
Winter	Session	2018						MJS USPAS	Fundamentals

Linacs and Synchrotrons
• Essential difference:

‣ pass N cavities 1 time each

‣     pass 1 cavity N times

‣ otherwise, essentially the 
same longitudinal dynamics
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Linacs and Synchrotrons
• Linac cavities can have different 

frequencies, each at different 
phases (e.g., FRIB); but typically 
one frequency, at least for major 
sections of the linac

• Synchrotron — with only 1 cavity 
system, — inherently same 
frequency, though its value must 
change if particle speed changes 
during acceleration (protons, ions)

• Must consider time of flight 
between cavities / passages
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Repetitive Systems of Acceleration
‣ We will assume that particles are propagating through a 

system of accelerating cavities.  Each cavity has oscillating 
fields with frequency fRF, and maximum “applied” voltage V  
(i.e., this takes into account TTF’s, etc.).   The ideal particle 
would arrive at the cavity at phase !s.

‣ We will choose !s to be relative to the “positive zero-
crossing” of the RF wave, such that the ideal particle 
acquires an energy gain of

- this definition used for synchrotrons; linacs more often 
define !s relative to the “crest” of the RF wave
• apologies for this possible further confusion…
• the physics, of course, is the same

3

�Es = �Ws = qV sin�s
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Acceleration of Ideal Particle

Wish to accelerate the ideal particle.  As this particle exits 
the (n+1)-th RF cavity/station we would have

If we are considering a synchrotron, we can consider the 
above as the total energy gain on the (n+1)-th revolution.  
The ideal energy gain per second would be:  

Next, look at (longitudinal) motion of particles near the 
ideal particle:            = phase w.r.t. RF system
                                 = energy difference from the ideal

�

�E ⌘ E � Es

E(n+1)
s = E(n)

s +QeV sin�s

dEs/dt = f0QeV sin�s

4
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• Assume accelerating system of cavities is set up such that ideal 
particle arrives at each cavity when the accelerating voltage V  is at 
the same phase (called the “synchronous phase”); consider at “test” 
particle:

h = L/��, � = c/frf

E = mc2 +W ; �E , �W

Notes:
(difference	equations)

Desire	h	to	be	an	integer.			
If	L	is	circumference	of	a	synchrotron	then:	

			where	f0	is	the	revolution	frequency,	
In	this	case,	h	is	called	the	“harmonic	number”

h = frf/f0

�n+1 = �n +
2⇡h⌘

�2E
�En

�En+1 = �En +QeV (sin�n+1 � sin�s)
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�En �En+1

�n �n+1

L

h = frfL/vor,
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Applying the Difference Equations
 while (i < Nturns+1) {
    phi = phi + k*dW
    dW  = dW + QonA*eV*(sin(phi)-sin(phis))
    points(phi*360/2/pi, dW, pch=21,col="red")
    i = i + 1
  }

Let’s run a code…
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Acceptance and Emittance
• Stable region often 

called an RF “bucket”
‣ “contains” the 

particles
• Maximum vertical 

extent is the 
maximum spread in 
energy that can be 
accelerated through 
the system 

8
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Acceptance and Emittance
• Stable region often 

called an RF “bucket”
‣ “contains” the 

particles
• Maximum vertical 

extent is the 
maximum spread in 
energy that can be 
accelerated through 
the system 

• Desire the beam 
particles to occupy 
much smaller area in 
the phase space

∆t

∆E

area:  “eV-sec”
Note:  E, t canonical

9
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The	equation	of	the	trajectories	in	phase	space!

�n+1 = �n +
2⇡h⌘

�2E
�En

�En+1 = �En +QeV (sin�n+1 � sin�s)

! d�

dn
=

2⇡h⌘

�2E
�E,

d�E

dn
= QeV (sin�� sin�s)

! d2�

dn2
=

2⇡h⌘

�2E

d�E

dn
=

2⇡h⌘

�2E
QeV (sin�� sin�s)

) d2�

dn2
� 2⇡h⌘

�2E
QeV (sin�� sin�s) = 0

Z ✓
d2�

dn2

◆
d�

dn
dn� 2⇡h⌘

�2E
QeV

Z
(sin�� sin�s)

d�

dn
dn = 0

differential	approach…

start	with	above	

difference	eqs

find	1st	integral:

or, �E2 + 2
�2E

2⇡h⌘
QeV (cos�+ � sin�s) = constant

(1)

(2)
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1

2

✓
d�

dn

◆2

+
2⇡h⌘

�2E
QeV (cos�+ � sin�s) = constant
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Synchrotron Oscillations
• Particles near the synchronous phase and ideal energy 

will oscillate about the synchronous particle with the 
“synchrotron frequency” (this is call synchrotron motion, 
even for a linac!)  In a synchrotron, …
‣ “synchrotron tune”  ==  # of synch. osc.’s per revolution

compute	small	oscillation	frequency:

⇡ �� cos�s

(2⇡⌫s)
2

� = �s +�� ! sin�� sin�s = sin�s cos��+ cos�s sin��� sin�s

) d2��

dn2
�

✓
2⇡h⌘

�2E
QeV cos�s

◆
�� = 0

) ⌫s =

s

�h⌘QeV

2⇡�2E
cos�s

if ⌘ > 0, choose cos�s < 0
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in	(1),	let	
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Comment on Frequencies of the Motion
• From what we’ve just seen, the synchrotron motion 

in a circular accelerator takes many (perhaps 
hundreds of) revolutions to complete one 
synchrotron period

• On the other hand, in the transverse plane, a particle 
will typically undergo many betatron oscillations 
during one revolution

• Thus, transverse/longitudinal dynamics typically 
occur on very different time scales — this actually 
justifies us studying them independently

12
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Motion Near the Ideal Particle
Linearize	the	motion,	and	write	in	matrix	form…

�n+1 = �n +
2⇡h⌘

�2E
�En

�En+1 = �En +QeV (sin�n+1 � sin�s)

= �En +QeV (sin�s cos��n+1 + sin��n+1 cos�s)� sin�s)

= �En +QeV cos�s ��n+1

= �En +QeV cos�s


��n +

2⇡h⌘

�2E
�En

�

��n+1 = ��n +
2⇡h⌘

�2E
�En

�En+1 = QeV cos�s��n +

✓
1 +

2⇡h⌘

�2E
QeV cos�s

◆
�En

Thus,
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✓
��
�E

◆

n+1

=

 
1 2⇡h⌘

�2E

QeV cos�s

⇣
1 + 2⇡h⌘

�2E QeV cos�s

⌘
!✓

��
�E

◆

n

=

✓
1 0

QeV cos�s 1

◆✓
1 2⇡h⌘

�2E

0 1

◆✓
��
�E

◆

n

M								=													Mc									.									Md

or,

“thin”	cavity drift
(acts	as	longitudinal	focusing	element)

Note:		for	"	<	0,		Md	is	a	“backwards”	drift;		i.e.,	#!	decreases	for	#E>0	
																																													(when	no	bending)

"	=	-1/$2	in	straight	region	(linac)
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as	found	previously!

Remember	from	transverse	motion,		

		and	when	M	was	periodic,	

									=	phase	advance	through	periodic	section

Can	imagine	“longitudinal”	%,	&,	$,	#'	parameters	as	well	

Note:		from	M	of	previous	page,	if	represents	periodic	structure	(synchrotron	or	portion	of	linac),	then

longitudinal	phase	advance
oscillation	frequency		

w.r.t.	cavity	number,	“n”	
(e.g.,	synchrotron	tune)

x /
p
� sin� 

and trM = 2 cos� 

� 

trM = 2 +
2⇡h⌘

�2E
QeV cos�s = 2 cos� s � s = 2⇡⌫s

⌫s =

s

� h⌘

2⇡�2E
QeV cos�s

M =

✓
cos� + ↵ sin� � sin� 

�� sin� cos� � ↵ sin� 

◆
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cos� s ⇡ 1� 1

2
(� s)

2 = 1 +
⇡h⌘

�2E
QeV cos�s


=

1

2
trM
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The Stationary Bucket
• Suppose do not wish to accelerate the ideal particle…
‣ for lower energies, where the slip factor is negative, 

then need to choose !s = 0o

0-(/2-( (/2

Separatrix

(
16
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�s = 0, 2⇡ (sin�s = 0)

�s = 0, ⌘ < 0

�E2 + 2
�2E

2⇡h⌘
QeV cos� = constant

0� 2
�2E

2⇡h⌘
QeV = constant

�E = 0 at � = ±⇡

�E2 + (1 + cos�)
�2E

⇡h⌘
QeV = 0

�E = ±

s

�2�2E

⇡h⌘
QeV cos(�/2)

�E2 +
2�2E

⇡h⌘
QeV cos2(�/2) = 0

“stationary”	bucket:

anticipate	stability:	—>	choose

then,

on	the	separatrix:		

thus,	the	Eq.	of	separatrix:

separatrix:
(for	“stationary	bucket”)

�E

�

17

—>	no	average	acceleration
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(here,	units	of	eV-sec)

a =

s
2�2E

⇡h|⌘|QeV

4

Z ⇡

0
a cos(�/2) d� = 8a

A0 ⌘ 8

⇡frf

s
�2EQeV

2⇡h|⌘|
since � = 2⇡frft

A = A0 · F(�s)

where 0 < F < 1

thus,	“bucket	height”:

Phase	space	area	of	a	stationary	bucket:

and,	if	use	#E-#t	coordinates	rather	than	#E-!,	then	area	of	a	stationary	bucket	is…

(determined	numerically)A

�

Note: for sin�s 6= 0

18
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Area of a Moving Bucket

�E2 + 2
�2E

2⇡h⌘
QeV (cos�+ � sin�s) = constant A

�

curve:

“kinetic”-like														“potential”-like																						“total	Energy”-like

!1 !2

!1 !2

!1	is	where		

“potential	like”		

has	derivative	=	0:							!1	=	(-!s	

!s

Given	!1	=	(-!s,	can	now	determine	

the	“constant”:		#E	=	0	at	!1,	and	so…

(0)2 + 2
�2E

2⇡h⌘
QeV (cos�1 + �1 sin�s) = constant

Then,	find	that	!2	must	satisfy:

#E

19

—>	net	average	acceleration
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cos�2 + �2 sin�s + cos�s + (⇡ � �s) sin�s = 0
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Numerical Solution for Bucket Area
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A_

0
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Back to Small Oscillations…

This	Eqn.	represents	trajectories	in	longitudinal	phase	space	of	particles	near	the	ideal	particle.

from	(2),	

if																														,		then	…� = �s +��

�E2+2
�2E

2⇡h⌘
QeV (cos�s cos���sin�s sin��+(�s+��) sin�s) = constant

�E2 + 2
�2E

2⇡h⌘
QeV (cos�s(1�

1

2
��2)� sin�s��

+�s sin�s +�� sin�s) = constant

(small)

�E2 +

✓
� �2E

2⇡h⌘
QeV cos�s

◆
��2 = constant (3)
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�E2 + 2
�2E

2⇡h⌘
QeV (cos�+ � sin�s) = constant
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Beam Longitudinal Emittance 
Suppose	beam	is	well	contained	within	an	ellipse	given	by	(3),	and	suppose	

					we	know	either										or											(or,							)	of	the	distribution	(i.e.,	maximum	extent).	

					Then,	the	constant	is	easily	seen	to	be:

					So,	area	of	ellipse	(the	longitudinal	emittance)	is:	

											or,	in	E-t	coordinates,				

units:		“eV-sec”

�Ê ��̂ �t̂

constant = �Ê2 = � �2E

2⇡h⌘
QeV cos�s��̂2

⇡ �Ê��̂

S ⌘ ⇡ �Ê�t̂ = ⇡ �Ê
��̂

2⇡frf

S =
1

2frf

s

��2EeV

2⇡h⌘
Q cos�S ��̂2

S = 2⇡2frf

s

��2EeV

2⇡h⌘
Q cos�S �t̂2or,

22
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Golf Clubs vs. Fish

M. Syphers 10 Oct 2011

Golf Clubs vs. Fish

! Our analysis “assumes” slowly changing variables (including the 
energy gain!).  Quite reasonable in many Alvarez-style linacs and in 
synchrotrons; not as reasonable an assumption in our case

! In linacs, fractional energy change can be large, and so this will distort 
the phase space

! Plots from Wangler’s book:

3

Here, assume
that energy is 
“constant” or 
varying very 
slowly

Here, a more 
rapid acceleration 
is included

(synchrotron)(linac)
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Transition Energy
• In a synchrotron, there can be an energy at which the 

slip factor changes sign — this is call the “transition 
energy”

• In a typical FODO-style synchrotron, the transition 
gamma is roughly equal to the betatron tune

⌘ = ↵p �
1

�2
=

⌧
D

⇢

�
� 1

�2

⌘ = 0 = ↵p �
1

�2

�t ⌘
1

p
↵p

⌘ =
1

�2
t

� 1

�2
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Transition
We	had…

So,		

			when	η	<	0,	we	want	cos	!s	>	0	

		

			when	η	>	0,	we	want	cos	!s	<	0	

⌫s =

s

� h⌘

2⇡�2E
QeV cos�s) d2��

dn2
�

✓
2⇡h⌘

�2E
QeV cos�s

◆
�� = 0

if ⌘ > 0, choose cos�s < 0

�tmc2 = transition energy

) if �t exists, need “phase jump” to occur at transition crossing

−1.0
−0.5

0.0
0.5

1.0

x

sin(x)

!	=	0 for	$	<	$t	
																																								for	$	>	$t
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Transition Crossing
• If the synchrotron accelerates 

through its transition energy, 
then the phase of the RF 
system has to be shifted at the 
time of transition crossing

• The synchrotron motion slows 
down as approach transition — 
it would stop if the slip factor 
were exactly zero!
‣  loss of phase stability!
‣ momentum spread also gets 

larger near transition
• So, best to accelerate quickly 

through this energy region!

⌘ =
1

�2
t

� 1

�2
−1.0−

0.50
.00.

51.0

x
sin(x)

!	=	0 for	$	<	$t	
																																								for	$	>	$t

⌫s =

s

� h⌘

2⇡�2E
QeV cos�s
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Buckets, Bunches, Batches, …
• Have seen definition of “buckets” — stable phase 

space area
• Buckets can be occupied by “bunches” of particles
‣ note:  need not be — can have “empty buckets”
‣ thus, can (in principle) adjust bunch spacing, 

bunch arrangements, etc.
• A set of bunches that are created in an accelerator 

(pulsed) is often called a Batch (especially if from a 
synchrotron)
‣ can also be called a Bunch Train as well 

(especially if from a linac)
27
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Some Movies…

• Bucket Transformation
• Snap Capture
• Adiabatic Capture
• Parabolic acceleration
• Parabolic acceleration — full bucket
• Transition Crossing

28
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