Delivery Ring

Diktys Stratakis

Fermi National Accelerator Laboratory

USPAS 2019
January 23, 2019

Outline

- Injection and extraction
- Beamline optics and performance
- Proton removal in the DR
- Triggers of errors in the DR

Deliver Ring (DR)

Simulation model

- M2 \& M3 lines will carry the secondary beam from the target (T) to the delivery ring (DR)
- Loop four times until μ^{+}yield peaks and all p are removed

Injection \& extraction

- What makes a good injection?
- Inject a particle beam into a circular accelerator at the appropriate time
- Minimize loss and place injected particles onto the correct trajectory, with the correct phase-space parameters
- What makes a good extraction?
- Extract the particles from an accelerator to a transfer line or a beam dump, at the appropriate time
- Minimize loss and place the extracted particles onto the correct trajectory, with the correct phase-space parameters
- Both are important for good performance of an accelerator
- For g-2, we are interested for single turn (fast) injection and extraction

Injection mechanism

- Requires a combination of septa and kicker magnets
- Septa:
- Can be magnetic or electrostatic
- Have two vacuum chambers
- Provide slower field rise/fall times but stronger field compared to kickers

Magnetic septum

- The deflected beam goes through homogeneous B-field established between magnetic coils. The circulating beam passes next to the main magnetic circuit and "sees" no B-field.
- It uses current (I) to separate field regions

Muon Campus magnetic septum

- For the Muon Campus, a magnetic septum is used to inject beam to the DR and to abort the proton beam

Lambertson septum

- Two field regions like a magnetic septum. BUT there is magnetic material that separates the two field regions
- A kicker magnet is used to deflect the beam vertically first and then the Lambertson magnet deflects the beam horizontally or vice versa

$B=0$

Muon Campus Lambertson septum

- For the Muon Campus, a magnetic septum is used to extract the beam out of the DR

Muon Campus Lambertson

Injection to the Delivery Ring

- Conceptual design

- Simulation model

Extraction from the Delivery Ring

- Beam is extracted with a pair of horizontal kickers
- Subsequently, a Lambertson and C-magnet pair will be used to bend the beam upward out of the Delivery Ring

Straight D30 section

- Injection into and extraction out of the DR happens at the same straight section and contains the smallest apertures.

Straight D30 section

Delivery Ring lattice

- Features of the DR
- Three long dispersion free straight sections together with 3 arc sections
- 57 FODO cells and 66 dipoles
- Ideal particle will follow a particular trajectory, which closes on itself after one turn (closed orbit)

Delivery Ring optics

Performance of the Delivery Ring

Performance of the Delivery Ring

- Muon beam is peaked near "magic" momentum with $\Delta p / p=$ $\pm 1.5 \%$

Proton removal

- Proton beam is removed by means of kicker magnet
- The kicker rise time is $\sim 180 \mathrm{~ns}$
- Multiple revolutions are required to provide enough kicker gap between muons and protons

Abort line

Vertical Profile of the Delivery Ring Abort Line

Bunch separation

- Revolution times for $3.1 \mathrm{GeV} / \mathrm{c}$ beam:

$$
\mu^{+}, \beta=0.999, T=1685.5 \mathrm{~ns} e^{+}, \beta=0.999, T=1684.5 \mathrm{~ns} p, \beta=0.957, T=1760.2 \mathrm{~ns}
$$

Proton removal - 4 turns

- Recall that kickers have a relative fast rise time ($\sim 180 \mathrm{~ns}$)

Proton removal - 5 turns

Spin precession in the DR

Momentum compaction

- In a circular machine, a nominal closed orbit is defined for a particle with a nominal momentum p_{0}
- For a particle with momentum $p_{0}+\Delta p$ the trajectory is different from length L_{0} due to the dipole bending radius. We call ΔL this extra length and define the momentum compaction as $\alpha_{c}=\frac{\Delta L / L_{0}}{\Delta p / p_{0}}$
- Time for one turn: $\tau=\frac{L}{v}$ or $\frac{\Delta \tau}{\tau}=\frac{\Delta L}{L}-\frac{\Delta v}{v}$
- But $\frac{\Delta v}{v}=\frac{1}{\gamma^{2}} \frac{\Delta p}{p}$
- We can re-write the above equations as: $\frac{\Delta \tau}{\tau}=\left(\alpha_{c}-\frac{1}{\gamma^{2}}\right) \frac{\Delta p}{p}$

Error trigger: Path length

- Momentum compaction is a constant of the machine and for the DR $a_{c}=0.017$
- $\Delta \tau=\frac{L}{c \beta}\left(\alpha_{c}-\frac{1}{\gamma^{2}}\right) \frac{\Delta p}{p}$
- For the DR, $L=505 \mathrm{~m}$, $\Delta p / p=1.5 \%, \gamma=29.3$,
- After 4 turns: $\Delta \tau=\sim 1.6$ ns

Error trigger: Spin-mom. correlations

B-Field
Spin precession: 1

Spin precession relative to momentum:

$$
\omega_{a}=a_{\mu} \frac{e B}{m_{\mu} c}=\gamma \alpha_{\mu} \omega_{c}
$$

Precession after N turns: $\quad \varphi_{a}=2 \pi N \gamma a_{\mu}$
Slope of spin-momentum correlation: $\frac{d \varphi_{a}}{d p}=\frac{2 \pi N a_{\mu}}{m_{\mu} c}$

Momentum spread after DR turn 1

Spin-mom. correlations in the DR

(peı) <ф> 'ə|6ue uo!ssəoəəd u!

