Annotation of ttbar/p20_taujets_note/Analysis.tex, revision 1.1.1.1

1.1       uid12904    1: 
                      2: \section{Analysis}
                      3: 
                      4: 
                      5: \subsection{Outline}
                      6: 
                      7: The analysis procedure involved several stages:
                      8: 
                      9: \begin{itemize}
                     10: \item Preselection (section \ref{sub:Preselection}). At least 4 jets and
                     11: $\not\!\! E_{T}$ significance > 3. 653727 events selected in the
                     12: data, 109.93 $\pm$7.26 $t\bar{t}$ among them are expected. S:B =
                     13: 1:6000. 
                     14: \item ID cuts (section \ref{sub:Results-of-the}) . At least one good $\tau$
                     15: candidate and at at least one tight SVT tag is requited. We also required
                     16: $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20$ GeV. 216 events selected
                     17: in the data, 9.320$\pm$0.620 $t\bar{t}$ among them are expected.
                     18: S:B = 1:58. 
                     19: \item Topological NN (section \ref{sub:NN-variables}). A sequence of two
                     20: feed-forward NN had been trained and applied. The optimal cut on the
                     21: second NN has been found to be 0.6. With this final cut we had obtained
                     22: 13 events in data with 4.93$\pm$0.33 $t\bar{t}$ among them are expected.
                     23: S:B = 1:2.5. 
                     24: \end{itemize}
                     25: The W background had been modeled using ALPGEN Monte Carlo simulation,
                     26: while QCD had been extracted from the data using procedure, described
                     27: in section \ref{sub:QCD-modeling}.
                     28: 
                     29: 
                     30: \subsection{\label{sub:Preselection}Preselection}
                     31: 
                     32: The total number of events in this 351 $pb^{-1}$data skim is 17 millions.
                     33: This is a very large and rather unwieldy dataset. Hence, the main
                     34: goal of preselection was to reduce this dataset while imposing the
                     35: most obvious and straightforward requirements, characterizing my signal
                     36: signature. Such characteristic features include the following:
                     37: 
                     38: \begin{itemize}
                     39: \item Moderate $\not\!\! E_{T}$ arising from both the W vertex and $\tau$
                     40: decay. 
                     41: \item At least 4 jets have to be present. 
                     42: \item $\tau$lepton and 2 b-jets are present. 
                     43: \end{itemize}
                     44: Since both $\tau$ ID and b-tagging involve complex algorithms which
                     45: are likely to be signal-sensitive and may require extensive \char`\"{}tuning\char`\"{},
                     46: we've chosen not to use them at the preselection stage.
                     47: 
                     48: Similarly, we had chosen not to impose any jet $P_{T}$ cuts, since
                     49: such cuts strongly depend on the JES corrections and associated errors
                     50: and hence are better to be applied at a later stage.
                     51: 
                     52: The first 3 preselection criteria were chosen similar to the $t\overline{t}\rightarrow jets$
                     53: analysis \cite{alljet}:
                     54: 
                     55: \begin{itemize}
                     56: \item Primary Vertex is reconstructed and is within the central tracker
                     57: volume (60 cm in Z from the detector center) and has at least 3 tracks
                     58: associated with it. 
                     59: \item Veto on isolated electrons and muons to avoid overlap with the $t\overline{t}\rightarrow lepton+jets$
                     60: cross section analysis. 
                     61: \item $N_{jets}\geq4$ with $P_{T}>8\, GeV$. 
                     62: \end{itemize}
                     63: At this point, $t\overline{t}\rightarrow e+jets$ and $t\overline{t}\rightarrow\mu+jets$
                     64: analysis \cite{l+jets} are applying cuts on $\Delta\phi$ between
                     65: the lepton and $\not\!\! E_{T}$ as well as so-called \char`\"{}triangular\char`\"{}
                     66: cuts in $\Delta\phi$ - $\not\!\! E_{T}$ plane. The goal is to eliminate
                     67: the events with fake $\not\!\! E_{T}$ . The neutrino and lepton coming
                     68: from the W are expected to fly opposite direction most of the time.
                     69: However, as can be observed on Figure \ref{cap:dphi}, no such simple
                     70: cuts are obvious in case of $\tau$ . That is to be expected since
                     71: $\tau$ itself emits a neutrino in its decay, contributing to $\not\!\! E_{T}$
                     72: . So, instead a new variable is proposed to cut off the fake $\not\!\! E_{T}$
                     73: events and reduce the sample size.
                     74: 
                     75: %
                     76: \begin{figure}
                     77: \includegraphics[scale=0.4]{analysis/plots/dphitaumet}
                     78: 
                     79: 
                     80: \caption{$\Delta\phi$ between $\tau$ and $\not\!\! E_{T}$ for QCD (black)
                     81: and $t\bar{t}\rightarrow\tau+jets$ (red).}
                     82: 
                     83: \label{cap:dphi} 
                     84: \end{figure}
                     85: 
                     86: 
                     87: %
                     88: \begin{figure}
                     89: \includegraphics[scale=0.4]{analysis/plots/metl}
                     90: 
                     91: 
                     92: \caption{$\not\!\! E_{T}$ significance for QCD and $t\bar{t}\rightarrow\tau+jets$.}
                     93: 
                     94: \label{cap:metl} 
                     95: \end{figure}
                     96: 
                     97: 
                     98: $\not\!\! E_{T}$ significance \cite{metl} is defined as measure
                     99: of likelihood of $\not\!\! E_{T}$ arising from physical sources,
                    100: rather than fluctuations in detector measurements. As can be observed
                    101: on Fig. \ref{cap:metl} it proves to be an effective way to reduce
                    102: the data skim. Cut of 3 was used for preselection.
                    103: 
                    104: Now we need to scale the original 10K events of the MC sample to 349
                    105: $pb^{-1}$. The total $t\bar{t}$ cross section is 6.8 pb \cite{NNLO}.
                    106: Taking into account the branching fraction to hadronic $\tau+jets$
                    107: mode, the effective cross section comes out to be:
                    108: 
                    109: $B(\tau\rightarrow hadrons)\cdot B(t\bar{t}\rightarrow\tau+jets)\cdot\sigma(t\bar{t})=0.65\cdot0.15\cdot6.8=0.66$
                    110: pb
                    111: 
                    112: Throughout this work we had however used the value of $\sigma(t\bar{t})$
                    113: of 5.5 pb, the value, computed by the ALPGEN simulation, taking into
                    114: account the generation cuts. The effective cross section used for
                    115: scaling is then 0.53 pb. Since this value is only used for reference
                    116: and optimization of S:B it's of no importance which number is used.
                    117: 
                    118: The relative flavor fractions of the $W+4jets$ process were taken
                    119: from ALPGEN simulation as ratios of the simulated cross section. It
                    120: was then normalized to the measured total value of 4.5 $\pm$ 2.2
                    121: pb \cite{W+4j}
                    122: 
                    123: Table \ref{presel} shows the results of the preselection for both
                    124: data and the backgrounds.
                    125: 
                    126: %
                    127: \begin{table}
                    128: \begin{tabular}{|c|c|c|c|}
                    129: \hline 
                    130: &
                    131: \# passed&
                    132: ALPGEN $\sigma$, pb&
                    133: \# passed scaled\tabularnewline
                    134: \hline
                    135: \hline 
                    136: data&
                    137: 653727/17M&
                    138: &
                    139: 653727\tabularnewline
                    140: \hline 
                    141: $t\overline{t}\rightarrow\tau+jets$&
                    142: 6141/10878&
                    143: 0.821 $\pm$ 0.004&
                    144: 109.93 $\pm$7.26\tabularnewline
                    145: \hline 
                    146: $Wbbjj\rightarrow$ $\tau\nu+bbjj$&
                    147: 2321/11576&
                    148: 0.222 $\pm$ 0.044&
                    149: 9.98 $\pm$ 2.08\tabularnewline
                    150: \hline 
                    151: $Wccjj\rightarrow$ $\tau\nu+ccjj$&
                    152: 2289/10995&
                    153: 0.527 $\pm$ 0.059&
                    154: 24.77 $\pm$ 3.22\tabularnewline
                    155: \hline 
                    156: $Wcjjj\rightarrow$ $\tau\nu+cjjj$&
                    157: 2169/10435&
                    158: 0.920 $\pm$0.087 &
                    159: 42.23 $\pm$ 4.87\tabularnewline
                    160: \hline 
                    161: $Wjjjj\rightarrow$ $\tau\nu+jjjj$&
                    162: 2683/11920&
                    163: 14.14 $\pm$ 1.3&
                    164: 720.33 $\pm$ 81.48 \tabularnewline
                    165: \hline
                    166: \end{tabular}
                    167: 
                    168: 
                    169: \caption{Preselection results. Shown are the total acceptances (including
                    170: preselection) and the \# of events scaled to 349 $\pm$23 $pb^{-1}$
                    171: (no systematic uncertainties except for this luminosity error are
                    172: included). The Alpgen samples generation cuts are described in \cite{l+jets}.}
                    173: 
                    174: \label{presel} 
                    175: \end{table}
                    176: 
                    177: 
                    178: 
                    179: \subsection{\label{sub:Results-of-the}Results of the ID cuts}
                    180: 
                    181: The next step was to apply the requirement of $\tau$ and b tagging.
                    182: Table \ref{cap:btaggingandtau} shows the selection criteria that
                    183: we apply to data and MC and the resulting selection efficiencies.
                    184: The results of this procedure can be observed in Table \ref{b and tau}.
                    185: It can be noted that S:B at this stage is 1:58, which is way too low.
                    186: In section \ref{sub:NN-variables} we will describe the topological
                    187: NN used to enhance the signal content.
                    188: 
                    189: %
                    190: \begin{table}
                    191: \begin{tabular}{|c|c|c|}
                    192: \hline 
                    193: &
                    194: {\scriptsize data}&
                    195: {\scriptsize taggingMC}\tabularnewline
                    196: \hline
                    197: \hline 
                    198: &
                    199: {\scriptsize $\geq1$ $\tau$ with $|\eta|<2.4$ and $P_{T}>20\, GeV$}&
                    200: {\scriptsize $\geq1$ $\tau$ with $|\eta|<2.4$ and $P_{T}>20\, GeV$}\tabularnewline
                    201: \hline 
                    202: &
                    203: {\scriptsize $\geq1$ SVT}&
                    204: {\scriptsize $TrigWeight\cdot bTagProb$}\tabularnewline
                    205: \hline 
                    206: &
                    207: {\scriptsize $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20\, GeV$}&
                    208: {\scriptsize $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20\, GeV$}\tabularnewline
                    209: \hline
                    210: \end{tabular}
                    211: 
                    212: 
                    213: \caption{b-tagging and $\tau$ ID. In the MC we use the b-tagging certified
                    214: parametrization rather then actual b-tagging, that is we applied the
                    215: b-tagging weight ($bTagProb$). We also used the triggering weight
                    216: as computed by top\_trigger.}
                    217: 
                    218: \label{cap:btaggingandtau} 
                    219: \end{table}
                    220: 
                    221: 
                    222: %
                    223: \begin{table}
                    224: \begin{tabular}{|c|c|c|c|}
                    225: \hline 
                    226: &
                    227: {\small \# passed}&
                    228: {\small Acceptance}&
                    229: {\small \# passed scaled}\tabularnewline
                    230: \hline
                    231: \hline 
                    232: {\small data}&
                    233: {\small 216/653727}&
                    234: &
                    235: {\small 216}\tabularnewline
                    236: \hline 
                    237: {\small $t\overline{t}\rightarrow\tau+jets$}&
                    238: {\small 524.0/6141}&
                    239: {\small 0.0480$\pm$0.0020}&
                    240: {\small 9.320$\pm$0.620}\tabularnewline
                    241: \hline 
                    242: {\small $Wbbjj\rightarrow$ $\tau\nu+bbjj$}&
                    243: {\small 54.5/2321}&
                    244: {\small 0.0150$\pm$0.0024}&
                    245: {\small 0.012$\pm$0.002}\tabularnewline
                    246: \hline 
                    247: {\small $Wccjj\rightarrow$ $\tau\nu+ccjj$}&
                    248: {\small 13.3/2289}&
                    249: {\small 0.0039$\pm$0.0012}&
                    250: {\small 0.034$\pm$0.005}\tabularnewline
                    251: \hline 
                    252: {\small $Wcjjj\rightarrow$ $\tau\nu+cjjj$}&
                    253: {\small 8.0/2169}&
                    254: {\small 0.0025$\pm$0.0010}&
                    255: {\small 0.160$\pm$0.020}\tabularnewline
                    256: \hline 
                    257: {\small $Wjjjj\rightarrow$ $\tau\nu+jjjj$}&
                    258: {\small 3.3/2683}&
                    259: {\small 0.0009$\pm$0.0006}&
                    260: {\small 0.860$\pm$0.100}\tabularnewline
                    261: \hline
                    262: \end{tabular}
                    263: 
                    264: 
                    265: \caption{b-tagging and $\tau$ ID results. Shown are the total acceptances
                    266: (including preselection) and the \# of events scaled to Luminosity.}
                    267: 
                    268: \label{b and tau} 
                    269: \end{table}
                    270: 
                    271: 
                    272: For the purposes of this analysis we define 3 subsamples out of the
                    273: original preselected data sample:
                    274: 
                    275: \begin{itemize}
                    276: \item The {}``signal'' sample - require at least 1 $\tau$ with $NN>0.95$
                    277: and at least one SVT tag (as in Table \ref{cap:btaggingandtau}).
                    278: This is the main sample used for the measurement - 268 events. 
                    279: \item The {}``$\tau$ veto sample'' - Same selection, but instead of $NN_{\tau}>0.95$
                    280: $0<NN_{\tau}<0.5$ was required for $\tau$ candidates and no events
                    281: with {}``good'' (NN>0.8) taus were allowed. This sample is used
                    282: for the topological NN training - 21022 events. 
                    283: \item The {}``$b$ veto'' sample - at least 1 $\tau$ with $NN>0.95$,
                    284: but NO SVT tags. This sample is to be used for the QCD prediction
                    285: - 4642 events 
                    286: \end{itemize}
                    287: 
                    288: \subsection{\label{sub:QCD-modeling}QCD modeling}
                    289: 
                    290: The difference between the total number of $t\bar{t}$ and $W$ events
                    291: and data has to be attributed to QCD events, where $\tau$ candidate
                    292: is a jet, mistakenly identified as a $\tau$. In order to estimate
                    293: this background contribution the following strategy was employed.
                    294: 
                    295: 
                    296: \subsubsection{Parametrization}
                    297: 
                    298: In this section our definition of the $\tau$ fake rate is different
                    299: from the one in Figure \ref{tauID_Fake_Eff}. There, the goal was
                    300: to determine the total number of fake $\tau$ candidates per event
                    301: in the ALLJET data skim. Now our goal is to estimate the number of
                    302: events that would pass all our signal selection criteria, yet contain
                    303: no physical $\tau$ leptons but only fakes. In other words we are
                    304: modeling the QCD contribution to out final $t\bar{t}$ candidate event
                    305: selection.
                    306: 
                    307: We started with the {}``$b$ veto'' sample. It can be considered
                    308: predominantly QCD data sample. Almost all $\tau$ candidates in it
                    309: have to be fake. Figure \ref{cap:taufaketaus} shows the distribution
                    310: of these candidates by $P_{T}$ and $|\eta|$. On the other hand Fig.
                    311: \ref{cap:taufakejets} displays the jets found in the same events.
                    312: 
                    313: %
                    314: \begin{figure}
                    315: \includegraphics[scale=0.5]{plots/jet_trf}
                    316: 
                    317: 
                    318: \caption{Jets in the QCD sample}
                    319: 
                    320: \label{cap:taufakejets} 
                    321: \end{figure}
                    322: 
                    323: 
                    324: %
                    325: \begin{figure}
                    326: \includegraphics[scale=0.4]{plots/tau_trf}
                    327: 
                    328: 
                    329: \caption{$\tau$ candidates in the QCD sample}
                    330: 
                    331: \label{cap:taufaketaus} 
                    332: \end{figure}
                    333: 
                    334: 
                    335: Since the $\tau$ here are really jets, we can simply divide one histogram
                    336: by the other bin by bin to parametrize the $\tau$ fake rate. Figure
                    337: \ref{cap:taufakerate} demonstrates this parametrization.
                    338: 
                    339: %
                    340: \begin{figure}
                    341: \includegraphics[scale=0.5]{plots/tauTRF}
                    342: 
                    343: 
                    344: \caption{$\tau$ fake rate parametrization}
                    345: 
                    346: \label{cap:taufakerate} 
                    347: \end{figure}
                    348: 
                    349: 
                    350: The large isolated spikes are caused by limited statistics available
                    351: in these bins. In order to reduce this effect and minimize the statistical
                    352: uncertainty we had performed a 2D fit to this distribution. This fit
                    353: is then to be used for the QCD prediction.
                    354: 
                    355: 
                    356: \subsubsection{Fit\label{sub:Fit}}
                    357: 
                    358: The fitting had been performed separately in $\eta$ and $P_{T}$
                    359: projections, that is we had assumed that the 2D parametrization can
                    360: be simply factored in two components:
                    361: 
                    362: \[
                    363: F(\eta,P_{T})\equiv A(\eta)\cdot B(P_{T})\]
                    364: 
                    365: 
                    366: The $\eta$ distributions (as we have observed in section \ref{sub:Signal-characteristics})
                    367: are symmetric around 0, hence we can perform the fit to its absolute
                    368: value. The fitting function was the following:
                    369: 
                    370: \[
                    371: A(\eta)\equiv a_{1}+a_{2}\cdot\eta{}^{2}+a_{3}\cdot\eta{}^{3}+a_{4}\cdot\eta{}^{4}+...+a_{7}\cdot\eta{}^{7}\]
                    372: 
                    373: 
                    374: if $\eta=0$ $a_{1}=0$ was set to avoid singularity.
                    375: 
                    376: The fitting function for $P_{T}$ has been picked so that it would
                    377: describe the data well and had not been monotonous (that is we want
                    378: $\lim_{P_{T}\rightarrow\infty}B\left(P_{T}\right)\rightarrow const$)
                    379: :
                    380: 
                    381: \[
                    382: B(P_{T})\equiv b_{1}\cdot\exp\left(\frac{P_{T}}{\left(P_{T}+b_{3}\right)^{2}}\right)+b_{2}\cdot\left(\frac{P_{T}}{P_{T}+b_{3}}\right)\]
                    383: 
                    384: 
                    385: The distributions in $\eta$ and $P_{T}$ had been separately and
                    386: fitted with $A(\eta)$ and $B(P_{T})$. The result of this procedure
                    387: can be observed on Fig. \ref{cap:taufakerate_fit}. 
                    388: 
                    389: As can be observed, the fit in $\eta$ fails around the $\eta=1$.
                    390: This is the ICD region, which is expected to have different effect
                    391: on different $\tau$ types. In order to account for this effect we
                    392: had performed the fit for each type separately. The result can be
                    393: observed on the Fig. \ref{cap:taufakerate_fit_types}
                    394: 
                    395: As can be seen, the effect of the ICD region is largest in type 1
                    396: and is minor fit the type 2. At the same time the $\eta$ distribution
                    397: in signal (Fig. \ref{cap:reco tau}) is fairly uniform. 
                    398: 
                    399: Hence we had imposed the following cuts to remove these ICD fakes
                    400: :
                    401: 
                    402: \begin{itemize}
                    403: \item For type 1: $0.8<|\eta|<1.3$ region cut off
                    404: \item For type 3: $0.85<|\eta|<1.1$ region cut off
                    405: \end{itemize}
                    406: With these cuts, the fits had been much improved (Fig. \ref{cap:taufakerate_fit_types_noeta}).
                    407: The resulting 2D param
                    408: 
                    409: %
                    410: \begin{figure}
                    411: \includegraphics[scale=0.4]{plota_may18/fit_alltypes}
                    412: 
                    413: 
                    414: \caption{Fit of the $\eta$ and $P_{T}$ distributions of the $\tau$ fake
                    415: rate.}
                    416: 
                    417: \label{cap:taufakerate_fit} 
                    418: \end{figure}
                    419: 
                    420: 
                    421: %
                    422: \begin{figure}
                    423: {\tiny \subfigure[Type 1 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type1}}\subfigure[Type 2 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type2}}}{\tiny \par}
                    424: 
                    425: {\tiny \subfigure[Type 3 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type3}}}{\tiny \par}
                    426: 
                    427: 
                    428: \caption{Fit of the $\eta$ and $P_{T}$ distributions of the $\tau$ fake
                    429: rate.}
                    430: 
                    431: \label{cap:taufakerate_fit_types} 
                    432: \end{figure}
                    433: 
                    434: 
                    435: %
                    436: \begin{figure}
                    437: {\tiny \subfigure[Type 1 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type1_cut}}\subfigure[Type 2 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type2}}}{\tiny \par}
                    438: 
                    439: {\tiny \subfigure[Type 3 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type3_cut}}}{\tiny \par}
                    440: 
                    441: 
                    442: \caption{Fit of the $\eta$ and $P_{T}$ distributions of the $\tau$ fake
                    443: rate. The ICD region had been cut off for the types 1 and 3}
                    444: 
                    445: \label{cap:taufakerate_fit_types_noeta} 
                    446: \end{figure}
                    447: 
                    448: 
                    449: As can be seen from Table \ref{b and tau (types)} the type 1 $\tau$
                    450: contribute less then 1 event even before the $\eta$ cut. After the
                    451: cut its contribution is totally negligible, so it was decided to discard
                    452: these events from the $t\bar{t}$ cross section measurement. The final
                    453: 2D parametrization of the $\tau$ fake rate ($F(\eta,P_{T})$) is
                    454: shown on Fig. \ref{cap:taufakerate_fit2D}. In the Table \ref{b and tau (types) after eta}
                    455: we can observe how the $\eta$ cut effects the number of selected
                    456: events.
                    457: 
                    458: %
                    459: \begin{table}
                    460: \begin{tabular}{|c|c|}
                    461: \hline 
                    462: {\tiny data}&
                    463: {\tiny taggingMC}\tabularnewline
                    464: \hline
                    465: \hline 
                    466: {\tiny $\geq1$ $\tau$ with $|\eta|<2.4$ and $P_{T}>20\, GeV$}&
                    467: {\tiny $\geq1$ $\tau$ with $|\eta|<2.4$ and $P_{T}>20\, GeV$}\tabularnewline
                    468: \hline 
                    469: {\tiny $\geq1$ SVT}&
                    470: {\tiny $TrigWeight\cdot bTagProb$}\tabularnewline
                    471: \hline 
                    472: {\tiny $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20\, GeV$}&
                    473: {\tiny $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20\, GeV$}\tabularnewline
                    474: \hline
                    475: \end{tabular}
                    476: 
                    477: \begin{tabular}{|c|c|c|c|}
                    478: \hline 
                    479: &
                    480: Type 1&
                    481: Type 2&
                    482: Type 3\tabularnewline
                    483: \hline
                    484: \hline 
                    485: data&
                    486: 28&
                    487: 91&
                    488: 94\tabularnewline
                    489: \hline 
                    490: $t\overline{t}\rightarrow\tau+jets$&
                    491: 0.73$\pm$0.05&
                    492: 5.61$\pm$0.37&
                    493: 3.12$\pm$0.20\tabularnewline
                    494: \hline
                    495: $W\rightarrow\tau\nu+jets$&
                    496: 0.094$\pm$0.005&
                    497: 0.93$\pm$0.04&
                    498: 0.39$\pm$0.02\tabularnewline
                    499: \hline
                    500: \end{tabular}
                    501: 
                    502: 
                    503: \caption{b-tagging and $\tau$ ID results per type. Shown are the \# of events
                    504: predicted in signal and observed in the data as well as the cuts applied.}
                    505: 
                    506: \label{b and tau (types)} 
                    507: \end{table}
                    508: 
                    509: 
                    510: %
                    511: \begin{table}
                    512: \begin{tabular}{|c|c|c|}
                    513: \hline 
                    514: &
                    515: Type 2&
                    516: Type 3\tabularnewline
                    517: \hline
                    518: \hline 
                    519: data&
                    520: 91&
                    521: 71\tabularnewline
                    522: \hline 
                    523: $t\overline{t}\rightarrow\tau+jets$&
                    524: 5.61$\pm$0.37&
                    525: 2.81$\pm$0.18\tabularnewline
                    526: \hline
                    527: $W\rightarrow\tau\nu+jets$&
                    528: 0.93$\pm$0.04&
                    529: 0.32$\pm$0.01\tabularnewline
                    530: \hline
                    531: \end{tabular}
                    532: 
                    533: 
                    534: \caption{b-tagging and $\tau$ ID results per type after the $\eta$ cut.
                    535: Shown are the \# of events predicted in signal and observed in the
                    536: data as well as the cuts applied.}
                    537: 
                    538: \label{b and tau (types) after eta} 
                    539: \end{table}
                    540: 
                    541: 
                    542: %
                    543: \begin{figure}
                    544: \subfigure[Type 2 2D fit]{\includegraphics[scale=0.2]{plota_may18/type2_surf}}\subfigure[Type 3 2D Fit]{\includegraphics[scale=0.2]{plota_may18/type3_surf}}
                    545: 
                    546: 
                    547: \caption{The 2D combined fit (in $\eta$ and $P_{T}$) of the $\tau$ fake
                    548: rate}
                    549: 
                    550: \label{cap:taufakerate_fit2D} 
                    551: \end{figure}
                    552: 
                    553: 
                    554: 
                    555: \subsubsection{Closure tests}
                    556: 
                    557: In order to test the validity of fitting separately in $\eta$ and
                    558: $P_{T}$ ignoring the possible correlations had to be checked. The
                    559: Fig \ref{cap:Closure_test} demonstrates the closure test that was
                    560: used for this purpose. In the same {}``b veto sample'' we had applied
                    561: the resulting $F(\eta,P_{T})$ to each jet and compared the resulting
                    562: (predicted) $\tau$ distributions with ones obtained from the actual
                    563: $\tau$ candidates (which of cause are predominantly fakes here).
                    564: 
                    565: However, one could imagine a pair of 2D distributions that would agree
                    566: perfectly in both projections and yet still be very different. In
                    567: order to test against such a possibility we had performed the same
                    568: cross-check as before, but we required the jets to be from 0.5 to
                    569: 1 in $\eta$. For such $\eta$ {}``slice'' we had applied $F(\eta,P_{T})$
                    570: and compared the actual $P_{T}$ with the predicted. Figure \ref{cap:Closure_test_2}
                    571: demonstrates that the agreement is still fairly good.
                    572: 
                    573: %
                    574: \begin{figure}
                    575: \includegraphics[scale=0.2]{plota_may18/closure_eta_2}\includegraphics[scale=0.2]{plota_may18/closure_pt_2}
                    576: 
                    577: \includegraphics[scale=0.2]{plota_may18/closure_eta_3}\includegraphics[scale=0.2]{plota_may18/closure_pt_3}
                    578: 
                    579: 
                    580: \caption{The closure test of the $\tau$ fake rate function. The red histograms
                    581: are for the actual $\tau$ candidates in the {}``veto'' sample.
                    582: The green ones are the prediction. The $\eta$ distribution show some
                    583: discrepancy related to error of the fit.}
                    584: 
                    585: \label{cap:Closure_test} 
                    586: \end{figure}
                    587: 
                    588: 
                    589: %
                    590: \begin{figure}
                    591: \subfigure[Type 2]{\includegraphics[scale=0.45]{plots/pt_closure_type2}}\subfigure[Type 3]{\includegraphics[scale=0.45]{plots/pt_closure_type3}}
                    592: 
                    593: 
                    594: \caption{The closure test of the $\tau$ fake rate function. The red histograms
                    595: are for the actual $\tau$ candidates in the {}``veto'' sample.
                    596: The green ones are the prediction. The jets had been selected with
                    597: $0.5<\eta<1$. An asymmetric range had been chosen to avoid possible
                    598: bias.}
                    599: 
                    600: \label{cap:Closure_test_2} 
                    601: \end{figure}
                    602: 
                    603: 
                    604: 
                    605: \subsubsection{Computing the QCD fraction}
                    606: 
                    607: We assume that probability for a jet to fake a $\tau$ is simply $F(\eta,P_{T})$.
                    608: Then, the probability that at least one of the jets in the event will
                    609: fake $\tau$ can be computed as following:
                    610: 
                    611: \begin{center}$P_{event}=1-\prod_{j}(1-F(P_{T}^{j},\eta^{j}))$\par\end{center}
                    612: 
                    613: Summing up such probabilities over the tagged data we obtain the QCD
                    614: background estimation.
                    615: 
                    616: Using the results described in previous section we get $N_{QCD}=71.13\pm1.56$
                    617: for the $\tau$ type 2 and $N_{QCD}=77.46\pm0.80$ for the $\tau$
                    618: type 3, which agrees with the observed data (in Table \ref{b and tau (types) after eta})
                    619: fairly well. One can also observe (see Appendix) that the predicted
                    620: distributions of the main topological variables (section \ref{sub:NN-variables})
                    621: are in fairly good agreement with what is observed in the data.
                    622: 
                    623: 
                    624: \subsection{\label{sub:NN-variables}Topological NN}
                    625: 
                    626: For signal training sample 7481 preselected $t\overline{t}$ MC events
                    627: were used (NOT the same as the 6141 selection sample events). For
                    628: the background, the $\tau$ veto sample was used.
                    629: 
                    630: Similarly to the alljet analysis \cite{alljet} we define 2 networks:
                    631: 
                    632: \begin{enumerate}
                    633: \item Contains 3 topological (aplanarity, sphericity and centrality and
                    634: 2 energy-based ( $H_{T}$ and $\sqrt{S}$ ). 
                    635: \item Contains the output of the first, W and top mass likelihood, b-jet's
                    636: $P_{T}$ and b-jet's decay lengths. 
                    637: \end{enumerate}
                    638: These are the kinematic and topological variables used:
                    639: 
                    640: \begin{itemize}
                    641: \item $H_{T}$- the scalar sum of all jet $P_{T}$s (and $\tau$). 
                    642: \item Sphericity and Aplanarity - these variables are formed from the eigenvalues
                    643: of the normalized Momentum Tensor of the jets in the event. These
                    644: are expected to be higher in the top pair events than in a typical
                    645: QCD event. 
                    646: \item Centrality, defined as $\frac{H_{T}}{H_{E}}$ , where $H_{E}$is sum
                    647: of energies of the jets. 
                    648: \item Top and W mass likelihood - $\chi^{2}$-like variable. $L\equiv\left(\frac{M_{3j}-M_{t}}{\sigma_{t}}\right)^{2}+\left(\frac{M_{2j}-M_{w}}{\sigma_{w}}\right)^{2}$,
                    649: where $M_{t},M_{W},\sigma_{t},\sigma_{W}$ are top and W masses (175
                    650: GeV and 80 GeV respectively) and resolution values (45 GeV and 10
                    651: GeV respectively \cite{alljet}). $M_{3j}$ and $M_{2j}$ are composed
                    652: of the jet combinations, so to minimize L. 
                    653: \item $P_{T}$ and lifetime significance of the leading b-tagged jet. 
                    654: \end{itemize}
                    655: Many of these variables (for instance mass likelihood and aplanarity)
                    656: are only defined for events with 2 or more jets. So, we require now
                    657: 2 jets with $P_{T}$>20 GeV and $|\eta|$<2.5.
                    658: 
                    659: Appendix has the plots of all these variables, which serves also as
                    660: an additional check of an agreement between the data and prediction.
                    661: Two of these plots can be observed on Fig. \ref{cap:The-nn0-input-small}.
                    662: As can be seen the NN input variables show fairly good agreement between
                    663: between data and MC, which gives us confidence that the NN will provide
                    664: sensible output, using these variables.
                    665: 
                    666: %
                    667: \begin{figure}
                    668: \includegraphics[scale=0.3]{analysis/CONTROLPLOTS/aplan_0_type2}\includegraphics[scale=0.3]{analysis/CONTROLPLOTS/ht_0_type2}
                    669: 
                    670: 
                    671: \caption{2 of the 5 input variables of the first topological NN before the
                    672: NN cut ($\tau$ type 2). The Kolmogorov-Smirnov (KS) probabilities
                    673: are shown, indicating how good the agreement is.}
                    674: 
                    675: \label{cap:The-nn0-input-small} 
                    676: \end{figure}
                    677: 
                    678: 
                    679: 
                    680: \subsection{NN optimization}
                    681: 
                    682: For training the NN we used the Multi Layer Perceptron (MLP) \cite{MLPfit},
                    683: as implemented in ROOT framework. The input events had been split
                    684: into 7466 train and 14932 test entries. At each of the 500 training
                    685: {}``epochs'' it evaluates the fractional error for both signal and
                    686: background, showing how successful it has been in discriminating the
                    687: test events (Figure \ref{cap:NN-error})
                    688: 
                    689: %
                    690: \begin{figure}
                    691: \subfigure[The first NN]{\includegraphics[scale=0.4]{analysis/GOODNN_NOTAU/nn0training300}}\subfigure[The second NN]{\includegraphics[scale=0.4]{analysis/GOODNN_NOTAU/nn1training300}}
                    692: 
                    693: 
                    694: \caption{NN error. Red is test sample, blue is training sample}
                    695: 
                    696: \label{cap:NN-error} 
                    697: \end{figure}
                    698: 
                    699: 
                    700: The resulting NNs are shown on Fig. \ref{cap:NN0} and \ref{cap:NN1}.
                    701: There one can observe the structure of the trained NN (blue interconnected
                    702: nodes) and the performance evaluation based on the training samples.
                    703: In Appendix (Fig \ref{cap:The-resulting-output_type2} and \ref{cap:The-resulting-output_type3})
                    704: we can observe this final NN output in the main analysis data sample
                    705: (as well as in the signal and in the backgrounds).
                    706: 
                    707: %
                    708: \begin{figure}
                    709: \subfigure[The first NN]{\includegraphics[scale=0.6]{analysis/GOODNN_NOTAU/nn0analysis300}}
                    710: 
                    711: 
                    712: \caption{NN0 structure. The upper left plots show the relative impact of the
                    713: variables on the NN output. The bottom left is distribution of NNout,
                    714: the bottom right - efficiencies. Red is signal, blue is background.}
                    715: 
                    716: \label{cap:NN0} 
                    717: \end{figure}
                    718: 
                    719: 
                    720: %
                    721: \begin{figure}
                    722: \includegraphics[scale=0.6]{analysis/GOODNN_NOTAU/nn1analysis300}
                    723: 
                    724: 
                    725: \caption{NN1 structure. The upper left plots show the relative impact of the
                    726: variables on the NN output. The bottom left is distribution of NNout,
                    727: the bottom right - efficiencies. Red is signal, blue is background.}
                    728: 
                    729: \label{cap:NN1} 
                    730: \end{figure}
                    731: 
                    732: 
                    733: The result of applying this NN to data is shown on Figure \ref{cap:Result-of-applying}
                    734: . At this point we had to determine what cuts on the topological NN
                    735: output maximize the signal significance. The signal significance is
                    736: defined as $\frac{Number\, of\, signal\, events}{\sqrt{Number\, of\, Signal+Background\, events}}$
                    737: and is shown on Figure \ref{signal-signifficance} . The maximum it
                    738: reaches at $NN1>0.9$ for both type 2 and 3. Therefor this is the
                    739: cut we've used for the cross section measurement. The results of this
                    740: measurement are summarized in Table \ref{cap:RESULTS}
                    741: 
                    742: %
                    743: \begin{figure}
                    744: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NNresult_tau2}}\subfigure[Type 2 (zoomed)]{\includegraphics[scale=0.3]{plots/NNresult_zoomed_tau2}}
                    745: 
                    746: \subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NNresult_tau3}}\subfigure[Type 3 (zoomed)]{\includegraphics[scale=0.3]{plots/NNresult_zoomed_tau3}}
                    747: 
                    748: 
                    749: \caption{Result of applying NN cut. $t\bar{t}$, $W$ and QCD are plotted
                    750: incrementally in order to compare with \# of events observed in data.
                    751: Error bars include only statistical errors. $\sigma(t\bar{t})=5.54$
                    752: pb is assumed. The right plot only shows the entries with high NN.
                    753: The errors are statistical only.}
                    754: 
                    755: \label{cap:Result-of-applying} 
                    756: \end{figure}
                    757: 
                    758: 
                    759: %
                    760: \begin{figure}
                    761: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NNresult_signiff_tau2}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NNresult_signiff_tau3}}
                    762: 
                    763: 
                    764: \caption{$t\bar{t}\rightarrow\tau+jets$ signal significance}
                    765: 
                    766: \label{signal-signifficance} 
                    767: \end{figure}
                    768: 
                    769: 
                    770: %
                    771: \begin{table}
                    772: \begin{centering}\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
                    773: \hline 
                    774: Channel &
                    775: $N^{obs}$ &
                    776: ${\mathcal{B}}$ &
                    777: $\int{\mathcal{L}}dt$ &
                    778: \multicolumn{2}{c|}{Bakgrounds}&
                    779: $\varepsilon(t\bar{t})$ (\%) &
                    780: $s$ (7 pb) &
                    781: s+b \tabularnewline
                    782: \hline 
                    783: $\tau$+jets type 2 &
                    784: 5 &
                    785: 0.1 &
                    786: 349.3 &
                    787: $W\rightarrow\tau\nu$ &
                    788: 0.60$\pm$0.03&
                    789: 1.57$\pm$0.01 &
                    790: 3.83$_{-0.51}^{+0.46}$ &
                    791: 6.84$_{-0.51}^{+0.46}$ \tabularnewline
                    792: &
                    793: &
                    794: &
                    795: &
                    796: fakes &
                    797: 2.41$\pm$0.09 &
                    798: &
                    799: &
                    800: \tabularnewline
                    801: \hline 
                    802: $\tau$+jets type 3 &
                    803: 5 &
                    804: 0.1 &
                    805: 349.3 &
                    806: $W\rightarrow\tau\nu$ &
                    807: 0.27$\pm$0.01&
                    808: 0.73$\pm$0.01 &
                    809: 1.80$_{-0.23}^{+0.22}$ &
                    810: 4.39$_{-0.23}^{+0.22}$ \tabularnewline
                    811: &
                    812: &
                    813: &
                    814: &
                    815: fakes &
                    816: 2.33$\pm$0.09 &
                    817: &
                    818: &
                    819: \tabularnewline
                    820: \hline
                    821: \end{tabular}\par\end{centering}
                    822: 
                    823: 
                    824: \caption{The final result summary after the NN>0.9 cut, $\epsilon(t\bar{t})$
                    825: is the total signal acceptance.}
                    826: 
                    827: \label{cap:RESULTS} 
                    828: \end{table}
                    829: 
                    830: 
                    831: 
                    832: \section{Systematic uncertainties}
                    833: 
                    834: . The most important systematic effects (except of the b-tagging,
                    835: which is treated later) are summarized in Table \ref{cap:Syst}.
                    836: 
                    837: %
                    838: \begin{table}
                    839: {\footnotesize }\begin{tabular}{|c||c|c|}
                    840: \hline 
                    841: Channel&
                    842: {\footnotesize $\tau$+jets type 2 }&
                    843: {\footnotesize $\tau$+jets type 3 }\tabularnewline
                    844: \hline
                    845: \hline 
                    846: {\footnotesize Jet Energy Scale }&
                    847: {\footnotesize $_{-0.27}^{+0.30}$ }&
                    848: {\footnotesize $_{-0.69}^{+0.53}$ }\tabularnewline
                    849: \hline 
                    850: {\footnotesize Primary Vertex }&
                    851: {\footnotesize $_{+0.037}^{-0.036}$ }&
                    852: {\footnotesize $_{+0.095}^{-0.093}$ }\tabularnewline
                    853: \hline 
                    854: {\footnotesize MC stat }&
                    855: {\tiny $_{+0.25}^{-0.22}$ }&
                    856: {\tiny $_{+0.65}^{-0.58}$ }\tabularnewline
                    857: \hline 
                    858: {\footnotesize Trigger }&
                    859: {\footnotesize $_{-0.020}^{+0.0025}$ }&
                    860: {\footnotesize $_{-0.069}^{+0.0056}$ }\tabularnewline
                    861: \hline 
                    862: {\footnotesize Branching ratio }&
                    863: {\footnotesize $_{+0.074}^{-0.071}$ }&
                    864: {\footnotesize $_{+0.19}^{-0.18}$ }\tabularnewline
                    865: \hline 
                    866: {\footnotesize QCD fake rate parametrization }&
                    867: {\footnotesize $_{+0.17}^{-0.17}$ }&
                    868: {\footnotesize $_{+0.34}^{-0.34}$ }\tabularnewline
                    869: \hline 
                    870: $W\rightarrow\tau\nu$&
                    871: {\footnotesize $_{+0.19}^{-0.19}$ }&
                    872: {\footnotesize $_{+0.19}^{-0.19}$ }\tabularnewline
                    873: \hline
                    874: \end{tabular}{\footnotesize \par}
                    875: 
                    876: 
                    877: \caption{Systematic uncertainties on $\sigma(t\bar{t})$ (in pb).}
                    878: 
                    879: \label{cap:Syst} 
                    880: \end{table}
                    881: 
                    882: 
                    883: 
                    884: \subsection{JES}
                    885: 
                    886: The energy scale corrections applied to data and MC have uncertainties
                    887: associated with them. These uncertainties result in systematic shift
                    888: in the measured cross section. To compute these systematics the JES
                    889: corrections in MC were shifted up (or down) by $\delta JES^{data}=\sqrt{(\delta_{syst}^{data})^{2}+(\delta_{stat}^{data})^{2}+(\delta_{syst}^{MC})^{2}+(\delta_{stat}^{MC})^{2}}$.
                    890: 
                    891: 
                    892: \subsection{Primary Vertex and Branching Ratio}
                    893: 
                    894: The PV and $t\bar{t}$ and W branching fractions had been assigned
                    895: uncertainties of 1\% and 2\% correspondingly, same as in \cite{alljet} 
                    896: 
                    897: 
                    898: \subsection{Luminosity}
                    899: 
                    900: The total integrated luminosity of the data used in this analysis
                    901: is $349\pm23$. This error yields to the uncertainty quoted in Table
                    902: \ref{cap:Syst}.
                    903: 
                    904: 
                    905: \subsection{Trigger}
                    906: 
                    907: The trigger parametrization systematics is computed by top\_trigger
                    908: \cite{top_trigger}.
                    909: 
                    910: 
                    911: \subsection{B-tagging}
                    912: 
                    913: B-tagging uncertainty effects are taken into account by varying the
                    914: systematic and statistical errors on the MC tagging weights.
                    915: 
                    916: These errors arise form several independent sources:
                    917: 
                    918: \begin{itemize}
                    919: \item B-jet tagging parametrization. 
                    920: \item C-jet tagging parametrization. 
                    921: \item Light jet tagging parametrization (negative tag rate). Derived by
                    922: varying by $\pm1\sigma$ the parametrization and adding in quadrature
                    923: 8\% relative uncertainty from the variation of the negative tag rate
                    924: measured in different samples. 
                    925: \item Systematic uncertainties on the scale factors $SF_{hf}$ and $SF_{ll}$
                    926: are derived from the statistical error due to finite MC statistics. 
                    927: \item Semi-leptonic b-tagging efficiency parametrization in MC and in data
                    928: (System 8). 
                    929: \item Taggability. This includes the statistical error due to finite statistic
                    930: in the samples from which it had been derived and systematic, reflecting
                    931: the (neglected) taggability dependence on the jet multiplicity. 
                    932: \end{itemize}
                    933: The resulting effect of all of these error sources on the final number
                    934: is summarized in Table \ref{cap:b-tagging-systematics-sources}
                    935: along with the total b-ID systematic error (quoted in Table \ref{cap:Syst}).
                    936: 
                    937: %
                    938: \begin{table}
                    939: \begin{tabular}{|c|c|c|}
                    940: \hline 
                    941: Channel&
                    942: {\footnotesize $\tau$+jets type 2 }&
                    943: {\footnotesize $\tau$+jets type 3 }\tabularnewline
                    944: \hline
                    945: \hline 
                    946: b-tagging&
                    947: {\tiny $_{-0.13}^{+0.076}$ }&
                    948: {\tiny $_{-0.26}^{+0.41}$ }\tabularnewline
                    949: \hline 
                    950: c-tagging&
                    951: {\tiny $_{-0.20}^{+0.16}$ }&
                    952: {\tiny $_{-0.48}^{+0.60}$ }\tabularnewline
                    953: \hline 
                    954: l-tagging&
                    955: {\tiny $_{-0.0051}^{+0.0051}$ }&
                    956: {\tiny $_{-0.014}^{+0.014}$ }\tabularnewline
                    957: \hline 
                    958: $SF_{hf}$&
                    959: {\tiny $_{-0.00036}^{+0.00036}$ }&
                    960: {\tiny $_{-0.00094}^{+0.00094}$ }\tabularnewline
                    961: \hline 
                    962: $SF_{ll}$&
                    963: {\tiny $_{-0.00036}^{+0.00036}$ }&
                    964: {\tiny $_{-0.00094}^{+0.00094}$ }\tabularnewline
                    965: \hline 
                    966: $\mu$ b-tagging (data)&
                    967: {\tiny $_{-0.091}^{+0.094}$ }&
                    968: {\tiny $_{-0.24}^{+0.25}$ }\tabularnewline
                    969: \hline 
                    970: $\mu$ b-tagging (MC)&
                    971: {\tiny $_{+0.11}^{-0.10}$ }&
                    972: {\tiny $_{+0.28}^{-0.25}$ }\tabularnewline
                    973: \hline 
                    974: taggability&
                    975: {\tiny $_{-0.048}^{+0.049}$ }&
                    976: {\tiny $_{-0.13}^{+0.13}$ }\tabularnewline
                    977: \hline
                    978: \end{tabular}
                    979: 
                    980: 
                    981: \caption{b-tagging systematics sources}
                    982: 
                    983: \label{cap:b-tagging-systematics-sources} 
                    984: \end{table}
                    985: 
                    986: 
                    987: 
                    988: \subsection{Fake rate}
                    989: 
                    990: The systematic uncertainty, associated with the $\tau$ fake rate
                    991: is just the statistical error of the fit, described in section \ref{sub:Fit}.
                    992: 
                    993: 
                    994: \subsection{W background prediction}
                    995: 
                    996: The method used to describe the $W\rightarrow\tau\nu$ background
                    997: is not perfect. There are two potential sources of error
                    998: 
                    999: \begin{itemize}
                   1000: \item Only W+4 partons MC had been used. It is however expected that W+2
                   1001: and W+3 would some (albeit smaller) contribution. In order to properly
                   1002: take this into account one would need to combine all jet multiplicity
                   1003: samples. This leads to slight underestimation of the result. 
                   1004: \item The {}``$b$ veto'' sample may contain some W contribution, from
                   1005: wjjjj events. This leads to double-counting of these vents and hence
                   1006: overestimation of the result. 
                   1007: \end{itemize}
                   1008: A conservative estimate of 50\% uncertainty on the number of W events
                   1009: in the final sample had been applied. That is, by varying this number
                   1010: up and down by 50\% we observed the effect on the cross section (as
                   1011: quoted in Table \ref{cap:Syst}).
                   1012: 
                   1013: 
                   1014: \section{Cross section}
                   1015: 
                   1016: The cross section is defined as $\sigma=\frac{Number\, of\, signal\, events}{\varepsilon(t\bar{t})\cdot BR(t\bar{t})\cdot Luminosity}$.
                   1017: The results was the following:
                   1018: 
                   1019: \begin{center}$\tau$+jets type 2 cross section: \[
                   1020: 3.63\;\;_{-3.50}^{+4.72}\;\;(stat)\;\;_{-0.48}^{+0.49}\;\;(syst)\;\;\pm0.24\;\;(lumi)\;\; pb\]
                   1021:  \par\end{center}
                   1022: 
                   1023: \begin{center}$\tau$+jets type 3 cross section: \[
                   1024: 9.39\;\;_{-7.49}^{+10.10}\;\;(stat)\;\;_{-1.18}^{+1.25}\;\;(syst)\;\;\pm0.61\;\;(lumi)\;\; pb\]
                   1025: \par\end{center}
                   1026: 
                   1027: The combined cross section was estimated by minimizing the sum of
                   1028: the negative log-likelihood functions for each channel. Functional
                   1029: form of the likelihood function was the same that had been used for
                   1030: the $e\mu$ channel (\cite{emu}). Combined cross section yields
                   1031: 
                   1032: \begin{center}\[
                   1033: 5.05\;\;_{-3.46}^{+4.31}\;\;(stat)\;\;_{-0.67}^{+0.68}\;\;(syst)\;\;\pm0.33\;\;(lumi)\;\; pb\]
                   1034: \par\end{center}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>