File:  [Nicadd] / ttbar / p20_taujets_note / Appendix.tex
Revision 1.1: download - view: text, annotated - select for diffs
Wed May 18 21:30:40 2011 UTC (13 years, 2 months ago) by uid12904
Branches: MAIN
CVS tags: HEAD
Initial revision

\appendix

\section{\label{app:trig_eff}Trigger Efficiencies}
%\begin{subappendices}

\noindent In this appendix we present the trigger weight distributions of all MC samples
for different numbers of b-tagged jets. These are the weight distributions we referred to
in Sections \ref{sub:datasample} and \ref{sec:trig_param}.


\subsection{\label{app:taujets_trig_eff}Trigger Efficiencies for $\tau + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/taujets0eff}
\includegraphics[scale=0.28]{trigger_eff/taujets1eff}
\includegraphics[scale=0.28]{trigger_eff/taujets2eff}
\includegraphics[scale=0.28]{trigger_eff/taujets3eff}
\caption{Trigger Efficiencies for $\tau + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:taujets_trig_eff}Trigger Efficiencies for $e + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/ejets0eff}
\includegraphics[scale=0.28]{trigger_eff/ejets1eff}
\includegraphics[scale=0.28]{trigger_eff/ejets2eff}
\includegraphics[scale=0.28]{trigger_eff/ejets3eff}
\caption{Trigger Efficiencies for $e + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\subsection{\label{app:mujets_trig_eff}Trigger Efficiencies for $\mu + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/mujets0eff}
\includegraphics[scale=0.28]{trigger_eff/mujets1eff}
\includegraphics[scale=0.28]{trigger_eff/mujets2eff}
\includegraphics[scale=0.28]{trigger_eff/mujets3eff}
\caption{Trigger Efficiencies for $\mu + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:dilep_trig_eff}Trigger Efficiencies for $dilepton$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/dilep0eff}
\includegraphics[scale=0.28]{trigger_eff/dilep1eff}
\includegraphics[scale=0.28]{trigger_eff/dilep2eff}
\includegraphics[scale=0.28]{trigger_eff/dilep3eff}
\caption{Trigger Efficiencies for $dilepton$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage


\subsection{\label{app:alljets_trig_eff}Trigger Efficiencies for $alljets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/alljets0eff}
\includegraphics[scale=0.28]{trigger_eff/alljets1eff}
\includegraphics[scale=0.28]{trigger_eff/alljets2eff}
\includegraphics[scale=0.28]{trigger_eff/alljets3eff}
\caption{Trigger Efficiencies for $alljets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:Wjjjets_trig_eff}Trigger Efficiencies for $Wjj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Wjjjets0eff}
\includegraphics[scale=0.28]{trigger_eff/Wjjjets1eff}
\includegraphics[scale=0.28]{trigger_eff/Wjjjets2eff}
\includegraphics[scale=0.28]{trigger_eff/Wjjjets3eff}
\caption{Trigger Efficiencies for $Wjj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\subsection{\label{app:Wbbjets_trig_eff}Trigger Efficiencies for $Wbb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Wbbjets0eff}
\includegraphics[scale=0.28]{trigger_eff/Wbbjets1eff}
\includegraphics[scale=0.28]{trigger_eff/Wbbjets2eff}
\includegraphics[scale=0.28]{trigger_eff/Wbbjets3eff}
\caption{Trigger Efficiencies for $Wbb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:Wccjets_trig_eff}Trigger Efficiencies for $Wcc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Wccjets0eff}
\includegraphics[scale=0.28]{trigger_eff/Wccjets1eff}
\includegraphics[scale=0.28]{trigger_eff/Wccjets2eff}
\includegraphics[scale=0.28]{trigger_eff/Wccjets3eff}
\caption{Trigger Efficiencies for $Wcc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage


\subsection{\label{app:Zlpeejets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow ee + jj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zlpee0eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpee1eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpee2eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpee3eff}
\caption{Trigger Efficiencies for $Zjj + jets \rightarrow ee + jj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}



\subsection{\label{app:Zbbeejets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow ee + bb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zbbee0eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbee1eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbee2eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbee3eff}
\caption{Trigger Efficiencies for $Zbb + jets \rightarrow ee + bb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\subsection{\label{app:Zcceejets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow ee + cc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zccee0eff}
\includegraphics[scale=0.28]{trigger_eff/Zccee1eff}
\includegraphics[scale=0.28]{trigger_eff/Zccee2eff}
\includegraphics[scale=0.28]{trigger_eff/Zccee3eff}
\caption{Trigger Efficiencies for $Zcc + jets \rightarrow ee + cc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:Zlpmumujets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \mu\mu + jj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zlpmumu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpmumu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpmumu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpmumu3eff}
\caption{Trigger Efficiencies for $Zjj + jets \rightarrow \mu\mu + jj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage



\subsection{\label{app:Zbbmumujets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow \mu\mu + bb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zbbmumu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbmumu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbmumu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbmumu3eff}
\caption{Trigger Efficiencies for $Zbb + jets \rightarrow \mu\mu + bb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:Zccmumujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \mu\mu + cc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zccmumu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zccmumu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zccmumu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zccmumu3eff}
\caption{Trigger Efficiencies for $Zcc + jets \rightarrow \mu\mu + cc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage


\subsection{\label{app:Zlptautaujets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \tau\tau + jj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zlptautau0eff}
\includegraphics[scale=0.28]{trigger_eff/Zlptautau1eff}
\includegraphics[scale=0.28]{trigger_eff/Zlptautau2eff}
\includegraphics[scale=0.28]{trigger_eff/Zlptautau3eff}
\caption{Trigger Efficiencies for $Zjj + jets \rightarrow \tau\tau + jj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}



\subsection{\label{app:Zbbtautaujets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow \tau\tau + bb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zbbtautau0eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbtautau1eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbtautau2eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbtautau3eff}
\caption{Trigger Efficiencies for $Zbb + jets \rightarrow \tau\tau + bb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage


\subsection{\label{app:Zcctautaujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \tau\tau + cc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zcctautau0eff}
\includegraphics[scale=0.28]{trigger_eff/Zcctautau1eff}
\includegraphics[scale=0.28]{trigger_eff/Zcctautau2eff}
\includegraphics[scale=0.28]{trigger_eff/Zcctautau3eff}
\caption{Trigger Efficiencies for $Zcc + jets \rightarrow \tau\tau + cc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:Zlpnunuets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \nu\nu + jj + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zlpnunu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpnunu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpnunu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zlpnunu3eff}
\caption{Trigger Efficiencies for $Zjj + jets \rightarrow \nu\nu + jj + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\clearpage


\subsection{\label{app:Zbbnunujets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow \nu\nu + bb + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zbbnunu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbnunu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbnunu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zbbnunu3eff}
\caption{Trigger Efficiencies for $Zbb + jets \rightarrow \nu\nu + bb + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


\subsection{\label{app:Zccnunujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \nu\nu + cc + jets$}
\begin{figure}[h]
\includegraphics[scale=0.28]{trigger_eff/Zccnunu0eff}
\includegraphics[scale=0.28]{trigger_eff/Zccnunu1eff}
\includegraphics[scale=0.28]{trigger_eff/Zccnunu2eff}
\includegraphics[scale=0.28]{trigger_eff/Zccnunu3eff}
\caption{Trigger Efficiencies for $Zcc + jets \rightarrow \nu\nu + cc + jets$.}

%\label{fig:variables_type2_bveto} 
\end{figure}


%\clearpage



\section{\label{app:turnon} Turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\noindent Here it is shown all turn-on curves for all three levels of the trigger JT2$\_$3JT15L$\_$IP$\_$VX
as described in Section \ref{sec:trig_param}.


\subsection{\label{app:jetturnon_L1} Level 1 jet turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 8~GeV]{\epsfig{file=lowLum/l1jetspt8.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=lowLum/l1jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 30~GeV]{\epsfig{file=lowLum/l1jetspt30.eps,width=4.7cm}}
\caption{Level 1 jet turn-on curves, low luminosity.}
\label{fig:l1jetslo}
\end{figure}

\newpage

\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 8~GeV]{\epsfig{file=medLum/l1jetspt8.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=medLum/l1jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 30~GeV]{\epsfig{file=medLum/l1jetspt30.eps,width=4.7cm}}
\caption{Level 1 jet turn-on curves, medium luminosity.}
\label{fig:l1jets}
\end{figure}


\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 8~GeV]{\epsfig{file=highLum/l1jetspt8.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=highLum/l1jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 30~GeV]{\epsfig{file=highLum/l1jetspt30.eps,width=4.7cm}}
\caption{Level 1 jet turn-on curves, high luminosity.}
\label{fig:l1jetshi}
\end{figure}

\newpage


\subsection{\label{app:jetturnon_L2} Level 2 jet turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[Low luminosity $p_{T} >$ 8~GeV]{\epsfig{file=lowLum/l2jetspt8.eps,width=4.7cm}}
\subfigure[Medium luminosity $p_{T} >$ 8~GeV]{\epsfig{file=medLum/l2jetspt8.eps,width=4.7cm}}
\subfigure[high luminosity $p_{T} >$ 8~GeV]{\epsfig{file=highLum/l2jetspt8.eps,width=4.7cm}}
\caption{Level 2 $p_{T} >$ 8~GeV jets turn-on curves.}
\label{fig:l2jetsalllumi}
\end{figure}


\subsection{\label{app:htturnon_L2} Level 2 $H_{T}$ turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[$H_{T} >$ 75~GeV]{\epsfig{file=lowLum/l2ht75.eps,width=4.7cm}}
\subfigure[$H_{T} >$ 100~GeV]{\epsfig{file=lowLum/l2ht100.eps,width=4.7cm}}
\caption{L2 $H_{T}$ turn-on curves, low luminosity.}
\label{fig:l2htlo}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[$H_{T} >$ 75~GeV]{\epsfig{file=medLum/l2ht75.eps,width=4.7cm}}
\subfigure[$H_{T} >$ 100~GeV]{\epsfig{file=medLum/l2ht100.eps,width=4.7cm}}
\caption{L2 $H_{T}$ turn-on curves, medium luminosity.}
\label{fig:l2ht}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[$H_{T} >$ 75~GeV]{\epsfig{file=highLum/l2ht75.eps,width=4.7cm}}
\subfigure[$H_{T} >$ 100~GeV]{\epsfig{file=highLum/l2ht100.eps,width=4.7cm}}
\caption{L2 $H_{T}$ turn-on curves, high luminosity.}
\label{fig:l2hthi}
\end{figure}

\newpage


\subsection{\label{app:mhtturnon_L2} Level 2 $\not\!\!E_{T}$ turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[$\not\!\!E_{T}$ $>$ 10~GeV]{\epsfig{file=lowLum/l2mhtv15.eps,width=4.7cm}}
\subfigure[$\not\!\!E_{T}$ $>$ 20~GeV]{\epsfig{file=lowLum/l2mhtv16.eps,width=4.7cm}}
\caption{L2 $\not\!\!E_{T}$ turn-on curves, low luminosity.}
\label{fig:l2mhtlo}
\end{figure}


\begin{figure}[h]
\centering
\subfigure[$\not\!\!E_{T}$ $>$ 10~GeV]{\epsfig{file=medLum/l2mhtv15.eps,width=4.7cm}}
\subfigure[$\not\!\!E_{T}$ $>$ 20~GeV]{\epsfig{file=medLum/l2mhtv16.eps,width=4.7cm}}
\caption{L2 $\not\!\!E_{T}$ turn-on curves, medium luminosity.}
\label{fig:l2mht}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[$\not\!\!E_{T}$ $>$ 10~GeV]{\epsfig{file=highLum/l2mhtv15.eps,width=4.7cm}}
\subfigure[$\not\!\!E_{T}$ $>$ 20~GeV]{\epsfig{file=highLum/l2mhtv16.eps,width=4.7cm}}
\caption{L2 $\not\!\!E_{T}$ turn-on curves, high luminosity.}
\label{fig:l2mhthi}
\end{figure}


\newpage


\subsection{\label{app:spherturnon_L2} Level 2 Sphericity turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[Sphericity $>$ 0.1 turn-on curve, low luminosity]{\epsfig{file=lowLum/l2spher.eps,width=4.7cm}}
\subfigure[Sphericity $>$ 0.1 turn-on curve, medium luminosity]{\epsfig{file=lowLum/l2spher.eps,width=4.7cm}}
\subfigure[Sphericity $>$ 0.1 turn-on curve, high luminosity]{\epsfig{file=medLum/l2spher.eps,width=4.7cm}}
\caption{L2 Sphericity turn-on curves.}
\label{fig:l2spher}
\end{figure}


\subsection{\label{app:sttip_L2} Level 2 STTIP turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[L2STTIP, 0 and 1 tight NN tags]{\epsfig{file=lowLum/l2stt01taglol.eps,width=4.7cm}}
\subfigure[L2STTIP, 2 and 3 tight NN tags]{\epsfig{file=lowLum/l2stt23taglol.eps,width=4.7cm}}
\caption{L2STTIP efficiency in the low luminosity range. Left: events with 0 (red) and 1 (black) tight NN b-tags. Right: events with 2 (red) and 3 (black) tight NN b-tags.} 
\label{fig:l2STTlo}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[L2STTIP, 0 and 1 tight NN tags]{\epsfig{file=medLum/l2stt01tag.eps,width=4.7cm}}
\subfigure[L2STTIP, 2 and 3 tight NN tags]{\epsfig{file=medLum/l2stt23tag.eps,width=4.7cm}}
\caption{L2STTIP efficiency in the medium luminosity range. Left: events with 0 (red) and 1 (black) tight NN b-tags. Right: events with 2 (red) and 3 (black) tight NN b-tags.} 
\label{fig:l2STT}
\end{figure}

\begin{figure}[h]
\centering
\subfigure[L2STTIP, 0 and 1 tight NN tags]{\epsfig{file=highLum/l2stt01taghil.eps,width=4.7cm}}
\subfigure[L2STTIP, 2 and 3 tight NN tags]{\epsfig{file=highLum/l2stt23taghil.eps,width=4.7cm}}
\caption{L2STTIP efficiency in the high luminosity range. Left: events with 0 (red) and 1 (black) tight NN b-tags. Right: events with 2 (red) and 3 (black) tight NN b-tags.} 
\label{fig:l2STThi}
\end{figure}

\newpage

\subsection{\label{app:jetturnon_L3} Level 3 jet turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=lowLum/l3jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 25~GeV]{\epsfig{file=lowLum/l3jetspt25.eps,width=4.7cm}}
\caption{L3 jet turn-on curves, low luminosity.}
\label{fig:l3jetslo}
\end{figure}
%

\newpage


\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=medLum/l3jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 25~GeV]{\epsfig{file=medLum/l3jetspt25.eps,width=4.7cm}}
\caption{L3 jet turn-on curves, medium luminosity.}
\label{fig:l3jets}
\end{figure}
%
\begin{figure}[h]
\centering
\subfigure[$p_{T} >$ 15~GeV]{\epsfig{file=highLum/l3jetspt15.eps,width=4.7cm}}
\subfigure[$p_{T} >$ 25~GeV]{\epsfig{file=highLum/l3jetspt25.eps,width=4.7cm}}
\caption{L3 jet turn-on curves, high luminosity.}
\label{fig:l3jetshi}
\end{figure}


\subsection{\label{app:btagturnon_L3} Level 3 b-tag on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX}

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=lowLum/l3btag01taglol.eps,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=lowLum/l3btag23taglol.eps,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the low luminosity 
range in triggerlist v15. The selected events passed the rest of the trigger and offline event selection and 
had zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3iplo}
\end{figure}

\newpage

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=medLum/l3btag01tag.eps,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=medLum/l3btag2tag.eps,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the medium luminosity 
range in triggerlist v15. The selected events passed the rest of the trigger and offline event selection and had 
zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3ip}
\end{figure}

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=highLum/l3btag01taghil.eps,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=highLum/l3btag23taghil.eps,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the high luminosity 
range in triggerlist v15. The selected events passed the rest of the trigger and offline event selection and had 
zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3iphi}
\end{figure}


\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=lowLum/l3btag01tagv16lol.eps,height=4.0cm,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=lowLum/l3btag2tagv16lol.eps,height=4.0cm,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the low luminosity 
range in triggerlist v16. The selected events passed the rest of the trigger and offline event selection and 
had zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3ipv16lo}
\end{figure}

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=medLum/l3btag01tagv16.eps,height=4.0cm,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=medLum/l3btag2tagv16.eps,height=4.0cm,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the medium luminosity 
range in triggerlist v16. The selected events passed the rest of the trigger and offline event selection and had 
zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3ipv16}
\end{figure}

\begin{figure}[h]
%\vspace{-0.5cm}
\centering
\subfigure[0 and 1 $b$-tags.]{\epsfig{file=highLum/l3btag01tagv16hil.eps,height=4.0cm,width=4.0cm}}
\subfigure[2 and 3 $b$-tags.]{\epsfig{file=highLum/l3btag2tagv16hil.eps,height=4.0cm,width=4.0cm}}
%\vspace{-0.5cm}
\caption[L3 IP Trigger]{(a) Efficiency of the L3 $b$-tag (Level3 Event $b$-tag$<$ 0.4) for the high luminosity 
range in triggerlist v16. The selected events passed the rest of the trigger and offline event selection and had 
zero (red) or one (black) offline NN (TIGHT) $b$-tags. (b) Same for events with 2(red) and 3(black) offline NN (TIGHT) $b$-tags.}
\label{fig:l3ipv16hi}
\end{figure}

\clearpage


\section{\label{app:discri_var}Discriminant variables}

\noindent This appendix shows normalized plots of signal and background samples 
for all discriminant variables tested for this analysis.

\begin{figure}[h]
\includegraphics[scale=0.30]{plots/metl_allEW.eps}
\includegraphics[scale=0.30]{variables/aplan_all}
\includegraphics[scale=0.30]{variables/cent_all}
\includegraphics[scale=0.30]{variables/sqrts_all}
\includegraphics[scale=0.30]{variables/spher_all}
\includegraphics[scale=0.30]{variables/ht_all.eps}
\includegraphics[scale=0.30]{variables/topmassl_all}
\includegraphics[scale=0.30]{variables/costhetastar_all}

\caption{Discriminant variables.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage


\section{\label{app:set_opt}Set optimization}

\noindent In this appendix it is shown plots of the figure of merit (Equation \ref{merit}) used to 
perform the NN variables set optimization as described in Section \ref{sub:NN-optimization}.

\begin{figure}[b]
\includegraphics[scale=0.27]{SetOpt/ensemble1-40}
\includegraphics[scale=0.27]{SetOpt/ensemble12-40}
\includegraphics[scale=0.27]{SetOpt/ensemble13-40}
\includegraphics[scale=0.27]{SetOpt/ensemble14-40}
\includegraphics[scale=0.27]{SetOpt/ensemble15-40}
\includegraphics[scale=0.27]{SetOpt/ensemble3-40}
\includegraphics[scale=0.27]{SetOpt/ensemble4-40}
\includegraphics[scale=0.27]{SetOpt/ensemble5-40}
\includegraphics[scale=0.27]{SetOpt/ensemble7-40}
\includegraphics[scale=0.27]{SetOpt/ensemble9-40}
\includegraphics[scale=0.27]{SetOpt/ensemble10-40}
\includegraphics[scale=0.27]{SetOpt/ensemble12A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble13A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble14A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble15A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble16A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble17A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble18A-40}

\caption{Sets of NN inputs variables with $\not\!\! E_{T}$ significance $>$ 4.0 for set optimization.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\section{\label{app:set_opt}Set optimization continued}

\noindent In this appendix it is shown plots of the figure of merit (Equation \ref{merit}) used to 
perform the NN variables set optimization as described in Section \ref{sub:NN-optimization}.

\begin{figure}[b]
\includegraphics[scale=0.27]{SetOpt/ensemble19A-40}
\includegraphics[scale=0.27]{SetOpt/ensemble20-40}
\includegraphics[scale=0.27]{SetOpt/ensemble21-40}
\includegraphics[scale=0.27]{SetOpt/ensemble22-40}
\includegraphics[scale=0.27]{SetOpt/ensemble23-40}
\includegraphics[scale=0.27]{SetOpt/ensemble24-40}
\includegraphics[scale=0.27]{SetOpt/ensemble25-40}
\includegraphics[scale=0.27]{SetOpt/ensemble26-40}
\includegraphics[scale=0.27]{SetOpt/ensemble27-40}
\includegraphics[scale=0.27]{SetOpt/ensemble28-40}
\includegraphics[scale=0.27]{SetOpt/ensemble29-40}
\includegraphics[scale=0.27]{SetOpt/ensemble30-40}
\includegraphics[scale=0.27]{SetOpt/ensemble31-40}
\includegraphics[scale=0.27]{SetOpt/ensembleMS-40}
\includegraphics[scale=0.27]{SetOpt/ensemble33-40}

\caption{Sets of NN inputs variables with $\not\!\! E_{T}$ significance $>$ 4.0 for set optimization.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage


\section{\label{app:metl_opt}$\not\!\! E_{T}$ significance optimization}

\begin{figure}[h]
\includegraphics[scale=0.27]{SetOpt/ensembleMS-30}
\includegraphics[scale=0.27]{SetOpt/ensembleMS-35}
\includegraphics[scale=0.27]{SetOpt/ensembleMS-40}
\includegraphics[scale=0.27]{SetOpt/ensembleMS-45}
\includegraphics[scale=0.27]{SetOpt/ensembleMS50}
%\includegraphics[scale=0.27]{SetOpt/pull9-35}
%\includegraphics[scale=0.27]{SetOpt/pull9-40}
%\includegraphics[scale=0.27]{SetOpt/pull9-45}
%\includegraphics[scale=0.27]{SetOpt/pull9-50}
%\includegraphics[scale=0.27]{SetOpt/pull9-55}

\caption{Variation of $\not\!\! E_{T}$ significance cut for Set XXXII = metl, {$H_{T}$}, topmassl, aplan, sqrts.}

%\label{fig:variables_type2_bveto} 
\end{figure}

\clearpage

\section{\label{app:xsec_nocont}Cross section measurements when signal contamination is ignored}

\noindent In this appendix it is shown plots of the figure of merit (Equation \ref{merit}) used to 
perform the NN variables set optimization as described in Section \ref{sub:NN-optimization}.

\subsection{\label{sub:xsectA}Results for Set = metl, {$H_{T}$}, topmassl, aplan, sqrts, metl $>$ 4.0, lumi = 4951.86/pb, VC jets and
NNelec $>$ 0.9}

Table below summarizes the number of events in each channel after final selection.


\begin{table}[h]
\caption{Final number of events in the two analysis channels.} 
%\begin{ruledtabular}
\begin{tabular}{cccccc}
\hline 
&$\tau$ type I,II
&$\tau$ type I,II (fitted)
&$\tau$ type III
&$\tau$ type III (fitted)&\\
\hline 
data&
386 &
&
459 &
&\\
$t\overline{t}\rightarrow\tau+jets$&
72.04 $\pm$ 0.53&
&
38.82 $\pm$ 0.39&\\
$t\overline{t}\rightarrow e+jets$&
38.35 $\pm$ 0.36&
&
6.52 $\pm$ 0.16&
&\\
$t\overline{t}\rightarrow\mu+jets$&
4.81 $\pm$ 0.14&
&
5.14 $\pm$ 0.14&
&\\
$t\overline{t}\rightarrow l+l$&
6.02 $\pm$ 0.07&
&
4.20 $\pm$ 0.06&
&\\
$t\overline{t}$ total MC&
&
121.22 $\pm$ 0.43&
&
54.68 $\pm$ 0.20&\\
$t\overline{t}$ total fitted&
&
133.04 $\pm$ 17.09&
&
33.12 $\pm$ 15.04&\\
$W$+jets&
17.82 $\pm$ 0.33&
&
11.26 $\pm$ 0.23&
&\\
$Z$+jets&
2.78 $\pm$ 0.14&
&
2.39 $\pm$ 0.12&
&\\
QCD&
&
232.35 $\pm$ 17.09&
&
412.22 $\pm$ 15.04\\
Signal significance&
&
6.77&
&
1.54
&\\
S/B ratio&
&
0.52&
&
0.08\\
\end{tabular}
%\end{ruledtabular}
\label{event yeild summary} 
\end{table}


Without taking into account the signal contamination the result is (only statistical uncertainties are shown)

\begin{center}$\tau$+jets types 1 and 2 cross section: \[\sigma (t\overline{t}) = 
8.05\;\;_{-1.02}^{+1.04}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
 \par\end{center}

\begin{center}$\tau$+jets type 3 cross section: \[\sigma (t\overline{t}) = 
4.24\;\;_{-1.80}^{+1.94}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
\par\end{center}



\begin{center}Combined cross section: \[\sigma (t\overline{t}) = 
7.26\;\;_{-0.92}^{+0.92}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
\par\end{center}


\clearpage


\subsection{\label{sub:xsectA}Results for Set = metl, {$H_{T}$}, topmassl, aplan, sqrts, metl $>$ 4.0, lumi = 4951.86/pb, VC jets and no NNelec cut}

Table below summarizes the number of events in each channel after final selection.


\begin{table}[h]
\caption{Final number of events in the two analysis channels.} 
%\begin{ruledtabular}
\begin{tabular}{cccccc}
\hline 
&$\tau$ type I,II
&$\tau$ type I,II (fitted)
&$\tau$ type III
&$\tau$ type III (fitted)&\\
\hline 
data&
583 &
&
459 &
&\\
$t\overline{t}\rightarrow\tau+jets$&
85.46 $\pm$ 0.58&
&
38.82 $\pm$ 0.39&\\
$t\overline{t}\rightarrow e+jets$&
175.23 $\pm$ 0.85&
&
6.52 $\pm$ 0.16&
&\\
$t\overline{t}\rightarrow\mu+jets$&
8.98 $\pm$ 0.19&
&
5.14 $\pm$ 0.14&
&\\
$t\overline{t}\rightarrow l+l$&
12.62 $\pm$ 0.10&
&
4.18 $\pm$ 0.06&
&\\
$t\overline{t}$ total MC&
&
282.27 $\pm$ 1.05&
&
54.67 $\pm$ 0.41&\\
$t\overline{t}$ total fitted&
&
260.71 $\pm$ 20.74&
&
35.73 $\pm$ 15.28&\\
$W$+jets&
39.65 $\pm$ 0.50&
&
11.26 $\pm$ 0.25&
&\\
$Z$+jets&
4.56 $\pm$ 0.10&
&
2.38 $\pm$ 0.11&
&\\
QCD&
&
278.04 $\pm$ 20.74&
&
409.62 $\pm$ 15.28\\
Signal significance&
&
10.80&
&
1.67
&\\
S/B ratio&
&
0.80&
&
0.08\\
\end{tabular}
%\end{ruledtabular}
\label{event yeild summary} 
\end{table}
%


Without taking into account the signal contamination the result is (only statistical uncertainties are shown)

\begin{center}$\tau$+jets types 1 and 2 cross section: \[\sigma (t\overline{t}) = 
6.47\;\;_{-0.53}^{+0.53}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
 \par\end{center}

\begin{center}$\tau$+jets type 3 cross section: \[\sigma (t\overline{t}) = 
4.58\;\;_{-1.85}^{+1.96}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
\par\end{center}



\begin{center}Combined cross section: \[\sigma (t\overline{t}) = 
6.35\;\;_{-0.51}^{+0.51}\;\;({\textrm{stat}})\;\;\pm 0.3\;\;({\textrm{lumi}})\;\; \rm{pb,}\]
\par\end{center}



%\section{Appendix A}


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>