both $W + bb$ and $W + cc$ samples. | both $W + bb$ and $W + cc$ samples. |
| %Table \ref{kxsec} summarizes factors applied. | %Table \ref{kxsec} summarizes factors applied. |
| Table IV summarizes the correction factors applied. | Table 4 summarizes the correction factors applied. |
| \begin{table}[htbp] | \begin{table}[htbp] |
| \begin{center} | \begin{center} |
| \begin{tabular}{|c|r|} \hline | \begin{tabular}{|c|r|} \hline |
| Process & k-factor \\ \hline | Process & correction factor \\ \hline |
| \hline | \hline |
| W + light partons & \multicolumn{1}{c|}{1.3} \\ \hline | $W$ + light partons & \multicolumn{1}{c|}{1.3} \\ \hline |
| W + bb & \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline | $W + bb$ & \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline |
| W + cc & \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline | $W + cc$ & \multicolumn{1}{c|}{1.3$\times$1.47} \\ \hline |
| Z + light partons & \multicolumn{1}{c|}{1.3} \\ \hline | $Z$ + light partons & \multicolumn{1}{c|}{1.3} \\ \hline |
| Z + bb & \multicolumn{1}{c|}{1.3$\times$1.52} \\ \hline | $Z + bb$ & \multicolumn{1}{c|}{1.3$\times$1.52} \\ \hline |
| Z + cc & \multicolumn{1}{c|}{1.3$\times$1.67} \\ \hline | $Z + cc$ & \multicolumn{1}{c|}{1.3$\times$1.67} \\ \hline |
| \end{tabular} | \end{tabular} |
| \caption{k-factors for MC.} | \caption{k-factors for MC.} |
| Line 192 Z + cc & \multicolumn{1}{c|}{1.3$\t | Line 189 Z + cc & \multicolumn{1}{c|}{1.3$\t |
| \label{kxsec} | \label{kxsec} |
| \end{table} | \end{table} |
| All MC samples used in this analysis are shown in Table \ref{used_mc} with theirs respective cross sections | All MC samples used in this analysis are shown in Table \ref{used_mc} with their respective cross sections |
| and number of events. The cross sections shown are the averages of the cross-sections of | and number of events. The cross sections shown are the averages of the cross sections of |
| each set of MC process generated and are calculated from /caf$\_$mc$\_$util/mc$\_$sample$\_$info/MC.list | each set of MC process generated and are calculated from /caf$\_$mc$\_$util/mc$\_$sample$\_$info/MC.list \cite{caf_mc_util}. |
| \clearpage | \clearpage |
| Line 203 each set of MC process generated and are | Line 200 each set of MC process generated and are |
| \begin{tabular}{|crr|} | \begin{tabular}{|crr|} |
| \hline | \hline |
| Sample & $\sigma(pb)$ & \# of Events \\ \hline | Sample & $\sigma(pb)$ & \# of Events \\ \hline |
| $t+t+0lp-l\nu+2b+2lpc\_\mbox{excl}\_m172$ & 1.392196 & $ 793267 $ \\ | $t\bar{t}+0lp-\ell\nu+b\bar{b}+2lpc\_\mbox{excl}\_m172.5$ & 1.392196 & $ 793267 $ \\ |
| $t+t+1lp-l\nu+2b+3lpc\_\mbox{excl}\_m172$ & .576927 & $ 456317 $ \\ | $t\bar{t}+1lp-\ell\nu+b\bar{b}+3lpc\_\mbox{excl}\_m172.5$ & .576927 & $ 456317 $ \\ |
| $t+t+2lp-l\nu+2b+4lpc\_\mbox{incl}\_m172$ & .281831 & $ 277912 $ \\ | $t\bar{t}+2lp-\ell\nu+b\bar{b}+4lpc\_\mbox{incl}\_m172.5$ & .281831 & $ 277912 $ \\ |
| $\mbox{W}+0lp\rightarrow lnu+0lp\_\mbox{excl}$ & 4530.269741 & $ 47070044 $ \\ | $W+0lp\rightarrow \ell\nu+0lp\_\mbox{excl}$ & 4530.269741 & $ 47070044 $ \\ |
| $\mbox{W}+1lp\rightarrow lnu+1lp\_\mbox{excl}$ & 1283.094130 & $ 20683540 $ \\ | $W+1lp\rightarrow \ell\nu+1lp\_\mbox{excl}$ & 1283.094130 & $ 20683540 $ \\ |
| $\mbox{W}+2lp\rightarrow lnu+2lp\_\mbox{excl}$ & 306.073315 & $ 19686862 $ \\ | $W+2lp\rightarrow \ell\nu+2lp\_\mbox{excl}$ & 306.073315 & $ 19686862 $ \\ |
| $\mbox{W}+3lp\rightarrow lnu+3lp\_\mbox{excl}$ & 73.494491 & $ 4269023 $ \\ | $W+3lp\rightarrow \ell\nu+3lp\_\mbox{excl}$ & 73.494491 & $ 4269023 $ \\ |
| $\mbox{W}+4lp\rightarrow lnu+4lp\_\mbox{excl}$ & 16.958254 & $ 3084707 $\\ | $W+4lp\rightarrow \ell\nu+4lp\_\mbox{excl}$ & 16.958254 & $ 3084707 $\\ |
| $\mbox{W}+5lp\rightarrow lnu+5lp\_\mbox{incl}$ & 5.218917 & $ 2565942 $ \\ | $W+5lp\rightarrow \ell\nu+5lp\_\mbox{incl}$ & 5.218917 & $ 2565942 $ \\ |
| $\mbox{W}+2b+0lp\rightarrow l\nu+2b+0lp\_\mbox{excl}$ & 9.315458 & $ 1120570 $ \\ | $W+b\bar{b}+0lp\rightarrow \ell\nu+b\bar{b}+0lp\_\mbox{excl}$ & 9.315458 & $ 1120570 $ \\ |
| $\mbox{W}+2b+1lp\rightarrow l\nu+2b+1lp\_\mbox{excl}$ & 4.288365 & $ 812095 $ \\ | $W+b\bar{b}+1lp\rightarrow \ell\nu+b\bar{b}+1lp\_\mbox{excl}$ & 4.288365 & $ 812095 $ \\ |
| $\mbox{W}+2b+2lp\rightarrow l\nu+2b+2lp\_\mbox{excl}$ & 1.554786 & $ 563315 $ \\ | $W+b\bar{b}+2lp\rightarrow \ell\nu+b\bar{b}+2lp\_\mbox{excl}$ & 1.554786 & $ 563315 $ \\ |
| $\mbox{W}+2b+3lp\rightarrow l\nu+2b+3lp\_\mbox{incl}$ & 0.716175& $ 464475 $ \\ | $W+b\bar{b}+3lp\rightarrow \ell\nu+b\bar{b}+3lp\_\mbox{incl}$ & 0.716175& $ 464475 $ \\ |
| $\mbox{W}+2b+0lp\rightarrow l\nu+2c+0lp\_\mbox{excl}$ & 24.404153 & $ 934253 $ \\ | $W+c\bar{c}+0lp\rightarrow \ell\nu+c\bar{c}+0lp\_\mbox{excl}$ & 24.404153 & $ 934253 $ \\ |
| $\mbox{W}+2b+1lp\rightarrow l\nu+2c+1lp\_\mbox{excl}$ & 13.486806 & $ 738709 $ \\ | $W+c\bar{c}+1lp\rightarrow \ell\nu+c\bar{c}+1lp\_\mbox{excl}$ & 13.486806 & $ 738709 $ \\ |
| $\mbox{W}+2b+2lp\rightarrow l\nu+2c+2lp\_\mbox{excl}$ & 5.459005 & $ 554236 $ \\ | $W+c\bar{c}+2lp\rightarrow \ell\nu+c\bar{c}+2lp\_\mbox{excl}$ & 5.459005 & $ 554236 $ \\ |
| $\mbox{W}+2b+3lp\rightarrow l\nu+2c+3lp\_\mbox{incl}$ & 2.526973 & $ 469900 $ \\ | $W+c\bar{c}+3lp\rightarrow \ell\nu+c\bar{c}+3lp\_\mbox{incl}$ & 2.526973 & $ 469900 $ \\ |
| $\gamma \mbox{Z}+0lp\rightarrow ee+0lp\_\mbox{excl}\_75\_130$ & 132.086811 & $ 1212214 $ \\ | $\gamma /Z+0lp\rightarrow ee+0lp\_\mbox{excl}\_75\_130$ & 132.086811 & $ 1212214 $ \\ |
| $\gamma \mbox{Z}+1lp\rightarrow ee+1lp\_\mbox{excl}\_75\_130$ & 40.060963 & $ 599588 $ \\ | $\gamma /Z+1lp\rightarrow ee+1lp\_\mbox{excl}\_75\_130$ & 40.060963 & $ 599588 $ \\ |
| $\gamma \mbox{Z}+2lp\rightarrow ee+2lp\_\mbox{excl}\_75\_130$ & 9.981935 & $ 298494 $ \\ | $\gamma /Z+2lp\rightarrow ee+2lp\_\mbox{excl}\_75\_130$ & 9.981935 & $ 298494 $ \\ |
| $\gamma \mbox{Z}+3lp\rightarrow ee+3lp\_\mbox{incl}\_75\_130$ & 3.297072 & $ 150267 $ \\ | $\gamma /Z+3lp\rightarrow ee+3lp\_\mbox{incl}\_75\_130$ & 3.297072 & $ 150267 $ \\ |
| $\gamma \mbox{Z}+2b+0lp\rightarrow ee+2b+0lp\_\mbox{excl}\_75\_130$ & 0.400826 & $ 200121 $ \\ | $\gamma /Z+b\bar{b}+0lp\rightarrow ee+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.400826 & $ 200121 $ \\ |
| $\gamma \mbox{Z}+2b+1lp\rightarrow ee+2b+1lp\_\mbox{excl}\_75\_130$ & 0.173438 & $ 97474 $ \\ | $\gamma /Z+b\bar{b}+1lp\rightarrow ee+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.173438 & $ 97474 $ \\ |
| $\gamma \mbox{Z}+2b+2lp\rightarrow ee+2b+2lp\_\mbox{incl}\_75\_130$ & 0.107248 & $ 48269 $ \\ | $\gamma /Z+b\bar{b}+2lp\rightarrow ee+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.107248 & $ 48269 $ \\ |
| $\gamma \mbox{Z}+2c+0lp\rightarrow ee+2c+0lp\_\mbox{excl}\_75\_130$ & 0.900923 & $ 182485 $ \\ | $\gamma /Z+c\bar{c}+0lp\rightarrow ee+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.900923 & $ 182485 $ \\ |
| $\gamma \mbox{Z}+2c+1lp\rightarrow ee+2c+1lp\_\mbox{excl}\_75\_130$ & 0.506337 & $ 89293 $ \\ | $\gamma /Z+c\bar{c}+1lp\rightarrow ee+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.506337 & $ 89293 $ \\ |
| $\gamma \mbox{Z}+2b+2lp\rightarrow ee+2b+2lp\_\mbox{incl}\_75\_130$ & 0.285871 & $ 47357 $ \\ | $\gamma /Z+c\bar{c}+2lp\rightarrow ee+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.285871 & $ 47357 $ \\ |
| $\gamma \mbox{Z}+0lp\rightarrow \mu \mu+0lp\_\mbox{excl}\_75\_130$ & 133.850906 & $ 1553222 $ \\ | $\gamma /Z+0lp\rightarrow \mu \mu+0lp\_\mbox{excl}\_75\_130$ & 133.850906 & $ 1553222 $ \\ |
| $\gamma \mbox{Z}+1lp\rightarrow \mu \mu+1lp\_\mbox{excl}\_75\_130$ & 41.677185 & $ 639392 $ \\ | $\gamma /Z+1lp\rightarrow \mu \mu+1lp\_\mbox{excl}\_75\_130$ & 41.677185 & $ 639392 $ \\ |
| $\gamma \mbox{Z}+2lp\rightarrow \mu \mu+2lp\_\mbox{excl}\_75\_130$ & 9.822132 & $ 446737 $ \\ | $\gamma /Z+2lp\rightarrow \mu \mu+2lp\_\mbox{excl}\_75\_130$ & 9.822132 & $ 446737 $ \\ |
| $\gamma \mbox{Z}+3lp\rightarrow \mu \mu+3lp\_\mbox{incl}\_75\_130$ & 3.195801 & $ 172628 $ \\ | $\gamma /Z+3lp\rightarrow \mu \mu+3lp\_\mbox{incl}\_75\_130$ & 3.195801 & $ 172628 $ \\ |
| $\gamma \mbox{Z}+2b+0lp\rightarrow \mu \mu+2b+0lp\_\mbox{excl}\_75\_130$ & 0.424239 & $ 210139 $ \\ | $\gamma /Z+b\bar{b}+0lp\rightarrow \mu \mu+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.424239 & $ 210139 $ \\ |
| $\gamma \mbox{Z}+2b+1lp\rightarrow \mu \mu+2b+1lp\_\mbox{excl}\_75\_130$ & 0.195271 & $ 101055 $ \\ | $\gamma /Z+b\bar{b}+1lp\rightarrow \mu \mu+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.195271 & $ 101055 $ \\ |
| $\gamma \mbox{Z}+2b+2lp\rightarrow \mu \mu+2b+2lp\_\mbox{incl}\_75\_130$ & 0.099004 & $ 49600 $ \\ | $\gamma /Z+b\bar{b}+2lp\rightarrow \mu \mu+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.099004 & $ 49600 $ \\ |
| $\gamma \mbox{Z}+2c+0lp\rightarrow \mu \mu+2c+0lp\_\mbox{excl}\_75\_130$ & 0.932203 & $ 193928 $ \\ | $\gamma /Z+c\bar{c}+0lp\rightarrow \mu \mu+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.932203 & $ 193928 $ \\ |
| $\gamma \mbox{Z}+2c+1lp\rightarrow \mu \mu+2c+1lp\_\mbox{excl}\_75\_130$ & 0.548182 & $ 92744 $ \\ | $\gamma /Z+c\bar{c}+1lp\rightarrow \mu \mu+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.548182 & $ 92744 $ \\ |
| $\gamma \mbox{Z}+2b+2lp\rightarrow \mu \mu+2b+2lp\_\mbox{incl}\_75\_130$ & 0.280795 & $ 51277 $ \\ | $\gamma /Z+c\bar{c}+2lp\rightarrow \mu \mu+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.280795 & $ 51277 $ \\ |
| $\gamma \mbox{Z}+0lp\rightarrow \tau \tau+0lp\_\mbox{excl}\_75\_130$ & 131.564780 & $ 1556389 $ \\ | $\gamma /Z+0lp\rightarrow \tau \tau+0lp\_\mbox{excl}\_75\_130$ & 131.564780 & $ 1556389 $ \\ |
| $\gamma \mbox{Z}+1lp\rightarrow \tau \tau+1lp\_\mbox{excl}\_75\_130$ & 40.300291 & $ 595169 $ \\ | $\gamma /Z+1lp\rightarrow \tau \tau+1lp\_\mbox{excl}\_75\_130$ & 40.300291 & $ 595169 $ \\ |
| $\gamma \mbox{Z}+2lp\rightarrow \tau \tau+2lp\_\mbox{excl}\_75\_130$ & 10.072067 & $ 305312 $ \\ | $\gamma /Z+2lp\rightarrow \tau \tau+2lp\_\mbox{excl}\_75\_130$ & 10.072067 & $ 305312 $ \\ |
| $\gamma \mbox{Z}+3lp\rightarrow \tau \tau+3lp\_\mbox{excl}\_75\_130$ & 3.089442 & $ 205365 $ \\ | $\gamma /Z+3lp\rightarrow \tau \tau+3lp\_\mbox{excl}\_75\_130$ & 3.089442 & $ 205365 $ \\ |
| $\gamma \mbox{Z}+2b+0lp\rightarrow \tau \tau+2b+0lp\_\mbox{excl}\_75\_130$ & 0.423679 & $ 196943 $ \\ | $\gamma /Z+b\bar{b}+0lp\rightarrow \tau \tau+b\bar{b}+0lp\_\mbox{excl}\_75\_130$ & 0.423679 & $ 196943 $ \\ |
| $\gamma \mbox{Z}+2b+1lp\rightarrow \tau \tau+2b+1lp\_\mbox{excl}\_75\_130$ & 0.196527 & $ 103105 $ \\ | $\gamma /Z+b\bar{b}+1lp\rightarrow \tau \tau+b\bar{b}+1lp\_\mbox{excl}\_75\_130$ & 0.196527 & $ 103105 $ \\ |
| $\gamma \mbox{Z}+2b+2lp\rightarrow \tau \tau+2b+2lp\_\mbox{incl}\_75\_130$ & 0.103561 & $ 48476 $ \\ | $\gamma /Z+b\bar{b}+2lp\rightarrow \tau \tau+b\bar{b}+2lp\_\mbox{incl}\_75\_130$ & 0.103561 & $ 48476 $ \\ |
| $\gamma \mbox{Z}+2c+0lp\rightarrow \tau \tau+2c+0lp\_\mbox{excl}\_75\_130$ & 0.898135 & $ 260243 $ \\ | $\gamma /Z+c\bar{c}+0lp\rightarrow \tau \tau+c\bar{c}+0lp\_\mbox{excl}\_75\_130$ & 0.898135 & $ 260243 $ \\ |
| $\gamma \mbox{Z}+2c+1lp\rightarrow \tau \tau+2c+1lp\_\mbox{excl}\_75\_130$ & 0.487548 & $ 100802 $ \\ | $\gamma /Z+c\bar{c}+1lp\rightarrow \tau \tau+c\bar{c}+1lp\_\mbox{excl}\_75\_130$ & 0.487548 & $ 100802 $ \\ |
| $\gamma \mbox{Z}+2b+2lp\rightarrow \tau \tau+2b+2lp\_\mbox{incl}\_75\_130$ & 0.297808 & $ 50711 $ \\ | $\gamma /Z+c\bar{c}+2lp\rightarrow \tau \tau+c\bar{c}+2lp\_\mbox{incl}\_75\_130$ & 0.297808 & $ 50711 $ \\ |
| $\gamma \mbox{Z}+0lp\rightarrow \nu \nu+0lp\_\mbox{excl}$ & 806.552968 & $ 2368495 $ \\ | $Z+0lp\rightarrow \nu \nu+0lp\_\mbox{excl}$ & 806.552968 & $ 2368495 $ \\ |
| $\gamma \mbox{Z}+1lp\rightarrow \nu \nu+1lp\_\mbox{excl}$ & 244.651772 & $ 2591505 $ \\ | $Z+1lp\rightarrow \nu \nu+1lp\_\mbox{excl}$ & 244.651772 & $ 2591505 $ \\ |
| $\gamma \mbox{Z}+2lp\rightarrow \nu \nu+2lp\_\mbox{excl}$ & 61.014112 & $ 657110 $ \\ | $Z+2lp\rightarrow \nu \nu+2lp\_\mbox{excl}$ & 61.014112 & $ 657110 $ \\ |
| $\gamma \mbox{Z}+3lp\rightarrow \nu \nu+3lp\_\mbox{excl}$ & 14.091090 & $ 194705 $ \\ | $Z+3lp\rightarrow \nu \nu+3lp\_\mbox{excl}$ & 14.091090 & $ 194705 $ \\ |
| $\gamma \mbox{Z}+4lp\rightarrow \nu \nu+4lp\_\mbox{excl}$ & 3.277295 & $ 100158 $ \\ | $Z+4lp\rightarrow \nu \nu+4lp\_\mbox{excl}$ & 3.277295 & $ 100158 $ \\ |
| $\gamma \mbox{Z}+5lp\rightarrow \nu \nu+5lp\_\mbox{incl}$ & 0.936465 & $ 49660 $ \\ | $Z+5lp\rightarrow \nu \nu+5lp\_\mbox{incl}$ & 0.936465 & $ 49660 $ \\ |
| $\gamma \mbox{Z}+2b+0lp\rightarrow \nu \nu+2b+0lp\_\mbox{excl}$ & 2.562976 & $ 375572$ \\ | $Z+b\bar{b}+0lp\rightarrow \nu \nu+b\bar{b}+0lp\_\mbox{excl}$ & 2.562976 & $ 375572$ \\ |
| $\gamma \mbox{Z}+2b+1lp\rightarrow \nu \nu+2b+1lp\_\mbox{excl}$ & 1.143703 & $ 180558 $ \\ | $Z+b\bar{b}+1lp\rightarrow \nu \nu+b\bar{b}+1lp\_\mbox{excl}$ & 1.143703 & $ 180558 $ \\ |
| $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \nu+2b+2lp\_\mbox{incl}$ & 0.617265 & $ 91588 $ \\ | $Z+b\bar{b}+2lp\rightarrow \nu \nu+b\bar{b}+2lp\_\mbox{incl}$ & 0.617265 & $ 91588 $ \\ |
| $\gamma \mbox{Z}+2c+0lp\rightarrow \nu \nu+2c+0lp\_\mbox{excl}$ & 5.634504 & $ 376456 $ \\ | $Z+c\bar{c}+0lp\rightarrow \nu \nu+c\bar{c}+0lp\_\mbox{excl}$ & 5.634504 & $ 376456 $ \\ |
| $\gamma \mbox{Z}+2c+1lp\rightarrow \nu \nu+2c+1lp\_\mbox{excl}$ & 3.002712 & $ 199012 $ \\ | $Z+c\bar{c}+1lp\rightarrow \nu \nu+c\bar{c}+1lp\_\mbox{excl}$ & 3.002712 & $ 199012 $ \\ |
| $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \nu+2b+2lp\_\mbox{incl}$ & 1.635746 & $ 96147 $ \\\hline | $Z+c\bar{c}+2lp\rightarrow \nu \nu+c\bar{c}+2lp\_\mbox{incl}$ & 1.635746 & $ 96147 $ \\\hline |
| \end{tabular} | \end{tabular} |
| \caption{MC Samples. Here $l$ stands for the three lepton flavor ($e$, $\mu$ and $\tau$). $\tau$ decays are not restricted.} | \caption{MC Samples. Here $l$ stands for the three lepton flavor ($e$, $\mu$ and $\tau$). $\tau$ decays are not restricted.} |
| Line 273 $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \ | Line 270 $\gamma \mbox{Z}+2b+2lp\rightarrow \nu \ |
| \subsection{\label{sub:mcsample_xseccorr}\boldmath MC samples corrections} | \subsection{\label{sub:mcsample_xseccorr}\boldmath MC samples corrections} |
| Standard D\O\ corrections are applied to MC in order to obtain a better MC-data agreement \cite{top_sys}. | Standard D0 corrections are applied to MC in order to obtain a better MC-data agreement \cite{top_sys}. |
| \noindent {\bf Trigger efficiency}: an additional scale factor (weight) is applied to MC to account for the trigger efficiency in data. | \noindent {\bf Trigger efficiency}: an additional scale factor (weight) is applied to MC to account for the trigger |
| Further details are given in Section \ref{sec:trig_param}. | efficiency in data. Further details are given in Section \ref{sec:trig_param}. |
| \noindent {\bf Luminosity reweighting}: in order to reproduce luminosity effects from real data, simulated samples are overlaid to Zero Bias data | \noindent {\bf Luminosity reweighting}: properly model the occurence of multiple interactions |
| Due to a difference in intantaneous luminosity between the overlay and real data, the luminosity profile of all | at higher instantaneous luminosities, simulated samples |
| are overlaid on Zero Bias data. Due to a difference in instantaneous luminosity between the overlay and | |
| real data, the luminosity profile of all | |
| MC samples is reweighted to match the luminosity profile in data \cite{lumireweight}. | MC samples is reweighted to match the luminosity profile in data \cite{lumireweight}. |
| \noindent {\bf Primary vertex reweighting}: $z$ vertex distributions are different between data and MC.This difference is corrected by reweighting | \noindent {\bf Primary vertex reweighting}: vertex $z$ distributions are different between data and MC. |
| This difference is corrected by reweighting | |
| MC $z$ vertex distributions using the reweight processor from the {\tt caf\_mc\_util} package \cite{PVz_re}. | MC $z$ vertex distributions using the reweight processor from the {\tt caf\_mc\_util} package \cite{PVz_re}. |
| \noindent {\bf $W$ and $Z$ $p_{T}$ reweighting}: for both $W$ + jets and $Z$ + jets, the $p_{T}$ distribution from MC samples is reweighted to match | \noindent {\bf $W$ and $Z$ $p_{T}$ reweighting}: for both $W$ + jets and $Z$ + jets, the $p_{T}$ |
| the equivalent distribution in data, accordingly to the standard way \cite{WZPt_re}. | distribution from MC samples is reweighted to match |
| the equivalent distributions in data, accordingly to the standard way \cite{WZPt_re}. | |
| \noindent {\bf b fragmentation}: the systematics on the reweight of the b-fragmentation function from the default in Pythia | \noindent {\bf $b$ fragmentation}: the systematics on the reweight of the b-fragmentation function from the default in Pythia |
| to the value tuned to reproduce collider data was assumed to be the symmetrized difference between | to the value tuned to reproduce collider data was assumed to be the symmetrized difference between |
| the AOD and SLD tunes \cite{bfrag}. | the AOD and SLD tunes \cite{bfrag}. |
| \noindent {\bf Jet Shifting Smearing and Removing (JSSR)}: due to differences in energy scale, resolution, reconstruction and identification | \noindent {\bf Jet Shifting Smearing and Removal (JSSR)}: due to differences in energy scale, resolution, |
| reconstruction and identification | |
| between data and MC, MC jets are shifted, smeared and possibly removed using standard JSSR | between data and MC, MC jets are shifted, smeared and possibly removed using standard JSSR |
| processor \cite{jssr}. In this analysis shifting is turned off to signal $t\bar{t}$ | processor \cite{jssr}. In this analysis shifting is turned {\it off} to signal $t\bar{t}$ |
| and on to $W/Z$ + jets samples. | and {\it on} to $W/Z$ + jets samples. |
| \noindent {\bf Tau Energy Scale (TES)}: due to the analysis sensitivity to any difference between data and MC | \noindent {\bf Tau Energy Scale (TES)}: A $E/p$ correction is applied to the energy of the hadronically decaying |
| in the energy scale of taus decaying hadronically we apply a $E/p$ correction to this energy scale | taus as described in \cite{tes}. |
| as described in \cite{tes}. | |
| %\subsubsection{\label{sub:hadtau_corr}\boldmath Hadronic $\tau$ corrections} | %\subsubsection{\label{sub:hadtau_corr}\boldmath Hadronic $\tau$ corrections} |