--- ttbar/p20_taujets_note/Appendix.tex 2011/05/18 21:30:40 1.1.1.1 +++ ttbar/p20_taujets_note/Appendix.tex 2011/06/01 01:20:54 1.2 @@ -60,16 +60,16 @@ in Sections \ref{sub:datasample} and \re \clearpage -\subsection{\label{app:alljets_trig_eff}Trigger Efficiencies for $alljets$} -\begin{figure}[h] -\includegraphics[scale=0.28]{trigger_eff/alljets0eff} -\includegraphics[scale=0.28]{trigger_eff/alljets1eff} -\includegraphics[scale=0.28]{trigger_eff/alljets2eff} -\includegraphics[scale=0.28]{trigger_eff/alljets3eff} -\caption{Trigger Efficiencies for $alljets$.} +%\subsection{\label{app:alljets_trig_eff}Trigger Efficiencies for $alljets$} +%\begin{figure}[h] +%\includegraphics[scale=0.28]{trigger_eff/alljets0eff} +%\includegraphics[scale=0.28]{trigger_eff/alljets1eff} +%\includegraphics[scale=0.28]{trigger_eff/alljets2eff} +%\includegraphics[scale=0.28]{trigger_eff/alljets3eff} +%\caption{Trigger Efficiencies for $alljets$.} %\label{fig:variables_type2_bveto} -\end{figure} +%\end{figure} \subsection{\label{app:Wjjjets_trig_eff}Trigger Efficiencies for $Wjj + jets$} @@ -83,7 +83,7 @@ in Sections \ref{sub:datasample} and \re %\label{fig:variables_type2_bveto} \end{figure} -\clearpage +%\clearpage \subsection{\label{app:Wbbjets_trig_eff}Trigger Efficiencies for $Wbb + jets$} \begin{figure}[h] @@ -96,6 +96,7 @@ in Sections \ref{sub:datasample} and \re %\label{fig:variables_type2_bveto} \end{figure} +\clearpage \subsection{\label{app:Wccjets_trig_eff}Trigger Efficiencies for $Wcc + jets$} \begin{figure}[h] @@ -109,7 +110,7 @@ in Sections \ref{sub:datasample} and \re \end{figure} -\clearpage +%\clearpage \subsection{\label{app:Zlpeejets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow ee + jj + jets$} @@ -124,6 +125,7 @@ in Sections \ref{sub:datasample} and \re \end{figure} +\clearpage \subsection{\label{app:Zbbeejets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow ee + bb + jets$} \begin{figure}[h] @@ -136,7 +138,7 @@ in Sections \ref{sub:datasample} and \re %\label{fig:variables_type2_bveto} \end{figure} -\clearpage +%\clearpage \subsection{\label{app:Zcceejets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow ee + cc + jets$} \begin{figure}[h] @@ -149,6 +151,7 @@ in Sections \ref{sub:datasample} and \re %\label{fig:variables_type2_bveto} \end{figure} +\clearpage \subsection{\label{app:Zlpmumujets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \mu\mu + jj + jets$} \begin{figure}[h] @@ -162,7 +165,7 @@ in Sections \ref{sub:datasample} and \re \end{figure} -\clearpage +%\clearpage @@ -177,6 +180,7 @@ in Sections \ref{sub:datasample} and \re %\label{fig:variables_type2_bveto} \end{figure} +\clearpage \subsection{\label{app:Zccmumujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \mu\mu + cc + jets$} \begin{figure}[h] @@ -189,7 +193,7 @@ in Sections \ref{sub:datasample} and \re %\label{fig:variables_type2_bveto} \end{figure} -\clearpage +%\clearpage \subsection{\label{app:Zlptautaujets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \tau\tau + jj + jets$} @@ -204,6 +208,7 @@ in Sections \ref{sub:datasample} and \re \end{figure} +\clearpage \subsection{\label{app:Zbbtautaujets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow \tau\tau + bb + jets$} \begin{figure}[h] @@ -217,7 +222,6 @@ in Sections \ref{sub:datasample} and \re \end{figure} -\clearpage \subsection{\label{app:Zcctautaujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \tau\tau + cc + jets$} @@ -232,6 +236,9 @@ in Sections \ref{sub:datasample} and \re \end{figure} +\clearpage + + \subsection{\label{app:Zlpnunuets_trig_eff}Trigger Efficiencies for $Zjj + jets \rightarrow \nu\nu + jj + jets$} \begin{figure}[h] \includegraphics[scale=0.28]{trigger_eff/Zlpnunu0eff} @@ -244,7 +251,6 @@ in Sections \ref{sub:datasample} and \re \end{figure} -\clearpage \subsection{\label{app:Zbbnunujets_trig_eff}Trigger Efficiencies for $Zbb + jets \rightarrow \nu\nu + bb + jets$} @@ -259,6 +265,9 @@ in Sections \ref{sub:datasample} and \re \end{figure} +\clearpage + + \subsection{\label{app:Zccnunujets_trig_eff}Trigger Efficiencies for $Zcc + jets \rightarrow \nu\nu + cc + jets$} \begin{figure}[h] \includegraphics[scale=0.28]{trigger_eff/Zccnunu0eff} @@ -271,17 +280,17 @@ in Sections \ref{sub:datasample} and \re \end{figure} -%\clearpage - +\clearpage +%\newpage -\section{\label{app:turnon} Turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} +\section{\label{app:turnon} Turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} -\noindent Here it is shown all turn-on curves for all three levels of the trigger JT2$\_$3JT15L$\_$IP$\_$VX +\noindent Here are shown all turn-on curves for all three levels of the trigger JT2$\_$3JT15L$\_$IP$\_$VX as described in Section \ref{sec:trig_param}. -\subsection{\label{app:jetturnon_L1} Level 1 jet turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} +\subsection{\label{app:jetturnon_L1} Level 1 jet turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} \begin{figure}[h] \centering @@ -292,7 +301,7 @@ as described in Section \ref{sec:trig_pa \label{fig:l1jetslo} \end{figure} -\newpage +%\newpage \begin{figure}[h] \centering @@ -316,7 +325,7 @@ as described in Section \ref{sec:trig_pa \newpage -\subsection{\label{app:jetturnon_L2} Level 2 jet turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} +\subsection{\label{app:jetturnon_L2} Level 2 jet turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} \begin{figure}[h] \centering @@ -328,7 +337,7 @@ as described in Section \ref{sec:trig_pa \end{figure} -\subsection{\label{app:htturnon_L2} Level 2 $H_{T}$ turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} +\subsection{\label{app:htturnon_L2} Level 2 $H_{T}$ turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} \begin{figure}[h] \centering @@ -357,7 +366,7 @@ as described in Section \ref{sec:trig_pa \newpage -\subsection{\label{app:mhtturnon_L2} Level 2 $\not\!\!E_{T}$ turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} +\subsection{\label{app:mhtturnon_L2} Level 2 $\not\!\!E_{T}$ turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} \begin{figure}[h] \centering @@ -388,7 +397,7 @@ as described in Section \ref{sec:trig_pa \newpage -\subsection{\label{app:spherturnon_L2} Level 2 Sphericity turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} +\subsection{\label{app:spherturnon_L2} Level 2 Sphericity turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} \begin{figure}[h] \centering @@ -400,7 +409,7 @@ as described in Section \ref{sec:trig_pa \end{figure} -\subsection{\label{app:sttip_L2} Level 2 STTIP turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} +\subsection{\label{app:sttip_L2} Level 2 STTIP turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} \begin{figure}[h] \centering @@ -428,7 +437,7 @@ as described in Section \ref{sec:trig_pa \newpage -\subsection{\label{app:jetturnon_L3} Level 3 jet turn on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} +\subsection{\label{app:jetturnon_L3} Level 3 jet turn-on curves for trigger JT2$\_$3JT15L$\_$IP$\_$VX} \begin{figure}[h] \centering @@ -542,7 +551,7 @@ zero (red) or one (black) offline NN (TI \section{\label{app:discri_var}Discriminant variables} \noindent This appendix shows normalized plots of signal and background samples -for all discriminant variables tested for this analysis. +for all discriminant variables tested AND/OR used in this analysis. \begin{figure}[h] \includegraphics[scale=0.30]{plots/metl_allEW.eps} @@ -564,7 +573,7 @@ for all discriminant variables tested fo \section{\label{app:set_opt}Set optimization} -\noindent In this appendix it is shown plots of the figure of merit (Equation \ref{merit}) used to +\noindent This appendix shows plots of the figure of merit (Eq. \ref{merit}) used to perform the NN variables set optimization as described in Section \ref{sub:NN-optimization}. \begin{figure}[b] @@ -583,23 +592,15 @@ perform the NN variables set optimizatio \includegraphics[scale=0.27]{SetOpt/ensemble13A-40} \includegraphics[scale=0.27]{SetOpt/ensemble14A-40} \includegraphics[scale=0.27]{SetOpt/ensemble15A-40} -\includegraphics[scale=0.27]{SetOpt/ensemble16A-40} -\includegraphics[scale=0.27]{SetOpt/ensemble17A-40} -\includegraphics[scale=0.27]{SetOpt/ensemble18A-40} - \caption{Sets of NN inputs variables with $\not\!\! E_{T}$ significance $>$ 4.0 for set optimization.} - -%\label{fig:variables_type2_bveto} \end{figure} \clearpage -\section{\label{app:set_opt}Set optimization continued} - -\noindent In this appendix it is shown plots of the figure of merit (Equation \ref{merit}) used to -perform the NN variables set optimization as described in Section \ref{sub:NN-optimization}. - \begin{figure}[b] +\includegraphics[scale=0.27]{SetOpt/ensemble16A-40} +\includegraphics[scale=0.27]{SetOpt/ensemble17A-40} +\includegraphics[scale=0.27]{SetOpt/ensemble18A-40} \includegraphics[scale=0.27]{SetOpt/ensemble19A-40} \includegraphics[scale=0.27]{SetOpt/ensemble20-40} \includegraphics[scale=0.27]{SetOpt/ensemble21-40} @@ -615,14 +616,11 @@ perform the NN variables set optimizatio \includegraphics[scale=0.27]{SetOpt/ensemble31-40} \includegraphics[scale=0.27]{SetOpt/ensembleMS-40} \includegraphics[scale=0.27]{SetOpt/ensemble33-40} - \caption{Sets of NN inputs variables with $\not\!\! E_{T}$ significance $>$ 4.0 for set optimization.} - -%\label{fig:variables_type2_bveto} \end{figure} -\clearpage +\clearpage \section{\label{app:metl_opt}$\not\!\! E_{T}$ significance optimization} @@ -638,19 +636,156 @@ perform the NN variables set optimizatio %\includegraphics[scale=0.27]{SetOpt/pull9-50} %\includegraphics[scale=0.27]{SetOpt/pull9-55} -\caption{Variation of $\not\!\! E_{T}$ significance cut for Set XXXII = metl, {$H_{T}$}, topmassl, aplan, sqrts.} +\caption{Variation of $\not\!\! E_{T}$ significance cut for Set 32 = METsig, {$H_{T}$}, topmassl, aplan, Mjjtau.} %\label{fig:variables_type2_bveto} \end{figure} \clearpage -\section{\label{app:xsec_nocont}Cross section measurements when signal contamination is ignored} -\noindent In this appendix it is shown plots of the figure of merit (Equation \ref{merit}) used to -perform the NN variables set optimization as described in Section \ref{sub:NN-optimization}. +\section{\label{app:Topo}Topological variables} + +In this section we show distributions of the topological variables used in this analysis in order to +check the agreement between data and Monte Carlo in all cases. Plots are separated into two sets: +signal sample and b-veto control plots. + +\subsection{\label{sub:signalplots}Signal sample plots} + +As stated in Section \ref{sub:Results-of-the} the signal sample is the one we used to perform +the measurement. The cuts here consist of $NN(\tau)>0.90$ for taus types 1 and 2, +$NN(\tau)>0.95$ for taus type 3, and at least one NN b-tag. This sample contains +a good amount of $t\bar{t}$ (19.7\% for types 1 and 2 and 8.6\% for type 3) as shown in Tables +\ref{b_and_tau_type1_2} and \ref{b_and_tau_type_3}. Next we show the plots of +the topological variables for this sample. The error bars represent the statistical uncertainties only. + +\begin{figure}[h] +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/aplan} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/ht} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/aplan} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/ht} + +\caption{Distributions for aplanarity and $H_T$ in the signal sample for +tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown, +indicating the level of agreement.} + +%\label{fig:variables_type2_Std} +\end{figure} + +\newpage + +\begin{figure}[t] +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/cent} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/spher} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/cent} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/spher} + +\caption{Distributions for centrality and sphericity in the signal sample for +tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown, +indicating the level of agreement.} +%\label{fig:variables_type2_Std} +\end{figure} + + +\begin{figure}[b] +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/sqrts} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/costhetastar} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/sqrts} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/costhetastar} + +\caption{Distributions for $M_{jj\tau}$ and $cos(\theta^{*})$ in the signal sample for +tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown, +indicating the level of agreement.} +%\label{fig:variables_type2_Std} +\end{figure} + +\begin{figure}[t] +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/metl} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeI_II/met} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/metl} +\includegraphics[scale=0.34]{CONTROLPLOTS/Std_TypeIII/met} + +\caption{Distributions for \met and $\not\!\! E_{T}$ significance significance in the signal sample for +tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown, +indicating the level of agreement.} +%\label{fig:variables_type2_Std} +\end{figure} + +\clearpage + +\subsection{\label{app:signalplots}b-veto control sample plots} + +The b-veto sample is the one used to test our QCD modelling \ref{sub:Results-of-the}. As it requires no +NN b-tags it is QCD-dominated and has a tiny amount of $t\bar{t}$ (1.9\% for types 1 and 2 and 0.7\% for type 3) +as shown in Tables \ref{bveto_type1_2} and \ref{b_veto_type_3}. It consists of an ideal sample to make sure +that the QCD modelling works and can be used in the measurement. Next we show the plots of +the topological variables for this sample. The error bars represent the statistical uncertainties only. + +\begin{figure}[h] +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/aplan} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/ht} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/aplan} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/ht} + +\caption{Distributions for aplanarity and $H_T$ in the $b$-veto sample for +tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown, +indicating the level of agreement.} + +%\label{fig:variables_type2_bveto} +\end{figure} + +\newpage + +\begin{figure}[t] +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/cent} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/spher} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/cent} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/spher} + +\caption{Distributions for centrality and sphericity in the $b$-veto sample for +tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown, +indicating the level of agreement.} + +%\label{fig:variables_type2_bveto} +\end{figure} + +\begin{figure}[b] +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/sqrts} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/costhetastar} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/sqrts} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/costhetastar} + +\caption{Distributions for $M_{jj\tau}$ and $cos(\theta^{*})$ in the $b$-veto sample for +tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown, +indicating the level of agreement.} + +%\label{fig:variables_type2_bveto} +\end{figure} + + +\begin{figure}[t] +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/metl} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeI_II/met} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/metl} +\includegraphics[scale=0.34]{CONTROLPLOTS/bveto_TypeIII/met} + +\caption{Distributions for \met and $\not\!\! E_{T}$ significance significance in the $b$-veto sample for +tau of Types 1 and 2 (top) and taus of Type 3 (botton). The Kolmogorov-Smirnov (KS) probabilities are shown, +indicating the level of agreement.} + +%\label{fig:variables_type2_bveto} +\end{figure} + +\clearpage + + +\section{\label{app:xsec_nocont}Cross measurement without accounting for signal contamination in the background sample.} + +\noindent In this appendix we show results of cross section measurements for both NNelec $>$ 0.9 and no NNelec cut +applied when the signal contamination in the loose-tight tau region is not taken into account. They serve as a +complement to the discussion presented in Section \ref{sub:xsect}. -\subsection{\label{sub:xsectA}Results for Set = metl, {$H_{T}$}, topmassl, aplan, sqrts, metl $>$ 4.0, lumi = 4951.86/pb, VC jets and +\subsection{\label{sub:xsectA}Results for Set = METsig, {$H_{T}$}, topmassl, aplan, Mjjtau, METsig $>$ 4.0, lumi = 4951.86/pb, VC jets and NNelec $>$ 0.9} Table below summarizes the number of events in each channel after final selection. @@ -752,7 +887,7 @@ Without taking into account the signal c \clearpage -\subsection{\label{sub:xsectA}Results for Set = metl, {$H_{T}$}, topmassl, aplan, sqrts, metl $>$ 4.0, lumi = 4951.86/pb, VC jets and no NNelec cut} +\subsection{\label{sub:xsectA}Results for Set = Set = METsig, {$H_{T}$}, topmassl, aplan, Mjjtau, METsig $>$ 4.0, lumi = 4951.86/pb, VC jets and no NNelec cut} Table below summarizes the number of events in each channel after final selection.