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Day Four

¥ Discussion of Repetitive Systems
¥ Long-Term Transverse Stability
¥ Long-Term Longitudinal Stability
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Quick Review [1] É

¥ linearized longitudinal motion

¥ adiabatic damping:  
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Quick Review [2] É
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Long-Term Stability

¥ Have discussed linear beam optics and transport 
through simple ÒlensÓ systems
‣ similar techniques for both transverse and 

longitudinal degrees of freedom
- dipole magnets to steer, quadrupole magnets 

(sometimes solenoids) to focus transversely
- cavities to accelerate, also provide longitudinal 

focusing (time focusing)
¥ Transporting across a large room or building is one 

thing; will such systems be stable if transport many 
kilometers?  millions (billions?) revolutions in a ring?
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Stability
¥ Example:  Linear Collider Ñ can we make a system 

made up of hundreds of ÒmodulesÓ that accelerate 
and focus repeatedly?

¥ Example:  Hadron Collider Ñ can we make a system 
that can be traversed stably billions of times?     
Tevatron:

- Nrev = (24 hr)(3600 s/hr)(3e8 m/s)/(6e3 m) = 4e9
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The Stability Criterion
¥ For a system made up of multiple elements, we can perform Òray 

tracingÓ as weÕve seen so far Ñ this may be all thatÕs needed to 
understand a relatively small system.  But, suppose the ÒsystemÓ 
is very long and made of many repetitions of the same type of 
elements (or, perhaps the ÒrepetitionÓ is a complete circular 
accelerator, for instance) -- how do we ensure that the motion is 
stable for many (infinite?) passages?

¥ Look at matrix describing motion for one passage through a 
repetitive period:

¥ Now suppose repeat this operation k times.  We want:
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The Stability Criterion

¥ From the discipline of Òlinear algebraÓ, we know that 
any vector within a vector space (i.e., that is 
operated on, say, by a matrix M) can be written in 
terms of the eigenvectors of the matrix M
‣ Eigenvector:    V          MV = 𝜆V  

-         where 𝜆 is an eigenvalue of M  (real or imaginary)

¥  A 2x2 matrix M will have two eigenvalues, 𝜆1 and 𝜆2 
and two corresponding eigenvectors, V1 and V2; so 
any vector that M operates on can be written as
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¥ So, if the matrix M is applied to vector X0 a number 
of times, the resulting vector Xk after the k-th iteration 
will be

¥ Now, also from linear algebra, the determinant of the 
matrix M will be the product of the eigenvalues.  So,

V	=	eigenvector	
				=	eigenvalueλ

The Stability Criterion
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¥ Since for our case the eigenvalues are reciprocals of 
each other, and since we can write                 , then

¥ To find the eigenvalues, we solve the Òcharacteristic 
equationÓ:              from     MV = 𝜆V,     

If	𝜇	is	imaginary,	then	repeated	application	of	M	gives	exponential	growth;	if	𝜇	is	real,	gives	oscillatory	solutions…

The Stability Criterion
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¥ Solving for the eigenvalues,

The Stability Criterion
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The	Stability	Criterion
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