Spin

D. Rubin USPAS

January 2019

BMT

$$
\begin{gathered}
\frac{d S}{d t}=-\frac{e}{\gamma m}\left[(1+G \gamma)\left(\mathbf{B}_{\perp}+(1+G) \mathbf{B}_{\|}\right] \times \mathbf{s}\right) \\
\frac{d \beta}{d t}=\frac{e}{\gamma m} \beta \times \mathbf{B}
\end{gathered}
$$

Polarization in lab frame rotates $1+G \gamma$ times faster than velocity

$$
\begin{gathered}
\text { where } G=g / 2-1 \\
\frac{d S}{d s} \frac{d s}{d t}=\frac{d S}{d s} v\left(1-\frac{x}{\rho}\right)^{-1} \\
\rightarrow \frac{d S}{d s}=-\frac{e}{\gamma m v}\left(1+\frac{x}{\rho}\right)\left((1+G \gamma) \mathbf{B}_{\perp}+(G+1) \mathbf{B}_{\|}\right)
\end{gathered}
$$

$$
\begin{gather*}
\rightarrow \boldsymbol{\Omega}_{\mathbf{p}}=-\frac{e}{p_{0}} \frac{1+x / \rho}{1+\delta}\left((1+G \gamma) \mathbf{B}_{\perp}+(G+1) \mathbf{B}_{\|}\right) \\
\frac{d \beta}{d s}=\frac{e}{\gamma m v} \beta \times \mathbf{B} \quad \quad[1 /\llcorner] \tag{1/L}\\
\rightarrow \boldsymbol{\Omega}_{\mathbf{c}}=-\frac{e}{\gamma_{0} m v} \mathbf{B}_{\perp}
\end{gather*}
$$

Relative precession per unit length

$$
\begin{gathered}
\rightarrow \boldsymbol{\Omega}=\boldsymbol{\Omega}_{\mathbf{p}}-\boldsymbol{\Omega}_{\mathbf{c}} \\
R_{e f f} \Omega=2 \pi \nu=2 \pi G \gamma
\end{gathered}
$$

Spin tune

Propagation through finite length at B

$$
d \theta=\frac{e}{p_{0}} \nu B_{\perp} d s
$$

In longitudinal field

$$
d \phi=\frac{e}{p_{0}}(1+G) B_{\|} d s
$$

Propagation of spin is a succession of rotations

$$
\vec{S}_{f}=R \vec{S}_{i}
$$

The product of rotations through each element

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
S_{x} \\
S_{y} \\
S_{z}
\end{array}\right)_{f}=\left(\begin{array}{ccc}
\alpha^{2}(1-C)+C & \alpha \beta(1-C)-\gamma S & \alpha \gamma(1-C)+\beta S \\
\alpha \beta(1-C)+\gamma S & \beta^{2}(1-C)-C & \beta \gamma(1-C)-\alpha S \\
\alpha \gamma(1-C)-\beta S & \beta \gamma(1-C)+\alpha S & \gamma^{2}(1-C)+C
\end{array}\right)\left(\begin{array}{c}
S_{x} \\
S_{y} \\
S_{z}
\end{array}\right)_{i} \\
\alpha & =\hat{\Omega} \cdot \hat{x} \\
\beta & =\hat{\Omega} \cdot \hat{y}
\end{array} \begin{array}{l}
\text { a }=\sin (\Omega s) \\
\gamma
\end{array}\right)
$$

$$
\text { Horizontal bend } \quad: \quad \frac{B_{y}}{B \rho_{0}}\left[\delta \hat{y}+\nu_{0} y^{\prime} \hat{z}\right]
$$

$$
\text { Vertical bend }: \frac{B_{x}}{B \rho_{0}}\left[\delta \hat{x}+\nu_{0} x^{\prime} \hat{z}\right]
$$

$$
\text { Quadrupole : } \quad-\frac{1+\nu_{0}}{B \rho_{0}} \frac{\partial B_{y}}{\partial x}[y \hat{x}+x \hat{z}]
$$

The eigenvector is a closed spin trajectory.

Accelerating beam hits a spin resonance whenever $G \gamma=N$

Every 523 MeV for protons
441 MeV for electrons
91.3 GeV for muons

Snake
Longitudinal field rotate spin about velocity vector
Full snake $\quad \phi=\pi \rightarrow \Delta \nu=\frac{1}{2}-\nu$

$$
\nu \rightarrow \frac{1}{2}
$$

Spin tune in g-2 ring

At the magic momentum

$$
\begin{aligned}
G & =\frac{1}{\gamma^{2}-1}=0.001166 \\
\gamma & =\left(\frac{1}{G}+1\right)^{1 / 2} \\
\nu & =G \gamma=\left(G^{2}+G\right)^{1 / 2}=0.034
\end{aligned}
$$

Spin resonance in g-2ring

Skew octupole multipole

$$
\begin{gathered}
B_{x} \propto y^{3} \cos (s / R) \\
y=A_{y} \cos \left(\frac{Q_{y} s}{R}\right) \\
y^{3}=\frac{A_{y}^{3}}{4}\left(3 \cos \left(\frac{Q_{y} s}{R}\right)+\cos \left(\frac{3 Q_{y} s}{R}\right)\right) \\
y^{3} \cos (s / R)=A_{y}^{3} \cos \left(\frac{3 Q_{y} s}{R}\right) \cos \left(\frac{s}{R}\right)+\ldots
\end{gathered}
$$

Spin resonance in g-2ring

Skew octupole multipole

$$
\begin{aligned}
& y^{3} \cos (s / R)=A_{y}^{3} \cos \left(\frac{3 Q_{y} s}{R}\right) \cos \left(\frac{s}{R}\right)+\ldots \\
& y^{3} \cos (s / R) \sim A_{y}^{3} \cos \left(\frac{\left(3 Q_{y}-1\right) s}{R}\right)+\ldots
\end{aligned}
$$

Spin resonance

$$
3 Q_{y}-1=G \gamma=0.034
$$

Skew Octupole

