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Emittance Preservation 
‣ Liouville’s Theorem:  the volume enclosed by surface 

in phase space is invariant under conservative forces
‣ Another theorem from classical dynamics: integration 

over a time period of the “action variables” is an 
adiabatic invariant

‣ transverse:  (x, px), (y, py) are action variables
‣ longitudinal:  𝛥E and 𝛥t are also action variables
‣ “normalized” transverse phase space emittances, 

‣ 𝜖N =  (𝛽𝛾)𝜖 = (p/mc) ∫ x’ dx = ∫ px dx /mc
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Protons vs. Electrons
• When dealing with a beam line or along a linac, the 

same issues affecting beam emittance exist for both 
electron and proton (or heavier ion) beams.

• In the case of circular accelerators, there is a distinct 
difference:  charged particles radiate as they are 
accelerated, and electrons will radiate much more than 
protons and, as we have seen, the final emittance of 
electron beams in a ring will be defined by the optics of 
the ring.

• This is not true for a proton beam.  If the emittance is 
increased due to errors or mismatches, the damage is 
done and cannot be undone without much effort
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Sources of Emittance Growth
• Will discuss two classes of disruptive processes…

‣ Single non-adiabatic disturbance of the distribution
- examples:  injection errors (steering, focusing); 

electrostatic “spark”; single pass through a vacuum 
window; a pinger/kicker excitation; intrusive diagnostic 
measurement; …

‣ Repetitive random disturbances of individual particles, 
leading to diffusion
- examples:  RF noise; beam-gas scattering; power 

supply noise; mechanical vibrations; …

3
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16 32. Passage of particles through matter
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Figure 32.10: Quantities used to describe multiple Coulomb scattering. The
particle is incident in the plane of the figure.

Fig. 32.10 shows these and other quantities sometimes used to describe multiple
Coulomb scattering. They are
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All the quantitative estimates in this section apply only in the limit of small θ rms
plane and

in the absence of large-angle scatters. The random variables s, ψ, y, and θ in a given plane
are correlated. Obviously, y ≈ xψ. In addition, y and θ have the correlation coefficient
ρyθ =

√
3/2 ≈ 0.87. For Monte Carlo generation of a joint (y plane, θplane) distribution,

or for other calculations, it may be most convenient to work with independent Gaussian
random variables (z1, z2) with mean zero and variance one, and then set

yplane =z1 x θ0(1 − ρ2
yθ)
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√

12 + z2 x θ0/2 ; (32.22)

θplane =z2 θ0 . (32.23)

Note that the second term for y plane equals x θplane/2 and represents the displacement
that would have occurred had the deflection θplane all occurred at the single point x/2.

For heavy ions the multiple Coulomb scattering has been measured and compared with
various theoretical distributions [41].
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The	beam	particles	interact	with	the	
atoms	in	the	material	and	scatter,	
primarily	from	Coulomb	interactions.		In	
either	plane	—	x	or	y	—	the	distribution	of	
scattering	angles	emerging	from	the	
material	is	given	by:

where	Lrad	is	the	“radiation	length”	of	the	material:
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⇢Z2r2e ln

a

R

NA	=	Avogadro’s	No.,	A	=	atomic	mass,	Z	=	charge	state,	re	=	“classical	electron	radius”,	
a	=	radius	of	target	atom,	R	=	radius	of	target	nucleus,	α	=	fine	structure	constant

for	more	accurate	estimates,	see		Particle	Data	Booklet,		http://pdg.lbl.gov

Non-adiabatic Disturbances
Example:  single pass through a thin object (vacuum window)

http://pdg.lbl.gov
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Side Note:  The Bethe Formula
• Radiation Length is related to the stopping power of 

material as charged particles pass through
‣ mean distance e- travels before losing all but 1/e of 

its energy
• The average energy loss rate is given by the Bethe 

formula:
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H. Bethe und J. Ashkin in "Experimental Nuclear Physics, 
ed. E. Segré, J. Wiley, New York, 1953, p. 253

Used	to	determine	depth	of	energy	deposition	
for	proton	or	ion	therapy,	for	instance:

“Bragg	Peak”
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• As we saw earlier, the emittance and Courant-
Snyder parameters describing a distribution can be 
written as:

• From the scattering, the angular distribution will be 
altered:

• We then average over the distribution to see the 
effect on the CS parameters and emittance…
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Non-adiabatic Disturbances
Example:  single pass through a thin object (vacuum window)

h�✓2i ⌘ ✓2rmsΔ𝜃	is	random,	with	
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and hence,

hx2i = hx20i
hx02i = h(x00 +�✓)2i

= hx002 +�✓2 + 2x00�✓i
= hx002i+ h�✓2i

hxx0i = hx0(x00 +�✓)i = hx0x00i

assuming that the scattering process is uncorrelated with the phase space
variables. The new emittance after scattering is then given by,

(✏/⇡)2 = hx2ihx02i � hxx0i2 = hx20i(hx002i+ ✓2rms)� hx0x00i2

or,
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where ✓rms = h�✓2i1/2. Since �0 = ⇡hx20i/✏0, then we can write
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s
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�0
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.

And, using this new emittance, we can describe the resulting distribution
after the scattering by new Courant-Snyder parameters
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One can check that indeed �� � ↵2 = �0�0 � ↵2
0 = 1.

Figure 1 shows an example of the phase space distribution before and
after scattering where arbitrary initial parameters are ↵0 = �2, �0 = 20 m,
and the initial rms beam size is chosen to be 1 mm, for which the rms emit-
tance ✏ = 0.05 ⇡ mm-mr. The rms scattering angle is 0.25 mr in the example.
The ellipses indicated by dotted lines correspond to 95% emittances (= 6⇥✏
given above) for easier visibility. Here, the emittance growth is a factor of
5, and the amplitude functions � and ↵ decrease by factors of 5, consistent
with

p
1 + ⇡�0✓2rms/✏0 for the parameters used.
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Figure 1: Phase space before/after (left/right) scattering. Blue/red lines
indicate 95% emittances before/after scattering.
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Non-adiabatic Disturbances
Example:  single pass through a thin object (vacuum window)

If	the	scattering	is	inherent	in	the	system,	then	
can	imagine	re-tuning	the	downstream	optical	
system	to	match	to	the	new	conditions;	but	
will	still	have	an	overall	emittance	growth

x0 = x0
0 +�✓

x = x0
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Non-adiabatic Disturbances
Example:  single pass through a linac/beamline ✓rms ⇡

13.6 MeV

�pc

r
`

Lrad

• Suppose we pass through a long “evacuated” tube of length L.  
As an example, consider a tube which started with air, and has 
been evacuated to an average pressure of 10-6 torr   (760 torr = 1 atm)

• From the PDG report, find Lrad of air (dry; 1am):
‣ density =  1.205 g/l   ,    Lrad =  36.6 g/cm2       
‣ so, Lrad = (36.6 g/cm2)/(1.205 g/ml)(l/1000 cm3)
‣                  = 30373 cm = 304 m
‣ at 10-6 torr, through PV=nRT,  Lrad =  231x109 m 

‣ Estimate the rms scattering angle of a typical particle, just due 
to this effect:

✓rms ⇡
13.6 MeV

27 MeV

r
230 m

23⇥ 1010 m
⇡ 16 µrad
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Side Note:  Kicker Magnet
• Want to induce an angular deflection of a particle 

bunch, or bunch train, without affecting other 
particles outside of the bunch/train

• Need significant B fields that turn on/off on the scale 
of, say, 𝜇s   ex:  bunches @ 1 MHz = 1 𝜇s
‣ Ex:  discharge large current into an inductive load 

(magnet) with a resistance,   gives time constants 
on the scale of ~ L/R:        𝜇H/Ohm = 𝜇s

9

t

~1	𝜇s

many	𝜇s
~	>	1	𝜇s

B	=	B𝜌	𝜃/L

fast	means	low	inductance,	
thus	low	fields	and	low	turns,	
high	currents	in	the	magnets
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Side Note:  Kicker Magnet
• Kickers typically used to deflect beam into and out of 

beam lines and accelerators

• Can also be used for diagnostic purposes, by 
intentionally inducing a betatron oscillation in the 
beam and observing downstream reaction

10

shape, this can translate into small offsets with respect to the closed orbit (betatron oscillations). Thus 
a fast, low-ripple, kicker system is generally required.  

2 Single-turn (fast) injection 
Figure 1 shows an example of fast single-turn injection in one plane. The injected beam passes 
through the homogeneous field region (gap) of the septum: circulating beam is in the field-free region 
(i.e., space separation of injected and circulating beam). The septum deflects the injected beam onto 
the closed orbit at the centre of the kicker magnet; the kicker magnet compensates the remaining 
angle. The septum and kicker are either side of a quadrupole (defocusing in the injection plane) which 
provides some of the required deflection and minimizes the required strength of the kicker magnet. 
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Fig. 1: Fast single-turn injection in one plane 

A kicker magnet is installed in the accelerator and hence the circulating beam is in the aperture 
of the kicker. Thus the kicker field must rise from zero to full field in the time interval between the 
circulating beam and the start of the injected beam (Fig. 1, top right) and fall from full field to zero 
field in the time interval between the end of the injected beam and the subsequent circulating beam 
(Fig. 1, top right). The kicker system is described in more detail in Section 4.  
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Fig. 2: Fast single-turn injection in two planes 

M.J. BARNES, L. DUCIMETIÈRE, T. FOWLER, V. SENAJ, L. SERMEUS

142

Ex:		injection	into	a	synchrotron:

figure	courtesy	of	
M.J.	Barnes,	et	al.,	CERN	
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Non-adiabatic Disturbances
Example:  Discharge of a beam kicker in a synchrotron
• Initially, the distribution is simply “displaced” by the 

action of the kick:

• Nonlinearities will yield:
‣ tune vs. amplitude
‣ decoherence
‣ filamentation
‣ emittance growth
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Figure 4.3: A simulation of kicked particles when there is an octupole field.

Because of the amplitude dependent tune shift due to the octupole field, the

particles gradually lose the coherence (decoherence). Due to the decoherence,

the oscillations of the beam centroid damp down and the beam size increases.

97

figure	by	R.	Miyamoto
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Accelerator Model
• So we will model these effects by assuming the 

distribution will oscillate about the closed orbit, and 
that the oscillation frequencies of the particles will 
depend upon the amplitude of their oscillations
‣ typically:    𝜈 ≈ 𝜈0 + ka2

‣ coherent at first,
‣ then “decoheres”
- leads to filamentation

‣ eventually:  larger emittance

12

nonlinear	tune	shift
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Example:  Injection Steering Mismatch

13

95%	emittance;	no	“6”	if	rms	emittance
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Injection Mismatch

14
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Injection “Beta” Mismatch
• We imagine a ring with an ideal amplitude function, 𝛽, at an 

injection point.  But, suppose the beam line transporting beam 
from an upstream injector delivers the wrong 𝛽 function:

15
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Injection “Beta” Mismatch
• Can write a more general result in terms of the “mismatch” 

invariant:
‣ det(𝛥J)  =  | 𝛥𝛽𝛥𝛾 - 𝛥α2 |  =  invariant 

• If inject with “beam” parameters α,𝛽, 𝛾, whereas the ring has 
periodic parameters α0,𝛽0, 𝛾0, then…

• … after filamentation, the final emittance will be given by

16
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Injection Mismatch

17
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• Can also imagine having the dispersion function entering the 
accelerator from a beam line having the wrong value
‣ amounts to an injection steering error for an off-momentum 

particle — similar analysis as before

Mismatch of the Dispersion Function

18

important	if	the	incoming	beam	has	a	high	
momentum	spread

	÷	6		for	rms	emittance	growth
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Emittance Growth from Diffusive Processes

19

• So far have looked at single, non-adiabatic 
disturbances of our initial particle distribution

• Next, we look at the effect of repetitive random 
disturbances of individual particles, leading to diffusion
- examples:  scattering of particles off of the 

residual gas in the vacuum chamber; power 
supply noise; RF noise; continuous mechanical 
vibrations, …

• This amounts to continuous, random events taking 
place to alter the transverse amplitudes of the motion 
of individual particles
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Repetitive Random Disturbances
• Estimations from a phase space perspective…

20
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• Look again at “vacuum” problem examined earlier
• Suppose circulating in a synchrotron w/ P=10-6 torr:
‣ suppose <𝛽> = 20 m around the circumference, 

and that E = 13.6 GeV
‣ d<a2> = 2 d<x2> = 2 <𝛽> d(𝜖/𝜋) = <𝛽>2 𝜃rms2 dn
‣ d𝜖/dt = 𝜋/2 <𝛽> 𝜃rms2 f0 = 𝜋/2 <𝛽> (0.0136/E) v/Lrad 
‣          = 𝜋/2 (20 m) (10-3) (3x108/2.3x1011)
‣          = 𝜋 (13x10-6 m/s) = 13 𝜋 mm-mr/s  !
‣ so, might need much better vacuum here!

21

Repetitive Random Disturbances
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• So, we see that in repetitive systems such random 
scattering events and other similar disturbances can 
cause emittance growth over time

• Wish to analyze such conditions
‣ analytical approaches
‣ simulations

22

Repetitive Random Disturbances
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The Diffusion Equation
• particle velocities are 

randomly altered
• particles will move 

from one region into 
another

• the rate at which 
particles cross into or 
out of a region 
depends on the slope 
of the distribution 
function

23

can	solve	analytically
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The Diffusion Equation
• think of betatron motion in 

terms of coordinates:
•  x, 𝛼x+𝛽x’    (circular)

• use cylindrical coordinates 
for the Diffusion Equation

• re-cast in terms of an 
emittance ~ r 2 / 𝛽

• with appropriate scaling, can 
write a dimensionless 
equation for the distribution 
function.  Emittance is now 
scaled by the aperture 
acceptance

• apply boundary conditions

24
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The Diffusion Equation
• Analytical Calculations:
‣ solve                      

and make plots:
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• Numerical Simulations
‣ give particles random 

kicks over time, track 
in phase space, and 
plot distribution, etc.
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“Emittance”

Beam	Size

ap	=	10	σ0 ap	=	1	σ0

Analytical	Solutions

“Emittance”

Beam	Size
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Transverse Diffusion — Scattering

27

each	particle	
gets	a	random	
“kick”	in	x’	each	
turn,	taken	
from	a	Gaussian	
distribution	
with	rms	value	
of	𝜃rms

Numerical	Solutions
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Transverse Diffusion

28

R	=	d𝜖/dt	=	constant			(given	by	mechanism)

final	N(t)	~	e-t/τ	

									τ	=	(4/2.4052)(W/R)

beam	has	not	
reached	the	
aperture	yet

final	equilibrium	
distribution	is	
well-defined

no	apparent	emittance	
growth,	but	particle	
amplitudes	are	indeed	
growing,	and	particles	
are	being	lost

W	=	𝜋a2/𝛽

aperture	at	x	=	a

Numerical	Solutions
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Some Comments
• The emittance may be growing, but the intensity will 

not decrease until the beam reaches an aperture
• The beam size may stop growing, but that does not 

mean that the individual particle amplitudes are no 
longer growing — just that the aperture was reached

• The long-term exponential decay of the beam 
intensity can tell you what the emittance growth rate 
is, if you know the transverse acceptance

• A beam with an initially more uniform distribution can 
actually have its “rms” value decrease until 
equilibrium is reached — it is NOT being “cooled”

29
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Comments on “Beam Cooling”
• Stochastic Beam Cooling
• Electron Cooling of Hadron Beams
• Ionization Cooling

30
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Example:
Longitudinal 
Diffusion due 
to
RF Noise

31

Here,	a	random	phase	error	
is	given	to	each	particle	
every	turn


