Annotation of ttbar/p20_taujets_note/Analysis.tex, revision 1.1

1.1     ! uid12904    1: 
        !             2: \section{Analysis}
        !             3: 
        !             4: 
        !             5: \subsection{Outline}
        !             6: 
        !             7: The analysis procedure involved several stages:
        !             8: 
        !             9: \begin{itemize}
        !            10: \item Preselection (section \ref{sub:Preselection}). At least 4 jets and
        !            11: $\not\!\! E_{T}$ significance > 3. 653727 events selected in the
        !            12: data, 109.93 $\pm$7.26 $t\bar{t}$ among them are expected. S:B =
        !            13: 1:6000. 
        !            14: \item ID cuts (section \ref{sub:Results-of-the}) . At least one good $\tau$
        !            15: candidate and at at least one tight SVT tag is requited. We also required
        !            16: $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20$ GeV. 216 events selected
        !            17: in the data, 9.320$\pm$0.620 $t\bar{t}$ among them are expected.
        !            18: S:B = 1:58. 
        !            19: \item Topological NN (section \ref{sub:NN-variables}). A sequence of two
        !            20: feed-forward NN had been trained and applied. The optimal cut on the
        !            21: second NN has been found to be 0.6. With this final cut we had obtained
        !            22: 13 events in data with 4.93$\pm$0.33 $t\bar{t}$ among them are expected.
        !            23: S:B = 1:2.5. 
        !            24: \end{itemize}
        !            25: The W background had been modeled using ALPGEN Monte Carlo simulation,
        !            26: while QCD had been extracted from the data using procedure, described
        !            27: in section \ref{sub:QCD-modeling}.
        !            28: 
        !            29: 
        !            30: \subsection{\label{sub:Preselection}Preselection}
        !            31: 
        !            32: The total number of events in this 351 $pb^{-1}$data skim is 17 millions.
        !            33: This is a very large and rather unwieldy dataset. Hence, the main
        !            34: goal of preselection was to reduce this dataset while imposing the
        !            35: most obvious and straightforward requirements, characterizing my signal
        !            36: signature. Such characteristic features include the following:
        !            37: 
        !            38: \begin{itemize}
        !            39: \item Moderate $\not\!\! E_{T}$ arising from both the W vertex and $\tau$
        !            40: decay. 
        !            41: \item At least 4 jets have to be present. 
        !            42: \item $\tau$lepton and 2 b-jets are present. 
        !            43: \end{itemize}
        !            44: Since both $\tau$ ID and b-tagging involve complex algorithms which
        !            45: are likely to be signal-sensitive and may require extensive \char`\"{}tuning\char`\"{},
        !            46: we've chosen not to use them at the preselection stage.
        !            47: 
        !            48: Similarly, we had chosen not to impose any jet $P_{T}$ cuts, since
        !            49: such cuts strongly depend on the JES corrections and associated errors
        !            50: and hence are better to be applied at a later stage.
        !            51: 
        !            52: The first 3 preselection criteria were chosen similar to the $t\overline{t}\rightarrow jets$
        !            53: analysis \cite{alljet}:
        !            54: 
        !            55: \begin{itemize}
        !            56: \item Primary Vertex is reconstructed and is within the central tracker
        !            57: volume (60 cm in Z from the detector center) and has at least 3 tracks
        !            58: associated with it. 
        !            59: \item Veto on isolated electrons and muons to avoid overlap with the $t\overline{t}\rightarrow lepton+jets$
        !            60: cross section analysis. 
        !            61: \item $N_{jets}\geq4$ with $P_{T}>8\, GeV$. 
        !            62: \end{itemize}
        !            63: At this point, $t\overline{t}\rightarrow e+jets$ and $t\overline{t}\rightarrow\mu+jets$
        !            64: analysis \cite{l+jets} are applying cuts on $\Delta\phi$ between
        !            65: the lepton and $\not\!\! E_{T}$ as well as so-called \char`\"{}triangular\char`\"{}
        !            66: cuts in $\Delta\phi$ - $\not\!\! E_{T}$ plane. The goal is to eliminate
        !            67: the events with fake $\not\!\! E_{T}$ . The neutrino and lepton coming
        !            68: from the W are expected to fly opposite direction most of the time.
        !            69: However, as can be observed on Figure \ref{cap:dphi}, no such simple
        !            70: cuts are obvious in case of $\tau$ . That is to be expected since
        !            71: $\tau$ itself emits a neutrino in its decay, contributing to $\not\!\! E_{T}$
        !            72: . So, instead a new variable is proposed to cut off the fake $\not\!\! E_{T}$
        !            73: events and reduce the sample size.
        !            74: 
        !            75: %
        !            76: \begin{figure}
        !            77: \includegraphics[scale=0.4]{analysis/plots/dphitaumet}
        !            78: 
        !            79: 
        !            80: \caption{$\Delta\phi$ between $\tau$ and $\not\!\! E_{T}$ for QCD (black)
        !            81: and $t\bar{t}\rightarrow\tau+jets$ (red).}
        !            82: 
        !            83: \label{cap:dphi} 
        !            84: \end{figure}
        !            85: 
        !            86: 
        !            87: %
        !            88: \begin{figure}
        !            89: \includegraphics[scale=0.4]{analysis/plots/metl}
        !            90: 
        !            91: 
        !            92: \caption{$\not\!\! E_{T}$ significance for QCD and $t\bar{t}\rightarrow\tau+jets$.}
        !            93: 
        !            94: \label{cap:metl} 
        !            95: \end{figure}
        !            96: 
        !            97: 
        !            98: $\not\!\! E_{T}$ significance \cite{metl} is defined as measure
        !            99: of likelihood of $\not\!\! E_{T}$ arising from physical sources,
        !           100: rather than fluctuations in detector measurements. As can be observed
        !           101: on Fig. \ref{cap:metl} it proves to be an effective way to reduce
        !           102: the data skim. Cut of 3 was used for preselection.
        !           103: 
        !           104: Now we need to scale the original 10K events of the MC sample to 349
        !           105: $pb^{-1}$. The total $t\bar{t}$ cross section is 6.8 pb \cite{NNLO}.
        !           106: Taking into account the branching fraction to hadronic $\tau+jets$
        !           107: mode, the effective cross section comes out to be:
        !           108: 
        !           109: $B(\tau\rightarrow hadrons)\cdot B(t\bar{t}\rightarrow\tau+jets)\cdot\sigma(t\bar{t})=0.65\cdot0.15\cdot6.8=0.66$
        !           110: pb
        !           111: 
        !           112: Throughout this work we had however used the value of $\sigma(t\bar{t})$
        !           113: of 5.5 pb, the value, computed by the ALPGEN simulation, taking into
        !           114: account the generation cuts. The effective cross section used for
        !           115: scaling is then 0.53 pb. Since this value is only used for reference
        !           116: and optimization of S:B it's of no importance which number is used.
        !           117: 
        !           118: The relative flavor fractions of the $W+4jets$ process were taken
        !           119: from ALPGEN simulation as ratios of the simulated cross section. It
        !           120: was then normalized to the measured total value of 4.5 $\pm$ 2.2
        !           121: pb \cite{W+4j}
        !           122: 
        !           123: Table \ref{presel} shows the results of the preselection for both
        !           124: data and the backgrounds.
        !           125: 
        !           126: %
        !           127: \begin{table}
        !           128: \begin{tabular}{|c|c|c|c|}
        !           129: \hline 
        !           130: &
        !           131: \# passed&
        !           132: ALPGEN $\sigma$, pb&
        !           133: \# passed scaled\tabularnewline
        !           134: \hline
        !           135: \hline 
        !           136: data&
        !           137: 653727/17M&
        !           138: &
        !           139: 653727\tabularnewline
        !           140: \hline 
        !           141: $t\overline{t}\rightarrow\tau+jets$&
        !           142: 6141/10878&
        !           143: 0.821 $\pm$ 0.004&
        !           144: 109.93 $\pm$7.26\tabularnewline
        !           145: \hline 
        !           146: $Wbbjj\rightarrow$ $\tau\nu+bbjj$&
        !           147: 2321/11576&
        !           148: 0.222 $\pm$ 0.044&
        !           149: 9.98 $\pm$ 2.08\tabularnewline
        !           150: \hline 
        !           151: $Wccjj\rightarrow$ $\tau\nu+ccjj$&
        !           152: 2289/10995&
        !           153: 0.527 $\pm$ 0.059&
        !           154: 24.77 $\pm$ 3.22\tabularnewline
        !           155: \hline 
        !           156: $Wcjjj\rightarrow$ $\tau\nu+cjjj$&
        !           157: 2169/10435&
        !           158: 0.920 $\pm$0.087 &
        !           159: 42.23 $\pm$ 4.87\tabularnewline
        !           160: \hline 
        !           161: $Wjjjj\rightarrow$ $\tau\nu+jjjj$&
        !           162: 2683/11920&
        !           163: 14.14 $\pm$ 1.3&
        !           164: 720.33 $\pm$ 81.48 \tabularnewline
        !           165: \hline
        !           166: \end{tabular}
        !           167: 
        !           168: 
        !           169: \caption{Preselection results. Shown are the total acceptances (including
        !           170: preselection) and the \# of events scaled to 349 $\pm$23 $pb^{-1}$
        !           171: (no systematic uncertainties except for this luminosity error are
        !           172: included). The Alpgen samples generation cuts are described in \cite{l+jets}.}
        !           173: 
        !           174: \label{presel} 
        !           175: \end{table}
        !           176: 
        !           177: 
        !           178: 
        !           179: \subsection{\label{sub:Results-of-the}Results of the ID cuts}
        !           180: 
        !           181: The next step was to apply the requirement of $\tau$ and b tagging.
        !           182: Table \ref{cap:btaggingandtau} shows the selection criteria that
        !           183: we apply to data and MC and the resulting selection efficiencies.
        !           184: The results of this procedure can be observed in Table \ref{b and tau}.
        !           185: It can be noted that S:B at this stage is 1:58, which is way too low.
        !           186: In section \ref{sub:NN-variables} we will describe the topological
        !           187: NN used to enhance the signal content.
        !           188: 
        !           189: %
        !           190: \begin{table}
        !           191: \begin{tabular}{|c|c|c|}
        !           192: \hline 
        !           193: &
        !           194: {\scriptsize data}&
        !           195: {\scriptsize taggingMC}\tabularnewline
        !           196: \hline
        !           197: \hline 
        !           198: &
        !           199: {\scriptsize $\geq1$ $\tau$ with $|\eta|<2.4$ and $P_{T}>20\, GeV$}&
        !           200: {\scriptsize $\geq1$ $\tau$ with $|\eta|<2.4$ and $P_{T}>20\, GeV$}\tabularnewline
        !           201: \hline 
        !           202: &
        !           203: {\scriptsize $\geq1$ SVT}&
        !           204: {\scriptsize $TrigWeight\cdot bTagProb$}\tabularnewline
        !           205: \hline 
        !           206: &
        !           207: {\scriptsize $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20\, GeV$}&
        !           208: {\scriptsize $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20\, GeV$}\tabularnewline
        !           209: \hline
        !           210: \end{tabular}
        !           211: 
        !           212: 
        !           213: \caption{b-tagging and $\tau$ ID. In the MC we use the b-tagging certified
        !           214: parametrization rather then actual b-tagging, that is we applied the
        !           215: b-tagging weight ($bTagProb$). We also used the triggering weight
        !           216: as computed by top\_trigger.}
        !           217: 
        !           218: \label{cap:btaggingandtau} 
        !           219: \end{table}
        !           220: 
        !           221: 
        !           222: %
        !           223: \begin{table}
        !           224: \begin{tabular}{|c|c|c|c|}
        !           225: \hline 
        !           226: &
        !           227: {\small \# passed}&
        !           228: {\small Acceptance}&
        !           229: {\small \# passed scaled}\tabularnewline
        !           230: \hline
        !           231: \hline 
        !           232: {\small data}&
        !           233: {\small 216/653727}&
        !           234: &
        !           235: {\small 216}\tabularnewline
        !           236: \hline 
        !           237: {\small $t\overline{t}\rightarrow\tau+jets$}&
        !           238: {\small 524.0/6141}&
        !           239: {\small 0.0480$\pm$0.0020}&
        !           240: {\small 9.320$\pm$0.620}\tabularnewline
        !           241: \hline 
        !           242: {\small $Wbbjj\rightarrow$ $\tau\nu+bbjj$}&
        !           243: {\small 54.5/2321}&
        !           244: {\small 0.0150$\pm$0.0024}&
        !           245: {\small 0.012$\pm$0.002}\tabularnewline
        !           246: \hline 
        !           247: {\small $Wccjj\rightarrow$ $\tau\nu+ccjj$}&
        !           248: {\small 13.3/2289}&
        !           249: {\small 0.0039$\pm$0.0012}&
        !           250: {\small 0.034$\pm$0.005}\tabularnewline
        !           251: \hline 
        !           252: {\small $Wcjjj\rightarrow$ $\tau\nu+cjjj$}&
        !           253: {\small 8.0/2169}&
        !           254: {\small 0.0025$\pm$0.0010}&
        !           255: {\small 0.160$\pm$0.020}\tabularnewline
        !           256: \hline 
        !           257: {\small $Wjjjj\rightarrow$ $\tau\nu+jjjj$}&
        !           258: {\small 3.3/2683}&
        !           259: {\small 0.0009$\pm$0.0006}&
        !           260: {\small 0.860$\pm$0.100}\tabularnewline
        !           261: \hline
        !           262: \end{tabular}
        !           263: 
        !           264: 
        !           265: \caption{b-tagging and $\tau$ ID results. Shown are the total acceptances
        !           266: (including preselection) and the \# of events scaled to Luminosity.}
        !           267: 
        !           268: \label{b and tau} 
        !           269: \end{table}
        !           270: 
        !           271: 
        !           272: For the purposes of this analysis we define 3 subsamples out of the
        !           273: original preselected data sample:
        !           274: 
        !           275: \begin{itemize}
        !           276: \item The {}``signal'' sample - require at least 1 $\tau$ with $NN>0.95$
        !           277: and at least one SVT tag (as in Table \ref{cap:btaggingandtau}).
        !           278: This is the main sample used for the measurement - 268 events. 
        !           279: \item The {}``$\tau$ veto sample'' - Same selection, but instead of $NN_{\tau}>0.95$
        !           280: $0<NN_{\tau}<0.5$ was required for $\tau$ candidates and no events
        !           281: with {}``good'' (NN>0.8) taus were allowed. This sample is used
        !           282: for the topological NN training - 21022 events. 
        !           283: \item The {}``$b$ veto'' sample - at least 1 $\tau$ with $NN>0.95$,
        !           284: but NO SVT tags. This sample is to be used for the QCD prediction
        !           285: - 4642 events 
        !           286: \end{itemize}
        !           287: 
        !           288: \subsection{\label{sub:QCD-modeling}QCD modeling}
        !           289: 
        !           290: The difference between the total number of $t\bar{t}$ and $W$ events
        !           291: and data has to be attributed to QCD events, where $\tau$ candidate
        !           292: is a jet, mistakenly identified as a $\tau$. In order to estimate
        !           293: this background contribution the following strategy was employed.
        !           294: 
        !           295: 
        !           296: \subsubsection{Parametrization}
        !           297: 
        !           298: In this section our definition of the $\tau$ fake rate is different
        !           299: from the one in Figure \ref{tauID_Fake_Eff}. There, the goal was
        !           300: to determine the total number of fake $\tau$ candidates per event
        !           301: in the ALLJET data skim. Now our goal is to estimate the number of
        !           302: events that would pass all our signal selection criteria, yet contain
        !           303: no physical $\tau$ leptons but only fakes. In other words we are
        !           304: modeling the QCD contribution to out final $t\bar{t}$ candidate event
        !           305: selection.
        !           306: 
        !           307: We started with the {}``$b$ veto'' sample. It can be considered
        !           308: predominantly QCD data sample. Almost all $\tau$ candidates in it
        !           309: have to be fake. Figure \ref{cap:taufaketaus} shows the distribution
        !           310: of these candidates by $P_{T}$ and $|\eta|$. On the other hand Fig.
        !           311: \ref{cap:taufakejets} displays the jets found in the same events.
        !           312: 
        !           313: %
        !           314: \begin{figure}
        !           315: \includegraphics[scale=0.5]{plots/jet_trf}
        !           316: 
        !           317: 
        !           318: \caption{Jets in the QCD sample}
        !           319: 
        !           320: \label{cap:taufakejets} 
        !           321: \end{figure}
        !           322: 
        !           323: 
        !           324: %
        !           325: \begin{figure}
        !           326: \includegraphics[scale=0.4]{plots/tau_trf}
        !           327: 
        !           328: 
        !           329: \caption{$\tau$ candidates in the QCD sample}
        !           330: 
        !           331: \label{cap:taufaketaus} 
        !           332: \end{figure}
        !           333: 
        !           334: 
        !           335: Since the $\tau$ here are really jets, we can simply divide one histogram
        !           336: by the other bin by bin to parametrize the $\tau$ fake rate. Figure
        !           337: \ref{cap:taufakerate} demonstrates this parametrization.
        !           338: 
        !           339: %
        !           340: \begin{figure}
        !           341: \includegraphics[scale=0.5]{plots/tauTRF}
        !           342: 
        !           343: 
        !           344: \caption{$\tau$ fake rate parametrization}
        !           345: 
        !           346: \label{cap:taufakerate} 
        !           347: \end{figure}
        !           348: 
        !           349: 
        !           350: The large isolated spikes are caused by limited statistics available
        !           351: in these bins. In order to reduce this effect and minimize the statistical
        !           352: uncertainty we had performed a 2D fit to this distribution. This fit
        !           353: is then to be used for the QCD prediction.
        !           354: 
        !           355: 
        !           356: \subsubsection{Fit\label{sub:Fit}}
        !           357: 
        !           358: The fitting had been performed separately in $\eta$ and $P_{T}$
        !           359: projections, that is we had assumed that the 2D parametrization can
        !           360: be simply factored in two components:
        !           361: 
        !           362: \[
        !           363: F(\eta,P_{T})\equiv A(\eta)\cdot B(P_{T})\]
        !           364: 
        !           365: 
        !           366: The $\eta$ distributions (as we have observed in section \ref{sub:Signal-characteristics})
        !           367: are symmetric around 0, hence we can perform the fit to its absolute
        !           368: value. The fitting function was the following:
        !           369: 
        !           370: \[
        !           371: A(\eta)\equiv a_{1}+a_{2}\cdot\eta{}^{2}+a_{3}\cdot\eta{}^{3}+a_{4}\cdot\eta{}^{4}+...+a_{7}\cdot\eta{}^{7}\]
        !           372: 
        !           373: 
        !           374: if $\eta=0$ $a_{1}=0$ was set to avoid singularity.
        !           375: 
        !           376: The fitting function for $P_{T}$ has been picked so that it would
        !           377: describe the data well and had not been monotonous (that is we want
        !           378: $\lim_{P_{T}\rightarrow\infty}B\left(P_{T}\right)\rightarrow const$)
        !           379: :
        !           380: 
        !           381: \[
        !           382: B(P_{T})\equiv b_{1}\cdot\exp\left(\frac{P_{T}}{\left(P_{T}+b_{3}\right)^{2}}\right)+b_{2}\cdot\left(\frac{P_{T}}{P_{T}+b_{3}}\right)\]
        !           383: 
        !           384: 
        !           385: The distributions in $\eta$ and $P_{T}$ had been separately and
        !           386: fitted with $A(\eta)$ and $B(P_{T})$. The result of this procedure
        !           387: can be observed on Fig. \ref{cap:taufakerate_fit}. 
        !           388: 
        !           389: As can be observed, the fit in $\eta$ fails around the $\eta=1$.
        !           390: This is the ICD region, which is expected to have different effect
        !           391: on different $\tau$ types. In order to account for this effect we
        !           392: had performed the fit for each type separately. The result can be
        !           393: observed on the Fig. \ref{cap:taufakerate_fit_types}
        !           394: 
        !           395: As can be seen, the effect of the ICD region is largest in type 1
        !           396: and is minor fit the type 2. At the same time the $\eta$ distribution
        !           397: in signal (Fig. \ref{cap:reco tau}) is fairly uniform. 
        !           398: 
        !           399: Hence we had imposed the following cuts to remove these ICD fakes
        !           400: :
        !           401: 
        !           402: \begin{itemize}
        !           403: \item For type 1: $0.8<|\eta|<1.3$ region cut off
        !           404: \item For type 3: $0.85<|\eta|<1.1$ region cut off
        !           405: \end{itemize}
        !           406: With these cuts, the fits had been much improved (Fig. \ref{cap:taufakerate_fit_types_noeta}).
        !           407: The resulting 2D param
        !           408: 
        !           409: %
        !           410: \begin{figure}
        !           411: \includegraphics[scale=0.4]{plota_may18/fit_alltypes}
        !           412: 
        !           413: 
        !           414: \caption{Fit of the $\eta$ and $P_{T}$ distributions of the $\tau$ fake
        !           415: rate.}
        !           416: 
        !           417: \label{cap:taufakerate_fit} 
        !           418: \end{figure}
        !           419: 
        !           420: 
        !           421: %
        !           422: \begin{figure}
        !           423: {\tiny \subfigure[Type 1 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type1}}\subfigure[Type 2 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type2}}}{\tiny \par}
        !           424: 
        !           425: {\tiny \subfigure[Type 3 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type3}}}{\tiny \par}
        !           426: 
        !           427: 
        !           428: \caption{Fit of the $\eta$ and $P_{T}$ distributions of the $\tau$ fake
        !           429: rate.}
        !           430: 
        !           431: \label{cap:taufakerate_fit_types} 
        !           432: \end{figure}
        !           433: 
        !           434: 
        !           435: %
        !           436: \begin{figure}
        !           437: {\tiny \subfigure[Type 1 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type1_cut}}\subfigure[Type 2 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type2}}}{\tiny \par}
        !           438: 
        !           439: {\tiny \subfigure[Type 3 fit]{\includegraphics[scale=0.2]{plota_may18/fit_type3_cut}}}{\tiny \par}
        !           440: 
        !           441: 
        !           442: \caption{Fit of the $\eta$ and $P_{T}$ distributions of the $\tau$ fake
        !           443: rate. The ICD region had been cut off for the types 1 and 3}
        !           444: 
        !           445: \label{cap:taufakerate_fit_types_noeta} 
        !           446: \end{figure}
        !           447: 
        !           448: 
        !           449: As can be seen from Table \ref{b and tau (types)} the type 1 $\tau$
        !           450: contribute less then 1 event even before the $\eta$ cut. After the
        !           451: cut its contribution is totally negligible, so it was decided to discard
        !           452: these events from the $t\bar{t}$ cross section measurement. The final
        !           453: 2D parametrization of the $\tau$ fake rate ($F(\eta,P_{T})$) is
        !           454: shown on Fig. \ref{cap:taufakerate_fit2D}. In the Table \ref{b and tau (types) after eta}
        !           455: we can observe how the $\eta$ cut effects the number of selected
        !           456: events.
        !           457: 
        !           458: %
        !           459: \begin{table}
        !           460: \begin{tabular}{|c|c|}
        !           461: \hline 
        !           462: {\tiny data}&
        !           463: {\tiny taggingMC}\tabularnewline
        !           464: \hline
        !           465: \hline 
        !           466: {\tiny $\geq1$ $\tau$ with $|\eta|<2.4$ and $P_{T}>20\, GeV$}&
        !           467: {\tiny $\geq1$ $\tau$ with $|\eta|<2.4$ and $P_{T}>20\, GeV$}\tabularnewline
        !           468: \hline 
        !           469: {\tiny $\geq1$ SVT}&
        !           470: {\tiny $TrigWeight\cdot bTagProb$}\tabularnewline
        !           471: \hline 
        !           472: {\tiny $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20\, GeV$}&
        !           473: {\tiny $\geq2$ jets with $|\eta|<2.4$ and $P_{T}>20\, GeV$}\tabularnewline
        !           474: \hline
        !           475: \end{tabular}
        !           476: 
        !           477: \begin{tabular}{|c|c|c|c|}
        !           478: \hline 
        !           479: &
        !           480: Type 1&
        !           481: Type 2&
        !           482: Type 3\tabularnewline
        !           483: \hline
        !           484: \hline 
        !           485: data&
        !           486: 28&
        !           487: 91&
        !           488: 94\tabularnewline
        !           489: \hline 
        !           490: $t\overline{t}\rightarrow\tau+jets$&
        !           491: 0.73$\pm$0.05&
        !           492: 5.61$\pm$0.37&
        !           493: 3.12$\pm$0.20\tabularnewline
        !           494: \hline
        !           495: $W\rightarrow\tau\nu+jets$&
        !           496: 0.094$\pm$0.005&
        !           497: 0.93$\pm$0.04&
        !           498: 0.39$\pm$0.02\tabularnewline
        !           499: \hline
        !           500: \end{tabular}
        !           501: 
        !           502: 
        !           503: \caption{b-tagging and $\tau$ ID results per type. Shown are the \# of events
        !           504: predicted in signal and observed in the data as well as the cuts applied.}
        !           505: 
        !           506: \label{b and tau (types)} 
        !           507: \end{table}
        !           508: 
        !           509: 
        !           510: %
        !           511: \begin{table}
        !           512: \begin{tabular}{|c|c|c|}
        !           513: \hline 
        !           514: &
        !           515: Type 2&
        !           516: Type 3\tabularnewline
        !           517: \hline
        !           518: \hline 
        !           519: data&
        !           520: 91&
        !           521: 71\tabularnewline
        !           522: \hline 
        !           523: $t\overline{t}\rightarrow\tau+jets$&
        !           524: 5.61$\pm$0.37&
        !           525: 2.81$\pm$0.18\tabularnewline
        !           526: \hline
        !           527: $W\rightarrow\tau\nu+jets$&
        !           528: 0.93$\pm$0.04&
        !           529: 0.32$\pm$0.01\tabularnewline
        !           530: \hline
        !           531: \end{tabular}
        !           532: 
        !           533: 
        !           534: \caption{b-tagging and $\tau$ ID results per type after the $\eta$ cut.
        !           535: Shown are the \# of events predicted in signal and observed in the
        !           536: data as well as the cuts applied.}
        !           537: 
        !           538: \label{b and tau (types) after eta} 
        !           539: \end{table}
        !           540: 
        !           541: 
        !           542: %
        !           543: \begin{figure}
        !           544: \subfigure[Type 2 2D fit]{\includegraphics[scale=0.2]{plota_may18/type2_surf}}\subfigure[Type 3 2D Fit]{\includegraphics[scale=0.2]{plota_may18/type3_surf}}
        !           545: 
        !           546: 
        !           547: \caption{The 2D combined fit (in $\eta$ and $P_{T}$) of the $\tau$ fake
        !           548: rate}
        !           549: 
        !           550: \label{cap:taufakerate_fit2D} 
        !           551: \end{figure}
        !           552: 
        !           553: 
        !           554: 
        !           555: \subsubsection{Closure tests}
        !           556: 
        !           557: In order to test the validity of fitting separately in $\eta$ and
        !           558: $P_{T}$ ignoring the possible correlations had to be checked. The
        !           559: Fig \ref{cap:Closure_test} demonstrates the closure test that was
        !           560: used for this purpose. In the same {}``b veto sample'' we had applied
        !           561: the resulting $F(\eta,P_{T})$ to each jet and compared the resulting
        !           562: (predicted) $\tau$ distributions with ones obtained from the actual
        !           563: $\tau$ candidates (which of cause are predominantly fakes here).
        !           564: 
        !           565: However, one could imagine a pair of 2D distributions that would agree
        !           566: perfectly in both projections and yet still be very different. In
        !           567: order to test against such a possibility we had performed the same
        !           568: cross-check as before, but we required the jets to be from 0.5 to
        !           569: 1 in $\eta$. For such $\eta$ {}``slice'' we had applied $F(\eta,P_{T})$
        !           570: and compared the actual $P_{T}$ with the predicted. Figure \ref{cap:Closure_test_2}
        !           571: demonstrates that the agreement is still fairly good.
        !           572: 
        !           573: %
        !           574: \begin{figure}
        !           575: \includegraphics[scale=0.2]{plota_may18/closure_eta_2}\includegraphics[scale=0.2]{plota_may18/closure_pt_2}
        !           576: 
        !           577: \includegraphics[scale=0.2]{plota_may18/closure_eta_3}\includegraphics[scale=0.2]{plota_may18/closure_pt_3}
        !           578: 
        !           579: 
        !           580: \caption{The closure test of the $\tau$ fake rate function. The red histograms
        !           581: are for the actual $\tau$ candidates in the {}``veto'' sample.
        !           582: The green ones are the prediction. The $\eta$ distribution show some
        !           583: discrepancy related to error of the fit.}
        !           584: 
        !           585: \label{cap:Closure_test} 
        !           586: \end{figure}
        !           587: 
        !           588: 
        !           589: %
        !           590: \begin{figure}
        !           591: \subfigure[Type 2]{\includegraphics[scale=0.45]{plots/pt_closure_type2}}\subfigure[Type 3]{\includegraphics[scale=0.45]{plots/pt_closure_type3}}
        !           592: 
        !           593: 
        !           594: \caption{The closure test of the $\tau$ fake rate function. The red histograms
        !           595: are for the actual $\tau$ candidates in the {}``veto'' sample.
        !           596: The green ones are the prediction. The jets had been selected with
        !           597: $0.5<\eta<1$. An asymmetric range had been chosen to avoid possible
        !           598: bias.}
        !           599: 
        !           600: \label{cap:Closure_test_2} 
        !           601: \end{figure}
        !           602: 
        !           603: 
        !           604: 
        !           605: \subsubsection{Computing the QCD fraction}
        !           606: 
        !           607: We assume that probability for a jet to fake a $\tau$ is simply $F(\eta,P_{T})$.
        !           608: Then, the probability that at least one of the jets in the event will
        !           609: fake $\tau$ can be computed as following:
        !           610: 
        !           611: \begin{center}$P_{event}=1-\prod_{j}(1-F(P_{T}^{j},\eta^{j}))$\par\end{center}
        !           612: 
        !           613: Summing up such probabilities over the tagged data we obtain the QCD
        !           614: background estimation.
        !           615: 
        !           616: Using the results described in previous section we get $N_{QCD}=71.13\pm1.56$
        !           617: for the $\tau$ type 2 and $N_{QCD}=77.46\pm0.80$ for the $\tau$
        !           618: type 3, which agrees with the observed data (in Table \ref{b and tau (types) after eta})
        !           619: fairly well. One can also observe (see Appendix) that the predicted
        !           620: distributions of the main topological variables (section \ref{sub:NN-variables})
        !           621: are in fairly good agreement with what is observed in the data.
        !           622: 
        !           623: 
        !           624: \subsection{\label{sub:NN-variables}Topological NN}
        !           625: 
        !           626: For signal training sample 7481 preselected $t\overline{t}$ MC events
        !           627: were used (NOT the same as the 6141 selection sample events). For
        !           628: the background, the $\tau$ veto sample was used.
        !           629: 
        !           630: Similarly to the alljet analysis \cite{alljet} we define 2 networks:
        !           631: 
        !           632: \begin{enumerate}
        !           633: \item Contains 3 topological (aplanarity, sphericity and centrality and
        !           634: 2 energy-based ( $H_{T}$ and $\sqrt{S}$ ). 
        !           635: \item Contains the output of the first, W and top mass likelihood, b-jet's
        !           636: $P_{T}$ and b-jet's decay lengths. 
        !           637: \end{enumerate}
        !           638: These are the kinematic and topological variables used:
        !           639: 
        !           640: \begin{itemize}
        !           641: \item $H_{T}$- the scalar sum of all jet $P_{T}$s (and $\tau$). 
        !           642: \item Sphericity and Aplanarity - these variables are formed from the eigenvalues
        !           643: of the normalized Momentum Tensor of the jets in the event. These
        !           644: are expected to be higher in the top pair events than in a typical
        !           645: QCD event. 
        !           646: \item Centrality, defined as $\frac{H_{T}}{H_{E}}$ , where $H_{E}$is sum
        !           647: of energies of the jets. 
        !           648: \item Top and W mass likelihood - $\chi^{2}$-like variable. $L\equiv\left(\frac{M_{3j}-M_{t}}{\sigma_{t}}\right)^{2}+\left(\frac{M_{2j}-M_{w}}{\sigma_{w}}\right)^{2}$,
        !           649: where $M_{t},M_{W},\sigma_{t},\sigma_{W}$ are top and W masses (175
        !           650: GeV and 80 GeV respectively) and resolution values (45 GeV and 10
        !           651: GeV respectively \cite{alljet}). $M_{3j}$ and $M_{2j}$ are composed
        !           652: of the jet combinations, so to minimize L. 
        !           653: \item $P_{T}$ and lifetime significance of the leading b-tagged jet. 
        !           654: \end{itemize}
        !           655: Many of these variables (for instance mass likelihood and aplanarity)
        !           656: are only defined for events with 2 or more jets. So, we require now
        !           657: 2 jets with $P_{T}$>20 GeV and $|\eta|$<2.5.
        !           658: 
        !           659: Appendix has the plots of all these variables, which serves also as
        !           660: an additional check of an agreement between the data and prediction.
        !           661: Two of these plots can be observed on Fig. \ref{cap:The-nn0-input-small}.
        !           662: As can be seen the NN input variables show fairly good agreement between
        !           663: between data and MC, which gives us confidence that the NN will provide
        !           664: sensible output, using these variables.
        !           665: 
        !           666: %
        !           667: \begin{figure}
        !           668: \includegraphics[scale=0.3]{analysis/CONTROLPLOTS/aplan_0_type2}\includegraphics[scale=0.3]{analysis/CONTROLPLOTS/ht_0_type2}
        !           669: 
        !           670: 
        !           671: \caption{2 of the 5 input variables of the first topological NN before the
        !           672: NN cut ($\tau$ type 2). The Kolmogorov-Smirnov (KS) probabilities
        !           673: are shown, indicating how good the agreement is.}
        !           674: 
        !           675: \label{cap:The-nn0-input-small} 
        !           676: \end{figure}
        !           677: 
        !           678: 
        !           679: 
        !           680: \subsection{NN optimization}
        !           681: 
        !           682: For training the NN we used the Multi Layer Perceptron (MLP) \cite{MLPfit},
        !           683: as implemented in ROOT framework. The input events had been split
        !           684: into 7466 train and 14932 test entries. At each of the 500 training
        !           685: {}``epochs'' it evaluates the fractional error for both signal and
        !           686: background, showing how successful it has been in discriminating the
        !           687: test events (Figure \ref{cap:NN-error})
        !           688: 
        !           689: %
        !           690: \begin{figure}
        !           691: \subfigure[The first NN]{\includegraphics[scale=0.4]{analysis/GOODNN_NOTAU/nn0training300}}\subfigure[The second NN]{\includegraphics[scale=0.4]{analysis/GOODNN_NOTAU/nn1training300}}
        !           692: 
        !           693: 
        !           694: \caption{NN error. Red is test sample, blue is training sample}
        !           695: 
        !           696: \label{cap:NN-error} 
        !           697: \end{figure}
        !           698: 
        !           699: 
        !           700: The resulting NNs are shown on Fig. \ref{cap:NN0} and \ref{cap:NN1}.
        !           701: There one can observe the structure of the trained NN (blue interconnected
        !           702: nodes) and the performance evaluation based on the training samples.
        !           703: In Appendix (Fig \ref{cap:The-resulting-output_type2} and \ref{cap:The-resulting-output_type3})
        !           704: we can observe this final NN output in the main analysis data sample
        !           705: (as well as in the signal and in the backgrounds).
        !           706: 
        !           707: %
        !           708: \begin{figure}
        !           709: \subfigure[The first NN]{\includegraphics[scale=0.6]{analysis/GOODNN_NOTAU/nn0analysis300}}
        !           710: 
        !           711: 
        !           712: \caption{NN0 structure. The upper left plots show the relative impact of the
        !           713: variables on the NN output. The bottom left is distribution of NNout,
        !           714: the bottom right - efficiencies. Red is signal, blue is background.}
        !           715: 
        !           716: \label{cap:NN0} 
        !           717: \end{figure}
        !           718: 
        !           719: 
        !           720: %
        !           721: \begin{figure}
        !           722: \includegraphics[scale=0.6]{analysis/GOODNN_NOTAU/nn1analysis300}
        !           723: 
        !           724: 
        !           725: \caption{NN1 structure. The upper left plots show the relative impact of the
        !           726: variables on the NN output. The bottom left is distribution of NNout,
        !           727: the bottom right - efficiencies. Red is signal, blue is background.}
        !           728: 
        !           729: \label{cap:NN1} 
        !           730: \end{figure}
        !           731: 
        !           732: 
        !           733: The result of applying this NN to data is shown on Figure \ref{cap:Result-of-applying}
        !           734: . At this point we had to determine what cuts on the topological NN
        !           735: output maximize the signal significance. The signal significance is
        !           736: defined as $\frac{Number\, of\, signal\, events}{\sqrt{Number\, of\, Signal+Background\, events}}$
        !           737: and is shown on Figure \ref{signal-signifficance} . The maximum it
        !           738: reaches at $NN1>0.9$ for both type 2 and 3. Therefor this is the
        !           739: cut we've used for the cross section measurement. The results of this
        !           740: measurement are summarized in Table \ref{cap:RESULTS}
        !           741: 
        !           742: %
        !           743: \begin{figure}
        !           744: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NNresult_tau2}}\subfigure[Type 2 (zoomed)]{\includegraphics[scale=0.3]{plots/NNresult_zoomed_tau2}}
        !           745: 
        !           746: \subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NNresult_tau3}}\subfigure[Type 3 (zoomed)]{\includegraphics[scale=0.3]{plots/NNresult_zoomed_tau3}}
        !           747: 
        !           748: 
        !           749: \caption{Result of applying NN cut. $t\bar{t}$, $W$ and QCD are plotted
        !           750: incrementally in order to compare with \# of events observed in data.
        !           751: Error bars include only statistical errors. $\sigma(t\bar{t})=5.54$
        !           752: pb is assumed. The right plot only shows the entries with high NN.
        !           753: The errors are statistical only.}
        !           754: 
        !           755: \label{cap:Result-of-applying} 
        !           756: \end{figure}
        !           757: 
        !           758: 
        !           759: %
        !           760: \begin{figure}
        !           761: \subfigure[Type 2]{\includegraphics[scale=0.3]{plots/NNresult_signiff_tau2}}\subfigure[Type 3]{\includegraphics[scale=0.3]{plots/NNresult_signiff_tau3}}
        !           762: 
        !           763: 
        !           764: \caption{$t\bar{t}\rightarrow\tau+jets$ signal significance}
        !           765: 
        !           766: \label{signal-signifficance} 
        !           767: \end{figure}
        !           768: 
        !           769: 
        !           770: %
        !           771: \begin{table}
        !           772: \begin{centering}\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
        !           773: \hline 
        !           774: Channel &
        !           775: $N^{obs}$ &
        !           776: ${\mathcal{B}}$ &
        !           777: $\int{\mathcal{L}}dt$ &
        !           778: \multicolumn{2}{c|}{Bakgrounds}&
        !           779: $\varepsilon(t\bar{t})$ (\%) &
        !           780: $s$ (7 pb) &
        !           781: s+b \tabularnewline
        !           782: \hline 
        !           783: $\tau$+jets type 2 &
        !           784: 5 &
        !           785: 0.1 &
        !           786: 349.3 &
        !           787: $W\rightarrow\tau\nu$ &
        !           788: 0.60$\pm$0.03&
        !           789: 1.57$\pm$0.01 &
        !           790: 3.83$_{-0.51}^{+0.46}$ &
        !           791: 6.84$_{-0.51}^{+0.46}$ \tabularnewline
        !           792: &
        !           793: &
        !           794: &
        !           795: &
        !           796: fakes &
        !           797: 2.41$\pm$0.09 &
        !           798: &
        !           799: &
        !           800: \tabularnewline
        !           801: \hline 
        !           802: $\tau$+jets type 3 &
        !           803: 5 &
        !           804: 0.1 &
        !           805: 349.3 &
        !           806: $W\rightarrow\tau\nu$ &
        !           807: 0.27$\pm$0.01&
        !           808: 0.73$\pm$0.01 &
        !           809: 1.80$_{-0.23}^{+0.22}$ &
        !           810: 4.39$_{-0.23}^{+0.22}$ \tabularnewline
        !           811: &
        !           812: &
        !           813: &
        !           814: &
        !           815: fakes &
        !           816: 2.33$\pm$0.09 &
        !           817: &
        !           818: &
        !           819: \tabularnewline
        !           820: \hline
        !           821: \end{tabular}\par\end{centering}
        !           822: 
        !           823: 
        !           824: \caption{The final result summary after the NN>0.9 cut, $\epsilon(t\bar{t})$
        !           825: is the total signal acceptance.}
        !           826: 
        !           827: \label{cap:RESULTS} 
        !           828: \end{table}
        !           829: 
        !           830: 
        !           831: 
        !           832: \section{Systematic uncertainties}
        !           833: 
        !           834: . The most important systematic effects (except of the b-tagging,
        !           835: which is treated later) are summarized in Table \ref{cap:Syst}.
        !           836: 
        !           837: %
        !           838: \begin{table}
        !           839: {\footnotesize }\begin{tabular}{|c||c|c|}
        !           840: \hline 
        !           841: Channel&
        !           842: {\footnotesize $\tau$+jets type 2 }&
        !           843: {\footnotesize $\tau$+jets type 3 }\tabularnewline
        !           844: \hline
        !           845: \hline 
        !           846: {\footnotesize Jet Energy Scale }&
        !           847: {\footnotesize $_{-0.27}^{+0.30}$ }&
        !           848: {\footnotesize $_{-0.69}^{+0.53}$ }\tabularnewline
        !           849: \hline 
        !           850: {\footnotesize Primary Vertex }&
        !           851: {\footnotesize $_{+0.037}^{-0.036}$ }&
        !           852: {\footnotesize $_{+0.095}^{-0.093}$ }\tabularnewline
        !           853: \hline 
        !           854: {\footnotesize MC stat }&
        !           855: {\tiny $_{+0.25}^{-0.22}$ }&
        !           856: {\tiny $_{+0.65}^{-0.58}$ }\tabularnewline
        !           857: \hline 
        !           858: {\footnotesize Trigger }&
        !           859: {\footnotesize $_{-0.020}^{+0.0025}$ }&
        !           860: {\footnotesize $_{-0.069}^{+0.0056}$ }\tabularnewline
        !           861: \hline 
        !           862: {\footnotesize Branching ratio }&
        !           863: {\footnotesize $_{+0.074}^{-0.071}$ }&
        !           864: {\footnotesize $_{+0.19}^{-0.18}$ }\tabularnewline
        !           865: \hline 
        !           866: {\footnotesize QCD fake rate parametrization }&
        !           867: {\footnotesize $_{+0.17}^{-0.17}$ }&
        !           868: {\footnotesize $_{+0.34}^{-0.34}$ }\tabularnewline
        !           869: \hline 
        !           870: $W\rightarrow\tau\nu$&
        !           871: {\footnotesize $_{+0.19}^{-0.19}$ }&
        !           872: {\footnotesize $_{+0.19}^{-0.19}$ }\tabularnewline
        !           873: \hline
        !           874: \end{tabular}{\footnotesize \par}
        !           875: 
        !           876: 
        !           877: \caption{Systematic uncertainties on $\sigma(t\bar{t})$ (in pb).}
        !           878: 
        !           879: \label{cap:Syst} 
        !           880: \end{table}
        !           881: 
        !           882: 
        !           883: 
        !           884: \subsection{JES}
        !           885: 
        !           886: The energy scale corrections applied to data and MC have uncertainties
        !           887: associated with them. These uncertainties result in systematic shift
        !           888: in the measured cross section. To compute these systematics the JES
        !           889: corrections in MC were shifted up (or down) by $\delta JES^{data}=\sqrt{(\delta_{syst}^{data})^{2}+(\delta_{stat}^{data})^{2}+(\delta_{syst}^{MC})^{2}+(\delta_{stat}^{MC})^{2}}$.
        !           890: 
        !           891: 
        !           892: \subsection{Primary Vertex and Branching Ratio}
        !           893: 
        !           894: The PV and $t\bar{t}$ and W branching fractions had been assigned
        !           895: uncertainties of 1\% and 2\% correspondingly, same as in \cite{alljet} 
        !           896: 
        !           897: 
        !           898: \subsection{Luminosity}
        !           899: 
        !           900: The total integrated luminosity of the data used in this analysis
        !           901: is $349\pm23$. This error yields to the uncertainty quoted in Table
        !           902: \ref{cap:Syst}.
        !           903: 
        !           904: 
        !           905: \subsection{Trigger}
        !           906: 
        !           907: The trigger parametrization systematics is computed by top\_trigger
        !           908: \cite{top_trigger}.
        !           909: 
        !           910: 
        !           911: \subsection{B-tagging}
        !           912: 
        !           913: B-tagging uncertainty effects are taken into account by varying the
        !           914: systematic and statistical errors on the MC tagging weights.
        !           915: 
        !           916: These errors arise form several independent sources:
        !           917: 
        !           918: \begin{itemize}
        !           919: \item B-jet tagging parametrization. 
        !           920: \item C-jet tagging parametrization. 
        !           921: \item Light jet tagging parametrization (negative tag rate). Derived by
        !           922: varying by $\pm1\sigma$ the parametrization and adding in quadrature
        !           923: 8\% relative uncertainty from the variation of the negative tag rate
        !           924: measured in different samples. 
        !           925: \item Systematic uncertainties on the scale factors $SF_{hf}$ and $SF_{ll}$
        !           926: are derived from the statistical error due to finite MC statistics. 
        !           927: \item Semi-leptonic b-tagging efficiency parametrization in MC and in data
        !           928: (System 8). 
        !           929: \item Taggability. This includes the statistical error due to finite statistic
        !           930: in the samples from which it had been derived and systematic, reflecting
        !           931: the (neglected) taggability dependence on the jet multiplicity. 
        !           932: \end{itemize}
        !           933: The resulting effect of all of these error sources on the final number
        !           934: is summarized in Table \ref{cap:b-tagging-systematics-sources}
        !           935: along with the total b-ID systematic error (quoted in Table \ref{cap:Syst}).
        !           936: 
        !           937: %
        !           938: \begin{table}
        !           939: \begin{tabular}{|c|c|c|}
        !           940: \hline 
        !           941: Channel&
        !           942: {\footnotesize $\tau$+jets type 2 }&
        !           943: {\footnotesize $\tau$+jets type 3 }\tabularnewline
        !           944: \hline
        !           945: \hline 
        !           946: b-tagging&
        !           947: {\tiny $_{-0.13}^{+0.076}$ }&
        !           948: {\tiny $_{-0.26}^{+0.41}$ }\tabularnewline
        !           949: \hline 
        !           950: c-tagging&
        !           951: {\tiny $_{-0.20}^{+0.16}$ }&
        !           952: {\tiny $_{-0.48}^{+0.60}$ }\tabularnewline
        !           953: \hline 
        !           954: l-tagging&
        !           955: {\tiny $_{-0.0051}^{+0.0051}$ }&
        !           956: {\tiny $_{-0.014}^{+0.014}$ }\tabularnewline
        !           957: \hline 
        !           958: $SF_{hf}$&
        !           959: {\tiny $_{-0.00036}^{+0.00036}$ }&
        !           960: {\tiny $_{-0.00094}^{+0.00094}$ }\tabularnewline
        !           961: \hline 
        !           962: $SF_{ll}$&
        !           963: {\tiny $_{-0.00036}^{+0.00036}$ }&
        !           964: {\tiny $_{-0.00094}^{+0.00094}$ }\tabularnewline
        !           965: \hline 
        !           966: $\mu$ b-tagging (data)&
        !           967: {\tiny $_{-0.091}^{+0.094}$ }&
        !           968: {\tiny $_{-0.24}^{+0.25}$ }\tabularnewline
        !           969: \hline 
        !           970: $\mu$ b-tagging (MC)&
        !           971: {\tiny $_{+0.11}^{-0.10}$ }&
        !           972: {\tiny $_{+0.28}^{-0.25}$ }\tabularnewline
        !           973: \hline 
        !           974: taggability&
        !           975: {\tiny $_{-0.048}^{+0.049}$ }&
        !           976: {\tiny $_{-0.13}^{+0.13}$ }\tabularnewline
        !           977: \hline
        !           978: \end{tabular}
        !           979: 
        !           980: 
        !           981: \caption{b-tagging systematics sources}
        !           982: 
        !           983: \label{cap:b-tagging-systematics-sources} 
        !           984: \end{table}
        !           985: 
        !           986: 
        !           987: 
        !           988: \subsection{Fake rate}
        !           989: 
        !           990: The systematic uncertainty, associated with the $\tau$ fake rate
        !           991: is just the statistical error of the fit, described in section \ref{sub:Fit}.
        !           992: 
        !           993: 
        !           994: \subsection{W background prediction}
        !           995: 
        !           996: The method used to describe the $W\rightarrow\tau\nu$ background
        !           997: is not perfect. There are two potential sources of error
        !           998: 
        !           999: \begin{itemize}
        !          1000: \item Only W+4 partons MC had been used. It is however expected that W+2
        !          1001: and W+3 would some (albeit smaller) contribution. In order to properly
        !          1002: take this into account one would need to combine all jet multiplicity
        !          1003: samples. This leads to slight underestimation of the result. 
        !          1004: \item The {}``$b$ veto'' sample may contain some W contribution, from
        !          1005: wjjjj events. This leads to double-counting of these vents and hence
        !          1006: overestimation of the result. 
        !          1007: \end{itemize}
        !          1008: A conservative estimate of 50\% uncertainty on the number of W events
        !          1009: in the final sample had been applied. That is, by varying this number
        !          1010: up and down by 50\% we observed the effect on the cross section (as
        !          1011: quoted in Table \ref{cap:Syst}).
        !          1012: 
        !          1013: 
        !          1014: \section{Cross section}
        !          1015: 
        !          1016: The cross section is defined as $\sigma=\frac{Number\, of\, signal\, events}{\varepsilon(t\bar{t})\cdot BR(t\bar{t})\cdot Luminosity}$.
        !          1017: The results was the following:
        !          1018: 
        !          1019: \begin{center}$\tau$+jets type 2 cross section: \[
        !          1020: 3.63\;\;_{-3.50}^{+4.72}\;\;(stat)\;\;_{-0.48}^{+0.49}\;\;(syst)\;\;\pm0.24\;\;(lumi)\;\; pb\]
        !          1021:  \par\end{center}
        !          1022: 
        !          1023: \begin{center}$\tau$+jets type 3 cross section: \[
        !          1024: 9.39\;\;_{-7.49}^{+10.10}\;\;(stat)\;\;_{-1.18}^{+1.25}\;\;(syst)\;\;\pm0.61\;\;(lumi)\;\; pb\]
        !          1025: \par\end{center}
        !          1026: 
        !          1027: The combined cross section was estimated by minimizing the sum of
        !          1028: the negative log-likelihood functions for each channel. Functional
        !          1029: form of the likelihood function was the same that had been used for
        !          1030: the $e\mu$ channel (\cite{emu}). Combined cross section yields
        !          1031: 
        !          1032: \begin{center}\[
        !          1033: 5.05\;\;_{-3.46}^{+4.31}\;\;(stat)\;\;_{-0.67}^{+0.68}\;\;(syst)\;\;\pm0.33\;\;(lumi)\;\; pb\]
        !          1034: \par\end{center}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>