Status Report to DOE/NSF for ILC Detector R&D

December 22, 2005

Project Name
Design and Prototyping of a Scintillator-based Hadron Calorimeter.

Classification (accelerator/detector: subsystem)
Calorimeter: Hadron Calorimeter.

Personnel and Institution(s) requesting funding
G. Blazey, D. Chakraborty, A. Dyshkant, K. Francis, V. Rykalin, V. Zutshi.
Northern Illinois Center for Accelerator and Detector Development/ Northern Illinois University.

Collaborators
F. Sefkow et. al, Deutsches Elektronen-Synchrotron, Hamburg,
D. Denisov et. al, Fermi National Accelerator Laboratory, Batavia,
M. Danilov et. al, Institute of Theoretical and Experimental Physics, Moscow,
U. Nauenberg et. al, University of Colorado, Boulder,
G. Introzzi et. al, University of Pavia,
The CALICE Collaboration.

Project Leader
V. Zutshi
zutshi@nicadd.niu.edu
(815)753-3080

Project Overview
The Northern Illinois University(NIU)/Northern Illinois Center for Accelerator and Detector Development (NICADD) [1] group is interested in calorimeter R&D for the proposed Linear Collider. We are engaged in developing, in simulation and in prototype, designs for a hadron calorimeter (HCal) optimized for jet energy measurement using particle-flow algorithms (PFAs). Software simulations/algorithmd development and hardware prototyping are envisaged as the two main components of our efforts. This proposal addresses the second component while the first is the subject of a separate proposal. The end goal of this research
project will be the development of reliable performance and cost estimates for scintillator-based hadron calorimeter options suited for, but not limited to, an e^+e^- linear collider.

It is clear that for the Linear Collider to fulfill its physics charter multi-jet final states will have to be exceptionally well measured. In particular, superior resolutions in jet $(30%/\sqrt{E} or better)$ and missing energy measurements will be critical for discovery and characterization of the new physics as well as for precision tests of the Standard Model (SM). The most promising means to achieving such unprecedented resolutions at the next linear collider is through particle-flow algorithms [2] which require fine lateral and longitudinal segmentation of the calorimeter to individually reconstruct the showers constituting a jet. This approach allows one to make optimal use of the information available in the event: tracker momenta for charged particles and calorimetric energy measurements for photons and neutral hadrons.

The NIU team has been investigating a finely-segmented scintillator-based hadron calorimeter for some time now. This option capitalizes on the marriage of proven detection techniques with novel photodetector devices. Absence of fluids/gases and strong electric fields inside the detector aids longevity and operational stability. The main challenge for a scintillator-based hadron calorimeter is the architecture and cost of converting light, from a large number of channels, to electrical signal. Our studies demonstrate that small cells $(6-10\ \text{cm}^2)$ with embedded Silicon Photomultipliers (SiPMs)/Metal Resistive Semiconductor (MRS) photodetectors offer the most promise in tackling this issue. The \textit{in situ} use of these photodetectors opens the doors to integration of the full readout chain to an extent that makes a multi-million channel scintillator calorimeter entirely plausible. Also, in large quantities the devices are expected to cost a few dollars per channel making the construction of a full-scale detector instrumented with these photo-diodes financially feasible.

The very large number of readout channels can still pose a significant challenge in the form of complexity and cost of signal transport, processing and acquisition. The development of an integrated readout layer comprised of the scintillator, photodetector and front-end electronics will thus be crucial in carrying the scintillator hadron calorimeter design forward. Research into this integration will be a focal point of our future work described later in this proposal. Simplifications obtained by reducing the dynamic range of the readout may also be part of the solution. Monte Carlo studies have shown that this is indeed possible as scintillator cells with an area in the 6-10 cm2 range are good candidates for one (digital) or two-bit (semi-digital) readout (see Fig. 1) where the lowest threshold is set so as to detect the passage of a minimum ionizing particle. Performance of PFAs on scintillator hadron calorimeter Monte Carlo’s with a minimum of amplitude information in the form of thresholds also looks very competitive [3]. Thus fabrication of cheap and compact electronics with just a few thresholds (three in the case of a 2-bit readout) that will deliver the required performance is a realistic possibility for a scintillator hadron calorimeter.

In these tasks we have been coordinating our efforts with European groups pursuing similar interests. This interaction takes place under the umbrella of the CALICE collaboration [4] which bands together universities and labs, interested in developing calorimeters for the Linear Collider, from all over the world. We are the only group in the United States, actively investigating the promising option of a scintillator-based hadron calorimeter.

\textbf{Status Report}

To date we have received three grants for work related to the project described here. The project titled “Design and Prototyping of a Scintillator-based Hadron Calorimeter” was ini-
Initially submitted as part of the UCLC proposal to NSF in 2003. We were instructed to resubmit, without change in scope, in 2004. The 2003 submission resulted in a $11K NSF “Planning Grant” while in 2004 we were awarded a one year $50K DOE/NSF grant. The LCDRD submission resulted in a $31.5K award for 2005. Please find below a summary of the covered research:

Tile-Fiber Optimization: Prototype cells of various shapes, sizes, thicknesses, surface treatments and fiber groovings were machined (see Fig. 2) and evaluated together with fibers of different shapes, dimensions and optical treatments to carry out a comprehensive study of the following:

(a) Cell processing
(b) Light response
(c) Response uniformity
(d) Efficiency
(e) Cross talk
(f) Ageing
(g) Radiation damage

The results of our studies, demonstrating that small scintillating cells are appropriate for a finely-segmented hadron calorimeter, are published in [5] and [6].

Photodetectors: We propose to use SiPMs/MRS [7] devices as the photodetectors for the hadron calorimeter. During the course of our investigations we also studied other solid-state photodetectors like APD’s and VLPC’s [8] but find that the SiPMs are the most suitable for the finely-segmented calorimeter we have in mind. SiPMs are multi-pixel photo-diodes.

Figure 1: Single hadron energy resolution as a function of the incident energy.
operating in the limited Geiger mode. They have high gain ($\approx 10^6$) but relatively modest detection efficiencies (quantum efficiency*geometric efficiency $\approx 15\%$) and therefore deliver performances similar to (or better than) a conventional PMT. They have a distinct advantage over the conventional PMTs however, due to their small size (1mm x 1mm), low operating voltages ($\approx 30\text{-}80\text{V}$) and insensitivity to magnetic fields. On the 1mm2 sensor surface there are typically 1000-1500 pixels (see Fig. 3), each one of which produces a Geiger discharge when a photon impinges upon it. The energy is therefore proportional to the number of pixels fired. Typically a minimum ionizing particle (MIP) fires 15-20 pixels (or photoelectrons).

Furthermore the small size of the sensors implies that they can be mounted directly on the scintillator tiles (see Fig. 4). This has a number of beneficial effects:

1. **Light Output:** The light suffers little or no attenuation as it does not have to travel large distances in the fiber.
2. **Cost:** The amount of fiber required (WLS or clear) is drastically reduced.
3. **Simplified Architecture:** Since photo-conversion occurs right at the tile one can come out of the detector directly with electrical signals thus largely eliminating the problems associated with handling and routing of a large number of fibers.

During the course of our investigations into these photodetectors the following characteristics were studied in detail:

(a) Working point
(b) Dark rate
(c) Linearity of response
(d) Temperature dependence
(e) Fiber alignment
(f) Medium-term stability
(g) Radiation damage
(h) Immunity to strong B-fields

The results of our studies, showing that SiPMs/MRS are suitable for a scintillator hadron calorimeter, are documented in [9] and [10].
Figure 3: Pixellated surface of the SiPM sensor (left) and photoelectron separation observed with a SiPM (right).

Figure 4: The SiPM sensor (left) mated with a 1 mm WLS fiber and embedded in a 3 cm x 3 cm tile (right).
Test Beam Prototype: The prototyping studies summarized above have pinned down the configuration of the active layers of the scintillator HCal for us. In collaboration with our European colleagues we are now moving towards the construction of a 38 layer scintillator-steel prototype for the testbeam. The proposed prototype, the result of extensive hardware R&D and simulation studies, will address the following overall goals of our program:

(a) Technology demonstration
(b) Exploration of the full range of readout from purely digital to fully analog
(c) Validation of hadron shower models in MC
(d) PFA development

The active layers of the prototype consist of 5 mm thick scintillator tiles sandwiched between 2 cm thick steel absorber plates mounted on a movable table. In reality the absorber is split into three parts: 1.6 cm absorber plate and two 0.2 cm thick top and bottom skins of the “cassette” which houses the tiles. Each tile comes with its own 1mm diameter WLS fiber mated to a SiPM embedded in it. The tiles come in three granularities: 3 cm x 3 cm, 6 cm x 6 cm and 12 cm x 12 cm (see Fig. 5). The 3 cm x 3 cm cells form the inner core for thirty of the 38 layers while for the last eight layers only the coarser granularity cells are used. The granularity of the prototype has been optimized to achieve the goals listed above within a reasonable budget. As the initial proponents of the finer granularity we are responsible for the instrumentation of two-thirds (i.e. 20 layers) of the inner core. A 1 mm thick co-axial cable runs from each photodetector to a charge integrating amplifier channel. This single co-axial cable carries both the bias (on its shield) and signal (on its core). The cables are mounted on a G-10 plate which also has the reflective VM2000 glued to its inner, tile-facing side.

Commissioning: To be ready for beam in time will require an enormous commissioning effort from the collaborating institutions and will make ever increasing demands on our manpower resources. Already in Oct-Nov 2005, we have been involved in the integrated commissioning tests of the HCAL and tail-catcher/muon tracker (TCMT) cassettes in the DESY electron test beam. In addition to verifying the full electronics and data acquisition chain, a few million events were collected which are now being analyzed to better understand the behavior of the devices (see Fig. 6). While extremely useful for exposing HCAL cassettes in ones or twos
the electron beam cannot be used to commission a large fraction of the cassettes together especially when they are inside the stack. Thus efficient triggering on cosmics will be the key to commissioning the approximately 40 layers of the scintillator HCAL. To this end we are fabricating large area trigger counters which will allow the simultaneous commissioning of a large number of HCAL layers.

Current and Planned R&D

Prototype Operation: The scintillator hcal prototype will be exposed to hadron test beams at CERN and Fermilab during the 2006-2007 period [11]. Hadrons in the momentum range 1-50 GeV are of interest. We propose to collect $O(10^6)$ events per setting (energy, angle and particle type) for a total of $\approx 10^8$ events. With $\approx 10^4$ channels, the prototype is comparable in channel count to the full calorimetric systems of some of the current collider experiments. Thus a large investment in manpower and resources will be required. Our expertise and location implies that we will be playing a major role in the assembly, commissioning and operation of the prototype. Already one of us (VZ) has been named as one of the two 'Experimental Contacts' for the full ILC calorimeter test beam program. Substantial amount of our resources will also be required to calibrate and analyze the data being collected.

The operation of the scintillator-based hadron calorimeter prototype will deliver a wealth of information. It is however clear that R&D will need to continue in parallel to carry the design forward and optimize it for its realization in an ILC detector. The 2-3 year LC test beam program will permit us to make incremental changes to the initial design which can then be tested in the beam without having to assemble an entirely new device. In this regard the major areas of concentration will be:

Electronics Development: A detector consisting of a few million channels requires a high degree of integration. The small size, low bias and magnetic field immunity of the SiPMs has already allowed us to take the first step towards this goal. The photo-conversion occurs right at the tile thus integrating the light transport and conversion functions on the tile itself. The next logical step is to bring an equivalent level of integration to the electrical signal path.
While individual cables per tile are feasible for the prototype containing a few thousand channels, they are not a viable option for a device with a few million channels. Our objective is the design and fabrication of a readout system with the required mechanical and electronics integration such that data from many tiles could be sent off the detector on a few conductors. The strategy is to have a PC board inside the detector which will connect directly to the silicon photodetectors and carry the necessary electronics and signal/bias traces (see Fig. 7).

Design and prototyping of this integrated readout board will continue to be one of the key elements of our R&D program for the 2006-07 period. We are undertaking this task with technical assistance from Fermilab electrical and mechanical engineering. Work has already begun on prototyping 1 mm thick, 25 cm x 25 cm PC boards. The board size was chosen as it potentially fits sixty-four (8x8) of our scintillator tiles. For the full detector the most economical solution for the front-end will probably be a custom ASIC which encompasses the following functionalities: preamplification (gain of ≈ 10), multiple thresholds (discriminators or time over threshold possible), nano-second time resolution, electronic charge injection and temperature monitoring.

For our R&D studies however, we are currently not interested in producing a custom ASIC. The reasons for that are two-fold. First, it is clear that the current funding situation does not allow the development of a custom ASIC to be installed in these boards. Second and even more importantly, a lot can be done before the need for a custom ASIC becomes urgent. Thus a staged approach will be taken. The first boards will not carry any chips. They will carry only the photodetectors and the signal and bias traces. This configuration will allow us to study and optimize the SiPM-PCB interface, signal/bias routing and cross-talk between the traces. Once these boards are functioning satisfactorily, an existing ASIC will be introduced into the board. There are a number of options (e.g. CALICE ECAL and CMS Muon chips) in our hand that serve this purpose adequately and will help us understand power dissipation issues in such an integrated design. The final goal for this R&D will be a few 25 cm x 25 cm planes which can be put in the hadron test beam sometime in 2007.

Calibration: The current calibration system relies on transport of LED light through clear fibers to the individual tiles. The LED’s in turn are themselves monitored with a PIN-diode system. For a system with a few million channels this solution can easily get out of hand. Our objective will be the design and prototyping of a robust calibration system which is scalable. We propose to do this by separating the relative and absolute calibration functions. For the absolute calibration we would aim to develop a scheme based on a radioactive source. This may take the shape of a movable wire source or the deposition of radioactive material near the tiles themselves. For a quick monitoring of the gain a LED system may still be useful. The gain of a SiPM can be tracked by monitoring the distance between the photo peaks. Since
only the difference between the peaks is relevant the instabilities in the absolute amount of light emitted by the LED’s is not a critical issue. This obviates the need for a PIN-diode monitoring system. Further simplification may be obtained by shining the LED directly on the tiles. The R&D will focus on the mechanical and electrical aspects of this arrangement. Of special interest on the mechanical side would be the challenge to keep the layer thickness to a minimum while on the electrical side the cross talk induced on the signal traces due to the proximity of the LED will need to be addressed.

Photodetectors We will continue to keep abreast of relevant developments in silicon photodetectors. Of special interest to us is the study and characterization of large-area, enhanced blue-sensitivity SiPM’s which are now coming on the market. Their potential value lies in the prospect of a fiber-less operation. The elimination of the fibers from the tile, if at all possible, would significantly simplify assembly of a scintillator HCAL. There are however, very significant issues like optimal tile-photodetector coupling, uniformity of tile response and the extremely high dark rate for large-area SiPM’s that would need to be addressed before any conclusions can be drawn. We have been in negotiations with vendors for the production of a few 3 mm x 3 mm (compared to the 1 mm x 1mm sensors we are currently using) SiPM’s with acceptable room-temperature noise characteristics. If available at a reasonable price we will study their characteristics in detail and assess the possibility of directly coupling these photodetectors to the tiles without the use of a fiber.

FY2006 activities and deliverables

1. Commissioning of the Scint. HCAL prototype,
2. Operation of the HCal in hadron test beam,
3. Prototyping of the integrated readout board,
4. Investigation of large-area SiPM’s (if available)

The 2006 deliverable is a prototype accumulating data in a hadron test beam and first results from studies with an integrated PCB design.

FY2007 activities and deliverables

1. Continued operation of the HCAL in a hadron test beam,
2. Analysis of test beam data,
3. Installation of a few integrated PCB planes in the test beam,
4. Initiate calibration system design

The 2007 deliverable will be physics results from the scintillator hadron calorimeter prototype test beam run and results of the performance of the integrated readout boards in a test beam.

Existing Infrastructure/Resources
The funds requested in this proposal will be augmented by the following support, from other sources:

1. NICADD personnel,
2. NICADD scintillator extruder line,
(c) NIU machine shops,
(d) Collaboration with Fermilab on electrical and mechanical engineering.

Budget justification

FY2006: Our participation in the assembly and commissioning of the HCAL prototype will involve NICADD staff members (not included in the budget presented here) and a graduate student (0.5 FTE). The equipment and M&S costs relate primarily to further design and development of an integrated readout (layout, test boards, power supplies, test fixtures etc.).

FY2007: Operation of the test beam, calibration and analysis of the data, testing and installation of the integrated readout boards will be done with the additional support of a post-doctoral associate (0.5 FTE). Support for a graduate student will need to be raised to 1.0 FTE. Fabrication and testing of the boards constitute the equipment and M&S costs.

The travel funds (2006-2007) will cover costs of travel by group members to collaborating institutions and for attending conferences/meetings for the purposes of this project only.

The budget takes into account the NIU mandated fringe: 52% and indirect cost: 45% rates.

Two-year budget, in then-year K$ (NIU)

<table>
<thead>
<tr>
<th>Item</th>
<th>FY2006</th>
<th>FY2007</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Professionals</td>
<td>0</td>
<td>22.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Graduate Students</td>
<td>11.0</td>
<td>22.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Undergraduate Students</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Salaries and Wages</td>
<td>11.0</td>
<td>44.0</td>
<td>55.0</td>
</tr>
<tr>
<td>Fringe Benefits</td>
<td>0</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Total Salaries, Wages and Fringe Benefits</td>
<td>11.0</td>
<td>55.5</td>
<td>66.5</td>
</tr>
<tr>
<td>Equipment</td>
<td>20.0</td>
<td>15.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Travel</td>
<td>5.0</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Materials and Supplies</td>
<td>5.0</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Total direct costs</td>
<td>41.0</td>
<td>80.5</td>
<td>121.5</td>
</tr>
<tr>
<td>Indirect costs (45% of non-equipment)</td>
<td>9.5</td>
<td>29.5</td>
<td>39.0</td>
</tr>
<tr>
<td>Total direct and indirect costs</td>
<td>50.5</td>
<td>110.0</td>
<td>160.5</td>
</tr>
</tbody>
</table>

Broader Impact

Student involvement in research is a critical aspect of the proposed research program. Students can make significant contributions in detector R&D, construction, testing, software development, data collection and analysis. They are, in the process, exposed to cutting-edge research techniques and technology which they can utilize in industry or related fields.

The scintillator R&D involves collaborative work with chemists and mechanical engineers. As an example, faculty and students from NIU engineering department have been involved in extruder die design and operation. Improvements in this technology are applicable to many fields which need to detect particles including other sciences and medicine.
NIU runs a vigorous outreach program which visits schools and civic organizations in the northern Illinois region with the purpose of increasing enthusiasm and public awareness for science. The presentations emphasize energy and light but also address how scientists make and interpret observations. Over 10,000 students per year attend these presentations. NIU/NICADD faculty and staff also volunteer for the Fermilab 'Ask-a-Scientist' program and a similar one offered through the NIU outreach website.

References