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Week Two
• Mon:  
‣ Effects of Linear and Nonlinear Errors

• Tue:  
‣ Synchrotron Radiation and Light Sources

• Wed:  
‣ Emittance Preservation; Intensity Effects; 

Instrumentation/Diagnostics
• Thu:  
‣ Facilities; Special Topic(?); Outlook for the Field

• Fri:
‣ Final Exam
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Add Some Realism to our Ideal Accelerator
• Steering (dipole) Errors
• Focusing (quadrupole) Errors
• Errors creating Linear Coupling
• Chromatic (momentum) Effects
• Nonlinear Motion and Resonances

• Not only will errors create perturbations in the beam 
size, etc., but they will also tend to identify operational 
considerations, such as frequency choices, corrector 
placement, alignment tolerances, power supply 
specifications, etc.
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Steering (dipole) Errors
• dipole field error:
‣ manufacturing; powering; control setting, …

• dipole field “roll” (about the longitudinal axis)

• Quadrupole misalignment:

3

𝛥x

s
d

By = B0 �! By = B0 +�B

By = B0, Bx = 0 By = B0 cos� ⇡ B0

Bx = B0 sin� ⇡ �B0

�x0 = ��B`

B⇢

�y0 = �
B0`

B⇢
= � ✓0

�x0 =
d

F



Winter	Session	2018						MJS USPAS	Fundamentals

Steering (dipole) Errors
• A field error creates a betatron oscillation…
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Steering (dipole) Errors
• Closed orbit distortions in a circular accelerator
‣ These are not “one-time” kicks; they affect the 

particle motion every revolution
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The	trajectory	of	each	particle	
will	be	altered	by	the	angle	𝛥𝜃	
every	time	it	passes	through	
the	error	field

black	=	nominal	
red	=	w/	error	field

see	ClosedOrbit.R
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The Closed Orbit
• Want to find the one trajectory which, upon passing 

through the error field, will come back upon itself
‣ this is the “closed” trajectory, or closed orbit

• When find x0, x’0, can find x,x’ downstream:
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Closed Orbit Distortion from Single Error
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Closed Orbit Distortion from Single Error
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Trajectory/Orbit Correction
• To make a local adjustment or correction of the 

position of the beam in a beam line or synchrotron, 
three correctors are required (in general):
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Orbit Corrections
• As an example, in a “FODO” synchrotron, one would 

place correctors near the location of each 
quadrupole — at maximum beta locations, and at the 
source of likely steering errors (misaligned quads)
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Alignment Specifications Discussion
• see TrajTrace.R
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Focusing (gradient) Errors
• Sources of gradient focusing errors
‣ Quadrupole magnet field error
- powering error; control error; manufacturing error

‣ Dipole pole tip error (non-parallel poles)
‣ etc.

• Impact of gradient errors
‣ Look at Hill’s Equation:
- errors in the values of K will alter…
» phase advance (tune, or betatron frequency)
» amplitude function, 𝛽

12
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Focusing (quadrupole) Errors
• β, 𝛼 distortions and “beta-beat”
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β Distortion in a Synchrotron

• In a circular accelerator, the closed solution of the 
amplitude function(s) will be altered by the gradient 
error.  With analysis similar to the situation for a 
closed orbit distortion, the gradient error will produce 
a closed β-distortion all around the ring according to 
(for small errors):
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Focusing (quadrupole) Errors
• Phase/tune shift
‣ a gradient error will distort the amplitude function, 

and therefore distort the development of the phase 
advance downstream.  As the 𝛽 distortion will 
oscillate about the ideal 𝛽 function, the phase 
advance will slightly increase and decrease along 
the way.  This is particularly important in a ring 
where the betatron tune, 𝜈, might need fine control.

‣ To see the change in tune for a synchrotron, we 
look at the effect on the matrix for one revolution…

15
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The Tune Shift Formula
• M0 is the one-turn matrix of ideal ring
• M is the one-turn matrix of the ideal 

ring followed by a small gradient error 
of strength q:
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Focusing (quadrupole) Errors
• What happens if the gradient error is too big?  

• Half-integer stop band

17

Half integer Stopband Beta at the quad:β0 20 m⋅:= Quad error: q
1

200 m⋅
:=

Half the trace of M:
  (should between 
    +1 and -1)

TrM_2 ν0( ) cos 2 π⋅ ν0⋅( ) 1
2
β0⋅ q⋅ sin 2 π⋅ ν0⋅( )⋅−:=

1
4 π⋅

β0⋅ q⋅ 7.958 10 3−×=
New tune:

ν ν0( ) 1
2 π⋅

acos cos 2 π⋅ ν0⋅( ) 1
2
β0⋅ q⋅ sin 2 π⋅ ν0⋅( )⋅−⎛

⎜
⎝

⎞
⎟
⎠

⋅⎛
⎜
⎝

⎞
⎟
⎠

8+ ν0 8.5≤if

1
2 π⋅

acos cos 2 π⋅ 8.5 ν0−( )⋅⎡⎣ ⎤⎦
1
2
β0⋅ q⋅ sin 2 π⋅ 8.5 ν0−( )⋅⎡⎣ ⎤⎦⋅−⎡

⎢
⎣

⎤
⎥
⎦

⋅⎡
⎢
⎣

⎤
⎥
⎦

8.5+ ν0 8.5>if

:=

ν0 8.25 8.2501, 8.75..:= ν 8.25( ) 8.258=

8.25 8.3 8.35 8.4 8.45 8.5 8.55 8.6 8.65 8.7 8.758.25

8.3

8.35

8.4

8.45

8.5

8.55

8.6

8.65

8.7

8.75

ν ν0( )

ν0

cos 2⇡⌫ = cos 2⇡⌫0 �
1

2
q�0 sin 2⇡⌫0

if	too	large,	|cos2𝜋𝜈|	can	become	>1,	thus	unstable!

as	𝜈	—>	integer/2,	huge	distortions	
															a	resonance!

��

�
(s) ⇡ � �q�0

2 sin 2⇡⌫
cos(2|� |� 2⇡⌫)



Winter	Session	2018						MJS USPAS	Fundamentals

Beta-Mismatch Invariant
• We noted that a local gradient error will produce an 

unintended distortion in the amplitude function (in its 
slope, in particular):

• In the absence of further gradient errors, 
‣    | 𝛥𝛽𝛥𝛾 - 𝛥α2 |  is an invariant, and thus will have 

the same value further down the beam line
• proof:
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Gradient Specifications Discussion

19



Winter	Session	2018						MJS USPAS	Fundamentals

Tune correction/adjustment
• In the same way that an error will change the tune of 

a synchrotron, so can a quadrupole field adjustment 
be made to implement a desired change in the tune

• Note, however, that a quad change will alter the 
horizontal tune in one direction, but will alter the 
vertical tune in the other direction.  Also, since the 
amplitude functions, 𝛽x and 𝛽y, may be different, the 
actual shifts in the two tunes will also be different in 
magnitude.

• Thus, to exercise independent control of 𝜈x and 𝜈y, 
there needs to be two quadrupoles (or 2 circuits)

20
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Tune correction/adjustment
• Suppose we have a FODO arrangement, and we put 

adjustable quadrupoles near every “main” 
quadrupole (N = # quads):

• The quadrupoles can be wired in two separate 
circuits, and thus the two tunes can be independently 
adjusted by any (reasonable) amount desired.
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Errors creating Linear Coupling
• So far, have discussed systems where the horizontal 

and vertical motion are distinct.  This occurs naturally 
when using dipole and quadrupole fields:
‣       By = B0 + B’ x        Bx = B’ y
‣ vertical fields cause motion in x, horizontal fields 

cause motion in y
• We’ve seen that a rotated (about its axis) dipole 

magnet will create a field component in the other 
plane, causing steering effects.  A rotated quadrupole 
magnet will produce focusing fields that depend on 
both x and y — coupled motion.
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Errors creating Linear Coupling
• Rotated quadrupole magnet
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Linear Coupling From Solenoid Fields
• Have seen previously that solenoid magnets can be 

used to focus “round” beam distributions
• Solenoid fields can still be present in quad focusing 

accelerators, from beam instrumentation that use 
solenoids, or from particle detectors/experiments in a 
collider, etc.
- in these situations, the effects from these fields 

are usually small, but often noticeable
- can then treat as a small perturbation on the 

normal betatron motion
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Linear Coupling From Solenoid Fields
• We saw earlier…
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Effects of coupling on betatron tunes
• Coupling moves the frequencies about — moves the 

betatron oscillation tunes, in the case of an 
synchrotron — and so can defeat the precise tune 
control needed to avoid resonances in devices such 
as colliders and other storage rings. 

• At an even more elementary level, coupling is an 
irritant in diagnosing beam behavior, for the 
eigenfrequencies and eigenmodes are no longer 
associated with the degrees of freedom specified in 
the design.
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Eigen-frequencies of Coupled Oscillator
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Beam Transport through Coupled Systems
• We’ve just seen the possible introduction of a “4x4” 

matrix approach to analyzing coupled motion
• If we look at 4x4 transport matrices that operate on 

(x,x’,y,y’ ) vectors, then the transport of covariance 
matrices works just as before:

28

⌃ = M⌃0M
T

⌃ =

0

BB@

hx2i hxx0i hxyi hxy0i
hx0xi hx02i hx0yi hx0y0i
hyxi hyx0i hy2i hyy0i
hy0xi hy0x0i hy0yi hy02i

1

CCA
can	also	extend	to	6x6,	which	
includes	W-t	(or	z-z’	or	z-dp/p,	or…)

4x4	matrices	now



Winter	Session	2018						MJS USPAS	Fundamentals

Chromatic Effects
• We may think of dispersion (and the Dispersion 

function) as being the propagation of a steering error, 
where the error was introduced due to 𝛥p/p. 

• 𝛥p/p will similarly introduce gradient “errors”
‣ thus, expect the tune to depend upon 𝛥p/p
‣ and, expect the amplitude function 𝛽 = 𝛽(𝛥p/p)

• Some Examples
‣ Chromatic Aberration in a final focus (FRIB)
‣ Tune spread in a synchrotron due to momentum — 

chromaticity
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Chromatic Aberration in Final Focus

30
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Chromaticity of a Circular Accelerator
• Chromaticity -- change in the betatron tune, 𝜈, with 

respect to relative momentum deviation (𝛥p/p):

• There will be a different chromaticity value for each 
degree of freedom:
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The Natural Chromaticity
• While there may be error fields that contribute to 

chromatic effects (sextupole fields — later), there will 
be a “natural” chromaticity due to the ideal magnets 
of the synchrotron lattice

• Starting from                    for a single gradient error,
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Natural Chromaticity of a Low-𝛽 Insertion
• We saw in our LHC example that the beta function 

has values:
‣ 180 m in cells
‣ ~4500 m in final focus triplet
‣ 0.5 m at the Interaction Point

• Estimate 𝜉nat due to IP:
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Chromatic Corrections
• Example:  suppose synchrotron has 𝜉 = -20, and the 

beam has a momentum spread of ±0.1%; then the 
particle distribution will have a spread in tunes 
between 𝜈0 ± 0.02 𝜈0.

• In order to ensure that all particles have the same 
tunes (hor/ver), within tolerable levels, need to be 
able to adjust the overall chromaticity of the ring.

• Desire focusing element with a focusing strength that 
depends on momentum (linearly, preferably).

• This can be accomplished using sextupole fields in 
regions with horizontal dispersion.
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Chromatic Corrections
• Sextupole Field:  
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Also	Note:		introduces	(intentionally!)	a	non-linear	field!!
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Correction/Adjustment of Chromaticity
• Suppose we have a FODO arrangement, and we put 

adjustable sextuple magnets near every “main” 
quadrupole (N = # sextupole magnets):

• The sextupoles can be wired in two separate circuits, 
and thus the two chromaticities can be independently 
adjusted by any (reasonable) amount desired.
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The Introduction of a Non-Linear Element
• For the first time in our discussion, have introduced a 

“non-linear” transverse magnetic field for use in the 
accelerator system — sextuples for chromatic and/or 
chromaticity correction

• This opens the door to new and interesting 
phenomena:
‣ phase space distortions
‣ tune variation with amplitude
‣ dynamic aperture
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