Delivery Ring

Diktys Stratakis Fermi National Accelerator Laboratory

USPAS 2019 January 23, 2019

- Injection and extraction
- Beamline optics and performance
- Proton removal in the DR
- Triggers of errors in the DR

Deliver Ring (DR)

- M2 & M3 lines will carry the secondary beam from the target (T) to the delivery ring (DR)
- Loop four times until µ⁺ yield peaks and all p are removed

Injection & extraction

- What makes a good injection?
 - Inject a particle beam into a circular accelerator at the appropriate time
 - Minimize loss and place injected particles onto the correct trajectory, with the correct phase-space parameters
- What makes a good extraction?
 - Extract the particles from an accelerator to a transfer line or a beam dump, at the appropriate time
 - Minimize loss and place the extracted particles onto the correct trajectory, with the correct phase-space parameters
- Both are important for good performance of an accelerator
- For g-2, we are interested for single turn (fast) injection and extraction

Injection mechanism

- Requires a combination of septa and kicker magnets
- Septa:
 - Can be magnetic or electrostatic
 - Have two vacuum chambers
 - Provide slower field rise/fall times but stronger field compared to kickers
- Kickers:
 - One vacuum chamber (like dipoles)
 - Fast field rise/fall times (<< 1 µs) but weaker field compared to kickers

Magnetic septum

- The deflected beam goes through homogeneous B-field established between magnetic coils. The circulating beam passes next to the main magnetic circuit and "sees" no B-field.
- It uses current (I) to separate field regions

Muon Campus magnetic septum

 For the Muon Campus, a magnetic septum is used to inject beam to the DR and to abort the proton beam

Lambertson septum

- Two field regions like a magnetic septum. BUT there is magnetic material that separates the two field regions
- A kicker magnet is used to deflect the beam vertically first and then the Lambertson magnet deflects the beam horizontally or vice versa

Muon Campus Lambertson septum

 For the Muon Campus, a magnetic septum is used to extract the beam out of the DR

Muon Campus Lambertson

Simulation model

Extraction from the Delivery Ring

- Beam is extracted with a pair of horizontal kickers
- Subsequently, a Lambertson and C-magnet pair will be used to bend the beam upward out of the Delivery Ring

Straight D30 section

 Injection into and extraction out of the DR happens at the same straight section and contains the smallest apertures.

Straight D30 section

Delivery Ring lattice

- Features of the DR
 - Three long dispersion free straight sections together with 3 arc sections
 - -57 FODO cells and 66 dipoles
 - Ideal particle will follow a particular trajectory, which closes on itself after one turn (closed orbit)

IC104

IC210

PWC105

WC204

Delivery Ring optics

16

Performance of the Delivery Ring

17

Performance of the Delivery Ring

• Muon beam is peaked near "magic" momentum with $\Delta p/p = \pm 1.5\%$

Proton removal

- Proton beam is removed by means of kicker magnet
- The kicker rise time is ~180 ns
- Multiple revolutions are required to provide enough kicker gap between muons and protons

Abort line

Vertical Profile of the Delivery Ring Abort Line

Bunch separation

Revolution times for 3.1 GeV/c beam:

 $\mu^+, \beta = 0.999, T = 1685.5 \text{ ns } e^+, \beta = 0.999, T = 1684.5 \text{ ns } p, \beta = 0.957, T = 1760.2 \text{ ns}$

Proton removal – 4 turns

• Recall that kickers have a relative fast rise time (~180 ns)

Proton removal – 5 turns

Spin precession in the DR

24

Momentum compaction

- In a circular machine, a nominal closed orbit is defined for a particle with a nominal momentum p_0
- For a particle with momentum $p_0 + \Delta p$ the trajectory is different from length L_0 due to the dipole bending radius. We call ΔL this extra length and define the momentum compaction as $\alpha_c = \frac{\Delta L/L_0}{\Delta p/p_0}$
- Time for one turn: $\tau = \frac{L}{v}$ or $\frac{\Delta \tau}{\tau} = \frac{\Delta L}{L} \frac{\Delta v}{v}$
- But $\frac{\Delta v}{v} = \frac{1}{\gamma^2} \frac{\Delta p}{p}$
- We can re-write the above equations as: $\frac{\Delta \tau}{\tau} = \left(\alpha_c \frac{1}{v^2}\right) \frac{\Delta p}{n}$

Error trigger: Path length

• Momentum compaction is a constant of the machine and for the DR $a_c = 0.017$

•
$$\Delta \tau = \frac{L}{c\beta} \left(\alpha_c - \frac{1}{\gamma^2} \right) \frac{\Delta p}{p}$$

- For the DR, L = 505 m, $\Delta p/p = 1.5\%$, $\gamma = 29.3$,
- After 4 turns: $\Delta \tau = \sim 1.6$ ns

Error trigger: Spin-mom. correlations

Spin-mom. correlations in the DR

28