File:  [Nicadd] / ttbar / p20_taujets_note / Appendix.tex
Revision 1.2: download - view: text, annotated - select for diffs
Wed Jun 1 01:20:54 2011 UTC (13 years, 2 months ago) by uid12904
Branches: MAIN
CVS tags: HEAD
*** empty log message ***

\appendix

\section{\label{app:trig_eff}Trigger Efficiencies}
%\begin{subappendices}

\noindent In this appendix we present the trigger weight distributions of all MC samples
for different numbers of b-tagged jets. These are the weight distributions we referred to
in Sections \ref{sub:datasample} and \ref{sec:trig_param}.


\subsection{\label{app:taujets_trig_eff}Trigger Efficiencies for $\tau + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/taujets0eff}
\includegraphics[scale=0.28]{trigger_eff/taujets1eff}
\includegraphics[scale=0.28]{trigger_eff/taujets2eff}
\includegraphics[scale=0.28]{trigger_eff/taujets3eff}
\caption{Trigger Efficiencies for $\tau + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:taujets_trig_eff}Trigger Efficiencies for $e + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/ejets0eff}
\includegraphics[scale=0.28]{trigger_eff/ejets1eff}
\includegraphics[scale=0.28]{trigger_eff/ejets2eff}
\includegraphics[scale=0.28]{trigger_eff/ejets3eff}
\caption{Trigger Efficiencies for $e + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\subsection{\label{app:mujets_trig_eff}Trigger Efficiencies for $\mu + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/mujets0eff}
\includegraphics[scale=0.28]{trigger_eff/mujets1eff}
\includegraphics[scale=0.28]{trigger_eff/mujets2eff}
\includegraphics[scale=0.28]{trigger_eff/mujets3eff}
\caption{Trigger Efficiencies for $\mu + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:dilep_trig_eff}Trigger Efficiencies for $dilepton$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/dilep0eff}
\includegraphics[scale=0.28]{trigger_eff/dilep1eff}
\includegraphics[scale=0.28]{trigger_eff/dilep2eff}
\includegraphics[scale=0.28]{trigger_eff/dilep3eff}
\caption{Trigger Efficiencies for $dilepton$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage


%\subsection{\label{app:alljets_trig_eff}Trigger Efficiencies for $alljets$}
%\begin{figure}[h]
%\includegraphics[scale=0.28]{trigger_eff/alljets0eff}
%\includegraphics[scale=0.28]{trigger_eff/alljets1eff}
%\includegraphics[scale=0.28]{trigger_eff/alljets2eff}
%\includegraphics[scale=0.28]{trigger_eff/alljets3eff}
%\caption{Trigger Efficiencies for $alljets$.}

%\label{fig:variables_type2_bveto} 
%\end{figure}


\subsection{\label{app:Wjjjets_trig_eff}Trigger Efficiencies for $Wjj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Wjjjets0eff}
\includegraphics[scale=0.28]{trigger_eff/Wjjjets1eff}
\includegraphics[scale=0.28]{trigger_eff/Wjjjets2eff}
\includegraphics[scale=0.28]{trigger_eff/Wjjjets3eff}
\caption{Trigger Efficiencies for $Wjj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

%\clearpage

\subsection{\label{app:Wbbjets_trig_eff}Trigger Efficiencies for $Wbb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Wbbjets0eff}
\includegraphics[scale=0.28]{trigger_eff/Wbbjets1eff}
\includegraphics[scale=0.28]{trigger_eff/Wbbjets2eff}
\includegraphics[scale=0.28]{trigger_eff/Wbbjets3eff}
\caption{Trigger Efficiencies for $Wbb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\subsection{\label{app:Wccjets_trig_eff}Trigger Efficiencies for $Wcc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Wccjets0eff}
\includegraphics[scale=0.28]{trigger_eff/Wccjets1eff}
\includegraphics[scale=0.28]{trigger_eff/Wccjets2eff}
\includegraphics[scale=0.28]{trigger_eff/Wccjets3eff}
\caption{Trigger Efficiencies for $Wcc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


%\clearpage


\subsection{\label{app:Zlpeejets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow ee + jj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zlpee0eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpee1eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpee2eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpee3eff}
\caption{Trigger Efficiencies for $Zjj + jets \rightarrow ee + jj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage

\subsection{\label{app:Zbbeejets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow ee + bb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zbbee0eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbee1eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbee2eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbee3eff}
\caption{Trigger Efficiencies for $Zbb + jets \rightarrow ee + bb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

%\clearpage

\subsection{\label{app:Zcceejets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow ee + cc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zccee0eff}
\includegraphics[scale=0.28]{trigger_eff/Zccee1eff}
\includegraphics[scale=0.28]{trigger_eff/Zccee2eff}
\includegraphics[scale=0.28]{trigger_eff/Zccee3eff}
\caption{Trigger Efficiencies for $Zcc + jets \rightarrow ee + cc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\subsection{\label{app:Zlpmumujets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \mu\mu + jj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zlpmumu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpmumu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpmumu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpmumu3eff}
\caption{Trigger Efficiencies for $Zjj + jets \rightarrow \mu\mu + jj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


%\clearpage



\subsection{\label{app:Zbbmumujets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow \mu\mu + bb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zbbmumu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbmumu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbmumu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbmumu3eff}
\caption{Trigger Efficiencies for $Zbb + jets \rightarrow \mu\mu + bb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\subsection{\label{app:Zccmumujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \mu\mu + cc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zccmumu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zccmumu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zccmumu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zccmumu3eff}
\caption{Trigger Efficiencies for $Zcc + jets \rightarrow \mu\mu + cc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

%\clearpage


\subsection{\label{app:Zlptautaujets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \tau\tau + jj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zlptautau0eff}
\includegraphics[scale=0.28]{trigger_eff/Zlptautau1eff}
\includegraphics[scale=0.28]{trigger_eff/Zlptautau2eff}
\includegraphics[scale=0.28]{trigger_eff/Zlptautau3eff}
\caption{Trigger Efficiencies for $Zjj + jets \rightarrow \tau\tau + jj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage

\subsection{\label{app:Zbbtautaujets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow \tau\tau + bb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zbbtautau0eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbtautau1eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbtautau2eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbtautau3eff}
\caption{Trigger Efficiencies for $Zbb + jets \rightarrow \tau\tau + bb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}




\subsection{\label{app:Zcctautaujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \tau\tau + cc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zcctautau0eff}
\includegraphics[scale=0.28]{trigger_eff/Zcctautau1eff}
\includegraphics[scale=0.28]{trigger_eff/Zcctautau2eff}
\includegraphics[scale=0.28]{trigger_eff/Zcctautau3eff}
\caption{Trigger Efficiencies for $Zcc + jets \rightarrow \tau\tau + cc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage


\subsection{\label{app:Zlpnunuets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \nu\nu + jj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zlpnunu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpnunu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpnunu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpnunu3eff}
\caption{Trigger Efficiencies for $Zjj + jets \rightarrow \nu\nu + jj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}




\subsection{\label{app:Zbbnunujets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow \nu\nu + bb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zbbnunu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbnunu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbnunu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbnunu3eff}
\caption{Trigger Efficiencies for $Zbb + jets \rightarrow \nu\nu + bb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage


\subsection{\label{app:Zccnunujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \nu\nu + cc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zccnunu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zccnunu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zccnunu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zccnunu3eff}
\caption{Trigger Efficiencies for $Zcc + jets \rightarrow \nu\nu + cc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage
%\newpage


\section{\label{app:turnon} Turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\noindent Here are shown all turn-on curves for all three levels of the trigger JT2$\_$3JT15L$\_$IP$\_$VX
as described in Section \ref{sec:trig_param}.


\subsection{\label{app:jetturnon_L1} Level 1 jet turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 8~GeV]{\epsfig{file=lowLum/l1jetspt8.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=lowLum/l1jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 30~GeV]{\epsfig{file=lowLum/l1jetspt30.eps,width=4.7cm}}
\caption{Level 1 jet turn-on curves, low luminosity.}
\label{fig:l1jetslo}
\end{figure}

%\newpage

\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 8~GeV]{\epsfig{file=medLum/l1jetspt8.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=medLum/l1jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 30~GeV]{\epsfig{file=medLum/l1jetspt30.eps,width=4.7cm}}
\caption{Level 1 jet turn-on curves, medium luminosity.}
\label{fig:l1jets}
\end{figure}


\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 8~GeV]{\epsfig{file=highLum/l1jetspt8.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=highLum/l1jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 30~GeV]{\epsfig{file=highLum/l1jetspt30.eps,width=4.7cm}}
\caption{Level 1 jet turn-on curves, high luminosity.}
\label{fig:l1jetshi}
\end{figure}

\newpage


\subsection{\label{app:jetturnon_L2} Level 2 jet turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[Low luminosity $p_{T} >$ 8~GeV]{\epsfig{file=lowLum/l2jetspt8.eps,width=4.7cm}}
\subfigure[Medium luminosity $p_{T} >$ 8~GeV]{\epsfig{file=medLum/l2jetspt8.eps,width=4.7cm}}
\subfigure[high luminosity $p_{T} >$ 8~GeV]{\epsfig{file=highLum/l2jetspt8.eps,width=4.7cm}}
\caption{Level 2 $p_{T} >$ 8~GeV jets turn-on curves.}
\label{fig:l2jetsalllumi}
\end{figure}


\subsection{\label{app:htturnon_L2} Level 2 $H_{T}$ turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[$H_{T} >$ 75~GeV]{\epsfig{file=lowLum/l2ht75.eps,width=4.7cm}}
\subfigure[$H_{T} >$ 100~GeV]{\epsfig{file=lowLum/l2ht100.eps,width=4.7cm}}
\caption{L2 $H_{T}$ turn-on curves, low luminosity.}
\label{fig:l2htlo}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[$H_{T} >$ 75~GeV]{\epsfig{file=medLum/l2ht75.eps,width=4.7cm}}
\subfigure[$H_{T} >$ 100~GeV]{\epsfig{file=medLum/l2ht100.eps,width=4.7cm}}
\caption{L2 $H_{T}$ turn-on curves, medium luminosity.}
\label{fig:l2ht}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[$H_{T} >$ 75~GeV]{\epsfig{file=highLum/l2ht75.eps,width=4.7cm}}
\subfigure[$H_{T} >$ 100~GeV]{\epsfig{file=highLum/l2ht100.eps,width=4.7cm}}
\caption{L2 $H_{T}$ turn-on curves, high luminosity.}
\label{fig:l2hthi}
\end{figure}

\newpage


\subsection{\label{app:mhtturnon_L2} Level 2 $\not\!\!E_{T}$ turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[$\not\!\!E_{T}$ $>$ 10~GeV]{\epsfig{file=lowLum/l2mhtv15.eps,width=4.7cm}}
\subfigure[$\not\!\!E_{T}$ $>$ 20~GeV]{\epsfig{file=lowLum/l2mhtv16.eps,width=4.7cm}}
\caption{L2 $\not\!\!E_{T}$ turn-on curves, low luminosity.}
\label{fig:l2mhtlo}
\end{figure}


\begin{figure}[h]
\centering
\subfigure[$\not\!\!E_{T}$ $>$ 10~GeV]{\epsfig{file=medLum/l2mhtv15.eps,width=4.7cm}}
\subfigure[$\not\!\!E_{T}$ $>$ 20~GeV]{\epsfig{file=medLum/l2mhtv16.eps,width=4.7cm}}
\caption{L2 $\not\!\!E_{T}$ turn-on curves, medium luminosity.}
\label{fig:l2mht}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[$\not\!\!E_{T}$ $>$ 10~GeV]{\epsfig{file=highLum/l2mhtv15.eps,width=4.7cm}}
\subfigure[$\not\!\!E_{T}$ $>$ 20~GeV]{\epsfig{file=highLum/l2mhtv16.eps,width=4.7cm}}
\caption{L2 $\not\!\!E_{T}$ turn-on curves, high luminosity.}
\label{fig:l2mhthi}
\end{figure}


\newpage


\subsection{\label{app:spherturnon_L2} Level 2 Sphericity turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[Sphericity $>$ 0.1 turn-on curve, low luminosity]{\epsfig{file=lowLum/l2spher.eps,width=4.7cm}}
\subfigure[Sphericity $>$ 0.1 turn-on curve, medium luminosity]{\epsfig{file=lowLum/l2spher.eps,width=4.7cm}}
\subfigure[Sphericity $>$ 0.1 turn-on curve, high luminosity]{\epsfig{file=medLum/l2spher.eps,width=4.7cm}}
\caption{L2 Sphericity turn-on curves.}
\label{fig:l2spher}
\end{figure}


\subsection{\label{app:sttip_L2} Level 2 STTIP turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[L2STTIP, 0 and 1 tight NN tags]{\epsfig{file=lowLum/l2stt01taglol.eps,width=4.7cm}}
\subfigure[L2STTIP, 2 and 3 tight NN tags]{\epsfig{file=lowLum/l2stt23taglol.eps,width=4.7cm}}
\caption{L2STTIP efficiency in the low luminosity range. Left: events with 0 (red) and 1 (black) tight NN b-tags. Right: events with 2 (red) and 3 (black) tight NN b-tags.} 
\label{fig:l2STTlo}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[L2STTIP, 0 and 1 tight NN tags]{\epsfig{file=medLum/l2stt01tag.eps,width=4.7cm}}
\subfigure[L2STTIP, 2 and 3 tight NN tags]{\epsfig{file=medLum/l2stt23tag.eps,width=4.7cm}}
\caption{L2STTIP efficiency in the medium luminosity range. Left: events with 0 (red) and 1 (black) tight NN b-tags. Right: events with 2 (red) and 3 (black) tight NN b-tags.} 
\label{fig:l2STT}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[L2STTIP, 0 and 1 tight NN tags]{\epsfig{file=highLum/l2stt01taghil.eps,width=4.7cm}}
\subfigure[L2STTIP, 2 and 3 tight NN tags]{\epsfig{file=highLum/l2stt23taghil.eps,width=4.7cm}}
\caption{L2STTIP efficiency in the high luminosity range. Left: events with 0 (red) and 1 (black) tight NN b-tags. Right: events with 2 (red) and 3 (black) tight NN b-tags.} 
\label{fig:l2STThi}
\end{figure}

\newpage

\subsection{\label{app:jetturnon_L3} Level 3 jet turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=lowLum/l3jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 25~GeV]{\epsfig{file=lowLum/l3jetspt25.eps,width=4.7cm}}
\caption{L3 jet turn-on curves, low luminosity.}
\label{fig:l3jetslo}
\end{figure}
%

\newpage


\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=medLum/l3jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 25~GeV]{\epsfig{file=medLum/l3jetspt25.eps,width=4.7cm}}
\caption{L3 jet turn-on curves, medium luminosity.}
\label{fig:l3jets}
\end{figure}
%
\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=highLum/l3jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 25~GeV]{\epsfig{file=highLum/l3jetspt25.eps,width=4.7cm}}
\caption{L3 jet turn-on curves, high luminosity.}
\label{fig:l3jetshi}
\end{figure}


\subsection{\label{app:btagturnon_L3} Level 3 b-tag on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=lowLum/l3btag01taglol.eps,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=lowLum/l3btag23taglol.eps,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the low luminosity 
range in triggerlist v15. The selected events passed the rest of the trigger and offline event selection and 
had zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3iplo}
\end{figure}

\newpage

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=medLum/l3btag01tag.eps,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=medLum/l3btag2tag.eps,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the medium luminosity 
range in triggerlist v15. The selected events passed the rest of the trigger and offline event selection and had 
zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3ip}
\end{figure}

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=highLum/l3btag01taghil.eps,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=highLum/l3btag23taghil.eps,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the high luminosity 
range in triggerlist v15. The selected events passed the rest of the trigger and offline event selection and had 
zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3iphi}
\end{figure}


\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=lowLum/l3btag01tagv16lol.eps,height=4.0cm,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=lowLum/l3btag2tagv16lol.eps,height=4.0cm,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the low luminosity 
range in triggerlist v16. The selected events passed the rest of the trigger and offline event selection and 
had zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3ipv16lo}
\end{figure}

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=medLum/l3btag01tagv16.eps,height=4.0cm,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=medLum/l3btag2tagv16.eps,height=4.0cm,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the medium luminosity 
range in triggerlist v16. The selected events passed the rest of the trigger and offline event selection and had 
zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3ipv16}
\end{figure}

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=highLum/l3btag01tagv16hil.eps,height=4.0cm,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=highLum/l3btag2tagv16hil.eps,height=4.0cm,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the high luminosity 
range in triggerlist v16. The selected events passed the rest of the trigger and offline event selection and had 
zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3ipv16hi}
\end{figure}

\clearpage


\section{\label{app:discri_var}Discriminant variables}

\noindent This appendix shows normalized plots of signal and background samples 
for all discriminant variables tested AND/OR used in this analysis.

\begin{figure}[h]
\includegraphics[scale=0.30]{plots/metl_allEW.eps}
\includegraphics[scale=0.30]{variables/aplan_all}
\includegraphics[scale=0.30]{variables/cent_all}
\includegraphics[scale=0.30]{variables/sqrts_all}
\includegraphics[scale=0.30]{variables/spher_all}
\includegraphics[scale=0.30]{variables/ht_all.eps}
\includegraphics[scale=0.30]{variables/topmassl_all}
\includegraphics[scale=0.30]{variables/costhetastar_all}

\caption{Discriminant variables.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage


\section{\label{app:set_opt}Set optimization}

\noindent This appendix shows plots of the figure of merit (Eq. \ref{merit}) used to 
perform the NN variables set optimization as described in Section \ref{sub:NN-optimization}.

\begin{figure}[b]
\includegraphics[scale=0.27]{SetOpt/ensemble1-40}
\includegraphics[scale=0.27]{SetOpt/ensemble12-40}
\includegraphics[scale=0.27]{SetOpt/ensemble13-40}
\includegraphics[scale=0.27]{SetOpt/ensemble14-40}
\includegraphics[scale=0.27]{SetOpt/ensemble15-40}
\includegraphics[scale=0.27]{SetOpt/ensemble3-40}
\includegraphics[scale=0.27]{SetOpt/ensemble4-40}
\includegraphics[scale=0.27]{SetOpt/ensemble5-40}
\includegraphics[scale=0.27]{SetOpt/ensemble7-40}
\includegraphics[scale=0.27]{SetOpt/ensemble9-40}
\includegraphics[scale=0.27]{SetOpt/ensemble10-40}
\includegraphics[scale=0.27]{SetOpt/ensemble12A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble13A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble14A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble15A-40}
\caption{Sets of NN inputs variables with $\not\!\! E_{T}$ significance $>$ 4.0 for set optimization.}
\end{figure}

\clearpage

\begin{figure}[b]
\includegraphics[scale=0.27]{SetOpt/ensemble16A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble17A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble18A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble19A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble20-40}
\includegraphics[scale=0.27]{SetOpt/ensemble21-40}
\includegraphics[scale=0.27]{SetOpt/ensemble22-40}
\includegraphics[scale=0.27]{SetOpt/ensemble23-40}
\includegraphics[scale=0.27]{SetOpt/ensemble24-40}
\includegraphics[scale=0.27]{SetOpt/ensemble25-40}
\includegraphics[scale=0.27]{SetOpt/ensemble26-40}
\includegraphics[scale=0.27]{SetOpt/ensemble27-40}
\includegraphics[scale=0.27]{SetOpt/ensemble28-40}
\includegraphics[scale=0.27]{SetOpt/ensemble29-40}
\includegraphics[scale=0.27]{SetOpt/ensemble30-40}
\includegraphics[scale=0.27]{SetOpt/ensemble31-40}
\includegraphics[scale=0.27]{SetOpt/ensembleMS-40}
\includegraphics[scale=0.27]{SetOpt/ensemble33-40}
\caption{Sets of NN inputs variables with $\not\!\! E_{T}$ significance $>$ 4.0 for set optimization.}
\end{figure}


\clearpage

\section{\label{app:metl_opt}$\not\!\! E_{T}$ significance optimization}

\begin{figure}[h]
\includegraphics[scale=0.27]{SetOpt/ensembleMS-30}
\includegraphics[scale=0.27]{SetOpt/ensembleMS-35}
\includegraphics[scale=0.27]{SetOpt/ensembleMS-40}
\includegraphics[scale=0.27]{SetOpt/ensembleMS-45}
\includegraphics[scale=0.27]{SetOpt/ensembleMS50}
%\includegraphics[scale=0.27]{SetOpt/pull9-35}
%\includegraphics[scale=0.27]{SetOpt/pull9-40}
%\includegraphics[scale=0.27]{SetOpt/pull9-45}
%\includegraphics[scale=0.27]{SetOpt/pull9-50}
%\includegraphics[scale=0.27]{SetOpt/pull9-55}

\caption{Variation of $\not\!\! E_{T}$ significance cut for Set 32 = METsig, {$H_{T}$}, topmassl, aplan, Mjjtau.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage


\section{\label{app:Topo}Topological variables}

In this section we show distributions of the topological variables used in this analysis in order to
check the agreement between data and Monte Carlo in all cases. Plots are separated into two sets:
signal sample and b-veto control plots.

\subsection{\label{sub:signalplots}Signal sample plots}

As stated in Section \ref{sub:Results-of-the} the signal sample is the one we used to perform
the measurement. The cuts here consist of  $NN(\tau)>0.90$ for taus types 1 and 2,
$NN(\tau)>0.95$ for taus type 3, and at least one NN b-tag. This sample contains
a good amount of $t\bar{t}$ (19.7\% for types 1 and 2 and 8.6\% for type 3) as shown in Tables
\ref{b_and_tau_type1_2} and \ref{b_and_tau_type_3}. Next we show the plots of
the topological variables for this sample. The error bars represent the statistical uncertainties only.

\begin{figure}[h]
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/aplan}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/ht}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/aplan}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/ht}

\caption{Distributions for aplanarity and $H_T$ in the signal sample for 
tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown,
indicating the level of agreement.}

%\label{fig:variables_type2_Std} 
\end{figure}

\newpage

\begin{figure}[t]
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/cent}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/spher}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/cent}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/spher}

\caption{Distributions for centrality and sphericity in the signal sample for 
tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown,
indicating the level of agreement.}
%\label{fig:variables_type2_Std} 
\end{figure}


\begin{figure}[b]
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/sqrts}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/costhetastar}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/sqrts}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/costhetastar}

\caption{Distributions for $M_{jj\tau}$ and $cos(\theta^{*})$ in the signal sample for 
tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown,
indicating the level of agreement.}
%\label{fig:variables_type2_Std} 
\end{figure}

\begin{figure}[t]
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/metl}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/met}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/metl}
\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/met}

\caption{Distributions for \met and $\not\!\! E_{T}$ significance significance in the signal sample for 
tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown,
indicating the level of agreement.}
%\label{fig:variables_type2_Std} 
\end{figure}

\clearpage

\subsection{\label{app:signalplots}b-veto control sample plots}

The b-veto sample is the one used to test our QCD modelling \ref{sub:Results-of-the}. As it requires no
NN b-tags it is QCD-dominated and has a tiny amount of $t\bar{t}$ (1.9\% for types 1 and 2 and 0.7\% for type 3) 
as shown in Tables \ref{bveto_type1_2} and \ref{b_veto_type_3}. It consists of an ideal sample to make sure
that the QCD modelling works and can be used in the measurement. Next we show the plots of
the topological variables for this sample. The error bars represent the statistical uncertainties only.

\begin{figure}[h]
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/aplan}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/ht}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/aplan}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/ht}

\caption{Distributions for aplanarity and $H_T$ in the $b$-veto sample for 
tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown,
indicating the level of agreement.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\newpage

\begin{figure}[t]
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/cent}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/spher}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/cent}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/spher}

\caption{Distributions for centrality and sphericity in the $b$-veto sample for 
tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown,
indicating the level of agreement.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\begin{figure}[b]
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/sqrts}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/costhetastar}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/sqrts}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/costhetastar}

\caption{Distributions for $M_{jj\tau}$ and $cos(\theta^{*})$ in the $b$-veto sample for 
tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown,
indicating the level of agreement.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\begin{figure}[t]
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/metl}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/met}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/metl}
\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/met}

\caption{Distributions for \met and $\not\!\! E_{T}$ significance significance in the $b$-veto sample for 
tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown,
indicating the level of agreement.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage


\section{\label{app:xsec_nocont}Cross measurement without accounting for signal contamination in the background sample.}

\noindent In this appendix we show results of cross section measurements for both NNelec $>$ 0.9 and no NNelec cut
applied when the signal contamination in the loose-tight tau region is not taken into account. They serve as a 
complement to the discussion presented in Section \ref{sub:xsect}.

\subsection{\label{sub:xsectA}Results for Set = METsig, {$H_{T}$}, topmassl, aplan, Mjjtau, METsig $>$ 4.0, lumi = 4951.86/pb, VC jets and
NNelec $>$ 0.9}

Table below summarizes the number of events in each channel after final selection.


\begin{table}[h]
\caption{Final number of events in the two analysis channels.} 
%\begin{ruledtabular}
\begin{tabular}{cccccc}
\hline 
&$\tau$ type I,II
&$\tau$ type I,II (fitted)
&$\tau$ type III
&$\tau$ type III (fitted)&\\
\hline 
data&
386 &
&
459 &
&\\
$t\overline{t}\rightarrow\tau+jets$&
72.04 $\pm$ 0.53&
&
38.82 $\pm$ 0.39&\\
$t\overline{t}\rightarrow e+jets$&
38.35 $\pm$ 0.36&
&
6.52 $\pm$ 0.16&
&\\
$t\overline{t}\rightarrow\mu+jets$&
4.81 $\pm$ 0.14&
&
5.14 $\pm$ 0.14&
&\\
$t\overline{t}\rightarrow l+l$&
6.02 $\pm$ 0.07&
&
4.20 $\pm$ 0.06&
&\\
$t\overline{t}$ total MC&
&
121.22 $\pm$ 0.43&
&
54.68 $\pm$ 0.20&\\
$t\overline{t}$ total fitted&
&
133.04 $\pm$ 17.09&
&
33.12 $\pm$ 15.04&\\
$W$+jets&
17.82 $\pm$ 0.33&
&
11.26 $\pm$ 0.23&
&\\
$Z$+jets&
2.78 $\pm$ 0.14&
&
2.39 $\pm$ 0.12&
&\\
QCD&
&
232.35 $\pm$ 17.09&
&
412.22 $\pm$ 15.04\\
Signal significance&
&
6.77&
&
1.54
&\\
S/B ratio&
&
0.52&
&
0.08\\
\end{tabular}
%\end{ruledtabular}
\label{event yeild summary} 
\end{table}


Without taking into account the signal contamination the result is (only statistical uncertainties are shown)

\begin{center}$\tau$+jets types 1 and 2 cross section: \[\sigma (t\overline{t}) = 
8.05\;\;_{-1.02}^{+1.04}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
 \par\end{center}

\begin{center}$\tau$+jets type 3 cross section: \[\sigma (t\overline{t}) = 
4.24\;\;_{-1.80}^{+1.94}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
\par\end{center}



\begin{center}Combined cross section: \[\sigma (t\overline{t}) = 
7.26\;\;_{-0.92}^{+0.92}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
\par\end{center}


\clearpage


\subsection{\label{sub:xsectA}Results for Set = Set = METsig, {$H_{T}$}, topmassl, aplan, Mjjtau, METsig $>$ 4.0, lumi = 4951.86/pb, VC jets and no NNelec cut}

Table below summarizes the number of events in each channel after final selection.


\begin{table}[h]
\caption{Final number of events in the two analysis channels.} 
%\begin{ruledtabular}
\begin{tabular}{cccccc}
\hline 
&$\tau$ type I,II
&$\tau$ type I,II (fitted)
&$\tau$ type III
&$\tau$ type III (fitted)&\\
\hline 
data&
583 &
&
459 &
&\\
$t\overline{t}\rightarrow\tau+jets$&
85.46 $\pm$ 0.58&
&
38.82 $\pm$ 0.39&\\
$t\overline{t}\rightarrow e+jets$&
175.23 $\pm$ 0.85&
&
6.52 $\pm$ 0.16&
&\\
$t\overline{t}\rightarrow\mu+jets$&
8.98 $\pm$ 0.19&
&
5.14 $\pm$ 0.14&
&\\
$t\overline{t}\rightarrow l+l$&
12.62 $\pm$ 0.10&
&
4.18 $\pm$ 0.06&
&\\
$t\overline{t}$ total MC&
&
282.27 $\pm$ 1.05&
&
54.67 $\pm$ 0.41&\\
$t\overline{t}$ total fitted&
&
260.71 $\pm$ 20.74&
&
35.73 $\pm$ 15.28&\\
$W$+jets&
39.65 $\pm$ 0.50&
&
11.26 $\pm$ 0.25&
&\\
$Z$+jets&
4.56 $\pm$ 0.10&
&
2.38 $\pm$ 0.11&
&\\
QCD&
&
278.04 $\pm$ 20.74&
&
409.62 $\pm$ 15.28\\
Signal significance&
&
10.80&
&
1.67
&\\
S/B ratio&
&
0.80&
&
0.08\\
\end{tabular}
%\end{ruledtabular}
\label{event yeild summary} 
\end{table}
%


Without taking into account the signal contamination the result is (only statistical uncertainties are shown)

\begin{center}$\tau$+jets types 1 and 2 cross section: \[\sigma (t\overline{t}) = 
6.47\;\;_{-0.53}^{+0.53}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
 \par\end{center}

\begin{center}$\tau$+jets type 3 cross section: \[\sigma (t\overline{t}) = 
4.58\;\;_{-1.85}^{+1.96}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
\par\end{center}



\begin{center}Combined cross section: \[\sigma (t\overline{t}) = 
6.35\;\;_{-0.51}^{+0.51}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
\par\end{center}



%\section{Appendix A}


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>