Real Accelerators: a facility overview

the nuts and bolts...and gaskets and resistors

United States Particle Accelerator School – Accelerator Fundamentals Old Dominion University/Hampton VA 15 – 26 January 2018 Elvin Harms Accelerator Division/Fermilab harms@fnal.gov

Introduction

Scratch the surface' overview
What goes into making a real working accelerator
Perspective of 'big' machines
Principles applicable to all types of accelerators
Interactive

Scale

Table top

E. O. Lawrence early cyclotron 'dees' Berkley, California USA

b Big machines

LHC - 27 kilometers CERN Geneva, Switzerland

European XFEL - 3.4 kilometers DESY Hamburg, Germany

What makes up an Accelerator?

Two primary components

- Magnet system
 - Keep the beam on course
 - Keep the beam focused
- Radiofrequency system
 - Impart energy to the particle beam
 - Acceleration
 - Maintain beam's energy (synchrotron light)
 - Maintain structure (collider, storage ring)

Electromagnets

- Conventional
 - Water or air-cooled
 - Copper or aluminum coils
 - Iron shapes and contains the field
- Superconducting
 - Liquid helium cooled
 - Higher fields > higher energies
 - Ramp slowly eddy currents
 - Coil placement critical to field

Permanent

Gradient or 'Combined function' — Steering and focusing by a single element

Separated function

- Focusing and bending are done
 - by separate elements
 - Quadrupole for focusing
 - Dipole for bending -

- Flavors
 - Dipoles
 - Quadrupoles
 - Correctors
 - 'trim' dipoles
 - (skew) quadrupoles
 - sextupoles
 - even higher order
 - Special purpose
 - Injection/Extraction
 - Light sources

Sextupole

Quadrupole

Flavors – Undulator/Wiggler

Can be permanent, electro-, some now superconducting

Superconducting CROSS SECTION ALIGAMENT TARGET AN QUADRUPOLE BUS-BAR **EAT EXCHANGER PIPE** UPERNULATION SUPERCONDUCTING-CORS BEAM PIPE HERMONG CYLINDER / HE I-VESSEL RONYORE VACUUM VESSEL THERMAL SHEELD AURILIARY BUS-BARS USTENITIC STEEL COLLARS BEAM SCREEN ICON INSERT INSTRUMENTATION HERES **ILLER PIECE** OF BUS-RAR UPPORT POST CERN AC/DI/MM - 2001/06

Radiofrequency systems

- Low level
 - Frequency
 - Amplitude (voltage)
 - Feed forward & feedback
 - frequency, amplitude, phase
 - slow, fast
 - beam

Radiofrequency systems

≽ High level

- Amplification
- Tubes, solid state, klystron
- RF distribution
- Accelerating cavities

Radiofrequency systems - Superconducting

- Cavities typically made of high purity Niobium
 - (Z = 41)
 - Operate at ~2 Kelvin
- Generate accelerating gradients ~35 MV/m.
- **Q~10**¹⁰
- complicated fabrication
- maturing technology
- variety of shapes & frequencies

Radiofrequency systems - Superconducting

Tesla style 1.3 GHz 9-cell cavity frequency spectrum (room temperature)

Radiofrequency systems - Superconducting

Not 'just' a cavity

- Power
 - Accelerators require lots of it!
 - Stable and reliable source

- Power
 - Magnets connected in series
 - Distribution
 - Regulation/feedback loops
 - Current changes through a component leads to changes
 in beam behavior (never better...)

Contain the beam in a pipe

- Vacuum
 - Particles travel a long way while being accelerated/in storage
 - Scattering by air can lead to reduced beam quality
 - emittance growth
 - energy loss

Vacuum

- Quality: at least 10⁻⁷ mbar for circular machines
- Distributed pumping
- Ion pumps, TSP' s, cryo pumping
 - Leak checking
 - Pick the correct materials and seals
- Meticulous cleaning beforehand
- UHV: bake the chamber in place
 - SRF: clean room assembly

Cooling

- Virtually every component requires some sort of external cooling, electronics, too
 - Water and air are the most common media, but also
 - Glycol,
 - Superconducting components require cryogens
 - liquid helium at ≤4 Kelvin most common
 - Coolant should be in as direct contact with heat load as possible (best thermal transfer)

Water Cooling

- Conventional magnet coils, klystrons, too, typically have a coolant orifice through middle of conductor
- Closed loop Control the chemistry
 - Water must be low conductivity (deionized) since water & current flow together
 - Remove the dissolved oxygen
 - Minimize particulates small orifices
 - Regulate the pressure & temperature

Cryogenic Cooling

Superconducting coils or cavities bathed in liquid helium between 1.8 and 4.6K

- Lots of refrigeration (significant power use)
- Low heat loss cryostats are super "thermos" bottles

equivalent to ~20,000 household refrigerators

USPAS Fundamentals - Winter 2018

Make Spanshot I @ 2001-2012 Fermilah I S

Fermilab

Cryogenic Cooling

- 8-cavity superconducting RF module: 2 Kelvin
- Lots of refrigeration (significant power use)
- Heat loss ~ 10's of watts
- Modules are also super "thermos" bottles

Enclosure 🕹

- Electrical and Radiation hazards when operating
- Personnel protection
- Dump the beam in a safe place

- Equipment housing
 - Want power supplies and other interface equipment as close as possible, but accessible

Alignment

- Keep it in line!
 - Tevatron 150 to 800 GeV in 30 seconds

$$\tau_0$$
 = 21 μ s

C ~4 miles

> 1.4 million miles traveled during acceleration alone

- **&** Alignment
 - Where is it?
 - Position of components with respect to each other
 - Macro-positioning

🕹 Alignment

Move it

- Reference system
- Fixturing
- Component stands
- Remote positioning

Diagnostics

Where's the beam, what does it look like, how many particles?

- Beam Position Monitor
- Beam Loss Monitor
- Profile Monitor/Wire scanner
- Schottky detector
- Toroid
- Resistive Wall Monitor
- Damper

biagnostics

		earr						
	SNAPSHOT (±	5 mm)	VERT prot-batch			31-DEC-2002 16:52:33		
					в			
	11	NoBeam	5.7	4.3	-1.08	-2.58	2.42	
	12	28	85	.85	-1.1	-1.1	.91	
	14	-1	1.73	.43	-2.45	1.41	67	
	18	.73	.57	-1.93	2.52	.94	94	
	21	1.03	95	7	1.05	.59	.58	
	25	-1.662	.43	05	-2.96	67	19	
	27	6664	1.03	.66	4		-1.1	
	29	-1.35	1.13	51	2.72	1.13	45	
	35	-2.47	-1.82	45	-1.01	69	.89	
	37	-1.48	7.28	- 38	-3.34	47	1.34	
	43	.34	2.51	2	2.06	.92	92	
	45	1.44		17	2.54	.93		
	47	2.13	3.34	-1.07	-1.92	57	1.49	
	AØ	2.00	1.27	8.34		1.00		
	FØ	1.673	3.02					
FR 000		A A A		rall	NAA	AAA	Aaab	rms 1.683
		Y W W Y	V	Ψ₩Į	VV		W W W	
	E			RING	В		D	

DD 1. Toursteen DDM F

Orbit (BPM's)

Beam profiles

 Diagnostics
 – (Resistive)
 Wall current monitor

- Controls system
 - Monitor and Control
 - Timing
 - Fast response
 - Beam removal
 - Coordination
 - Human interface

Where does the beam go?

Experiments / End Users Internal to machine

- Interaction regions
 - Beam quality/size

Where does the beam go?

- Experiments / End
 - Users
 - External
 - Rate, energy, size, and location to deliver beam
 - Single-turn
 - Resonant extraction
 - Synchrotron light

Resources

People are the most important component
Other resources

Books
Schools
Workshops, conferences
Web

e:

