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Day Four

¥ Discussion of Repetitive Systems
¥ Long-Term Transverse Stability
¥ Long-Term Longitudinal Stability

—
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Quick Review [1] E A
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¥ adiabatic damping: [ﬂx; f]
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Quick Review [2] E

Dispersion and the Dispersion Function: D'+ KD=—
L0
ﬁ ------ » Do+ Ap & — _% through bending magnet,
F . 90 D AD' g

Xrms(8) = V/1x2(s)" = /D2(s)!(! p/p)2" +!" (s)/ #
Momentum Compaction Factor:

" dL/L D (s)/ p(s)]ds . 1 D 1
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Long-Term Stabillity

¥ Have discussed linear beam optics and transport
through simple OlensO systems

» similar techniques for both transverse and
longitudinal degrees of freedom

- dipole magnets to steer, guadrupole magnets
(sometimes solenoids) to focus transversely

- cavities to accelerate, also provide longitudinal
focusing (time focusing)

¥ Transporting across a large room or building is one
thing; will such systems be stable If transport many
kilometers? millions (billions?) revolutions in a ring?

—
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Stability

¥ Example: Linear Collider N can we make a system
made up of hundreds of OmodulesO that accelerate
and focus repeatedly?

cavities 0 cavities
== {aga Ry yiey A e
™ \ Wa W 2 - \ ¥

LT |

¥ Example: Hadron Collider N can we make a system
that can be traversed stably billions of times?
Tevatron:

- Nrev = (24 hr)(3600 s/hr)(3e8 m/s)/(6e3 m) = 4e9
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The Stability Criterion

¥ For a system made up of multiple elements, we can perform Oray
tracingO as weOve seen so far N this may be all thatOs needed to
understand a relatively small system. But, suppose the OsystemO
IS very long and made of many repetitions of the same type of
elements (or, perhaps the OrepetitionO is a complete circular
accelerator, for instance) -- how do we ensure that the motion is
stable for many (infinite?) passages?

¥ Look at matrix describing motion for one passage through a
repetitive period:
M =MnMpy_q --- MyM,

¥ Now suppose repeat this operation k times. We want:

(x,) :Mk( a:,> ﬁniteaskﬁooforarbitrary( :E,)
L)k L /o L /o
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The Stability Criterion

¥ From the discipline of Olinear algebraO, we know that
any vector within a vector space (l.e., that Is
operated on, say, by a matrix M) can be written In
terms of the eigenvectors of the matrix M

» Elgenvector: V MV = AV
- where A IS an eigenvalue of M (real or imaginary)

¥ A 2x2 matrix M will have two eigenvalues, 41 and A2
and two corresponding eigenvectors, Vi1 and V2; so
any vector that M operates on can be written as

X = 61V1 -+ CQVQ
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The Stability Criterion

¥ So, if the matrix M is applied to vector Xo a number
of times, the resulting vector Xk after the k-th iteration

will be

Xk = M Xg= MX(cVh + Vo) = ¢! KVh + ol Ko

V = eigenvector
A = eigenvalue

¥ Now, also from linear algebra, the determinant

of the

matrix M will be the product of the eigenvalues. So,

detM:1:A1/\2—>)\2:1/)\1—>/\:e:

V)
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The Stability Criterion

¥ Since for our case the eigenvalues are reciprocals of
each other, and since we can write A = e="* | then

X = MkXO — Cl)\'lfV1 -+ CQ)\IQCVQ — cleik“Vl —+ 626! ik’“VQ

If uis imaginary, then repeated application of M gives exponential growth; if u is real, gives oscillatory solutions...

¥ To find the eigenvalues, we solve the Ocharacteristic
equationO: from MV = AV,

characteristic equation: det(M — AI) =0

if M = (Z’ 2),then (a—=XA)(d—A)—bc=0

Winter Session 2018 MIJS USPAS Fundamentals 9



3&

The Stability Criterion
¥ Solving for the eigenvalues, if M = (‘2 b> o= (1 O>

d 0 1
al l b
then det(M! 1')=1 ° ° 7 [=(a! 1)@ 1)} be=0
A —(a+d)\+ (ad—bc) =0 ad—bc=detM =1
Az_tTM)\—F]-:O a+d=1trM = “trace” of M
A1/ A=trM

et e ™ =2cospu=trM

So, p real (stability)

— ‘t’rM| < 2 The Stability Criterion

—
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