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Day Four

* Discussion of Repetitive Systems
* Long-Term Transverse Stability
* Long-Term Longitudinal Stability
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Quick Review [1] ... A
Az L e
* linearized longitudinal motion /\i'% N
Az = Azg — nL%
p
At = Aty + 77£%
: g Be p
¢ =27 frpt drift:
(aw ) =(o ™7 ) (aw )
We=Ws0+ qV sin(og) AW 0 1 AW ),
WS — “jdeal” energy through cavity:
At 1 0 At
AW =W — W, ( AW ) B ( (27 frr)qV cos g, 1 ) ( AW )0

» adiabatic damping: [“; xrms“;ﬁJ
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Quick Review [2] ...

. . . . . 1
Dispersion and the Dispersion Function: D'+ KD=—
L0

o—l—Ap _ through bending magnet,
F v
o 0 P AD' = ¢

Zrms(s) = V/(22(s)) = /D?(s){(Ap/p)?) + €B(s) /7

Momentum Compaction Factor:

_ (dL/L D(s s)|ds 1 D 1
%Z(m) -4 (}/di( M= (D/p) n=ap——2=<—>——2
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Long-Term Stability

* Have discussed linear beam optics and transport
through simple “lens” systems

» similar techniques for both transverse and
longitudinal degrees of freedom

- dipole magnets to steer, quadrupole magnets
(sometimes solenoids) to focus transversely

- cavities to accelerate, also provide longitudinal
focusing (time focusing)

* Transporting across a large room or building is one
thing; will such systems be stable if transport many
kilometers? millions (billions?) revolutions in a ring?
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Stability

 Example: Linear Collider — can we make a system
made up of hundreds of “modules” that accelerate
and focus repeatedly?

cavities 0 cavities
.;‘_..', luﬂ n&'o 4 él A Y F= .{‘i,.“.'.’ e §4 .v i i ¢
- \ Wa W 2 - \ ¥

LT |

* Example: Hadron Collider — can we make a system
that can be traversed stably billions of times?
Tevatron:

- Nrev = (24 hr)(3600 s/hr)(3e8 m/s)/(6e3 m) = 4e9
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The Stability Criterion

* For a system made up of multiple elements, we can perform “ray
tracing” as we’'ve seen so far — this may be all that’s needed to
understand a relatively small system. But, suppose the “system”
IS very long and made of many repetitions of the same type of
elements (or, perhaps the “repetition” is a complete circular

accelerator, for instance) -- how do we ensure that the motion is
stable for many (infinite?) passages?

* Look at matrix describing motion for one passage through a
repetitive period:
M=MnyMpN_1 -+ MaM;

* Now suppose repeat this operation ktimes. We want:

(x,) :Mk( a:,> ﬁniteaskﬁooforarbitrary( :E,)
Lk L /o L /o
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The Stability Criterion

* From the discipline of “linear algebra”, we know that
any vector within a vector space (i.e., that is
operated on, say, by a matrix M) can be written In
terms of the eigenvectors of the matrix M

» Eigenvector: V MV =1V
- where A IS an eigenvalue of M (real or imaginary)

* A 2x2 matrix M will have two eigenvalues, 11 and A
and two corresponding eigenvectors, V4 and V>; so
any vector that M operates on can be written as

X = 61V1 -+ CQVQ
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The Stability Criterion

* So, if the matrix M is applied to vector Xo a number
of times, the resulting vector Xk after the k-th iteration
will be

X, =MFXy= MM (Vi + coVo) = ct AP VL + ca\5 V5

V = eigenvector
A = eigenvalue

* Now, also from linear algebra, the determinant of the
matrix M will be the product of the eigenvalues. So,

detM:]_:}\l/\z_)}\2:1/)\1_))\:e::ip,
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The Stability Criterion

* Since for our case the eigenvalues are reciprocals of
each other, and since we can write A = e™** |, then

X = MkXO — cl)\]fvl + CQ)\SVQ — ¢1FHV; + coe T HRHY,

If uis imaginary, then repeated application of M gives exponential growth; if u is real, gives oscillatory solutions...

* To find the eigenvalues, we solve the “characteristic
equation”: from MV=A1V,

characteristic equation: det(M — AI) =0

if M = (Z’ 2),then (a—=XA)(d—A)—bc=0
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The Stability Criterion

* Solving for the eigenvalues, if M = (CCL Z) L= ((1) (1)>

then det(M — I\) = (“‘A b ) =(a—=AN)(d—=X) —bc=0

C d— A
A —(a+d)\+ (ad—bc) =0 ad —be = det M =1
Az_tTM)‘—F]-:O a+d=1trM = “trace” of M
A1/ A=trM

et e ™ =2cospu=trM

So, p real (stability)

— ‘t’rM| < 2 The Stability Criterion
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