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The Notion of an Amplitude Function…
• Can trace single particle 

trajectories through a periodic 
system

• Can represent either
• multiple passages around a 

circular accelerator, or
• multiple particles through a 

beam line

Can	we	describe	the	maximum	amplitude	of	
		particle	excursions	in	analytical	form?	

	 				 	 of	course!						coming	up	next	...

1



Winter	Session	2018						MJS USPAS	Fundamentals

Pushing the “Envelope”
• Wish to look for a 

functional form of the 
outer envelope of particle 
motion, and the rate at 
which the phase of the 
oscillatory motion 
develops within that 
envelope

• This will enable us to 
decouple the motion of 
individual particle from 
intrinsic properties of the 
accelerator design

Envelope described by an  
“amplitude function”
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Hill’s Equation — Analytical Solution
• We saw that the equation of transverse motion is Hill’s 

Equation:

• Note:  “similar” to simple harmonic oscillator equation, but 
“spring constant” is not constant -- depends upon 
longitudinal position, s.

• So, assume solution is sinusoidal, with a phase which 
advances as a function of location s; also assume 
amplitude is modulated by a function which also depends 
upon s: 

• Then, plug into Hill’s Equation ...

x(s) = A
√

β(s) sin[ψ(s) + δ]

x
′′ + K(s)x = 0
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Analytical Solution (cont’d)
x(s) = A

√

β(s) sin[ψ(s) + δ]

x′ =
1

2
Aβ−

1

2 β′ sin[ψ(s) + δ] + A
√

β cos[ψ(s) + δ]ψ′

x′′ = . . .

Plugging into Hill’s Equation, and collecting terms... 

    and    are constants of integration, defined by the initial 
conditions              of the particle.  For arbitrary        , must 
have contents of each [   ] = 0 simultaneously for sum = 0.

A δ
A, δ(x0, x

′

0)

x′′ + K(s)x = A
√

β

[

ψ′′ +
β′

β
ψ′

]

cos[ψ(s) + δ]

+A
√

β

[

−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K

]

sin[ψ(s) + δ] = 0
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−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K = 0

2ββ′′
− (β′)2 − 4β2(ψ′)2 + 4Kβ2 = 0

2ββ′′
− (β′)2 + 4Kβ2 = 4

ψ′′ +
β′

β
ψ′ = 0

βψ′′ + β′ψ′ = 0

(βψ′)′ = 0

βψ′ = const

ψ′ = 1/β

and

Differential equation 
that the amplitude 
function must obeyNote:  the phase advance is an 

observable quantity.  So, while 
could choose different value of 
const,  then      would just scale 
accordingly; thus, valid to choose 
const = 1.

β
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x(s) = A
√

β(s) sin[ψ(s) + δ]
Analytical Solution (cont’d)

thus,	we	need

The function β(s) is the
local wavelength (λ/2π)
of the oscillatory motion.
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Some Comments
• We chose the amplitude function to be a positive definite function in its 

definition, since we want to describe real solutions.
• The square root of the amplitude function determines the shape of the 

envelope of a particle’s motion.  But the amplitude function is also a local 
wavelength of the motion. 

• This seems strange at first, but ...
‣ Imagine a particle oscillating within our focusing lens system; if the 

lenses are suddenly spaced further apart, the particle’s motion will 
grow larger between lenses, and additionally it will travel further 
before a complete oscillation takes place.  If the lenses are spaced 
closer together, the oscillation will not be allowed to grow as large, 
and more oscillations will occur per unit distance travelled.

‣ Thus, the spacing and/or strengths (i.e., K(s)) determine both the rate 
of change of the oscillation phase as well as the maximum oscillation 
amplitude.  These attributes must be tied together.
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x(s) = A
√

β(s) sin[ψ(s) + δ]
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The Amplitude Function, 
• Since the amplitude function is a wavelength, it might have 

numerical values of many meters, say.  However, typical 
particle transverse motion is on the scale of mm.  So, this 
means that the constant A must have units of m1/2, and it must 
be numerically small.  More on this subject coming up...

β

Higher    --  
 smaller phase advance 
 larger beam size

Lower    --  
 greater phase advance 
 smaller beam size

β

β
F F FF D D D D
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x(s) = A
√

β(s) sin[ψ(s) + δ]
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Equation of Motion of Amplitude Function
From

2ββ′′
− (β′)2 + 4Kβ2 = 4

we get
2β′β′′ + 2ββ′′′

− 2β′β′′ + 4K ′β2 + 8Kββ′ = 0

β′′′ + 4Kβ′ + 2K ′β = 0.

Typically, K ′(s) = 0, and so

(β′′ + 4Kβ)′ = 0

or
β′′ + 4Kβ = const.

is the general equation of motion for the amplitude function, β.

(in regions where K is either zero or constant)

8



Winter	Session	2018						MJS USPAS	Fundamentals

Piecewise Solutions
• K = 0:

‣ since            ,  then from original diff. eq. …

‣ Therefore, parabola is always concave up

• K > 0, K < 0:     sinusoidal + constant

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

2ββ′′
− (β′)2 = 4

β > 0

Parabola!

�(s) = �0 +
�0
0

2
p
K

sin(2
p
Ks) +

�00
0

4K
[1� cos(2

p
Ks)]

�00 =
4 + (�0)2

2�
> 0
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Summary

x(s) = A
√

β(s) sin[ψ(s) + δ]

−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K = 0

2ββ′′
− (β′)2 − 4β2(ψ′)2 + 4Kβ2 = 0

2ββ′′
− (β′)2 + 4Kβ2 = 4

ψ′′ +
β′

β
ψ′ = 0

βψ′′ + β′ψ′ = 0

(βψ′)′ = 0

βψ′ = const

ψ′ = 1/β

From
2ββ′′

− (β′)2 + 4Kβ2 = 4

we get
2β′β′′ + 2ββ′′′

− 2β′β′′ + 4K ′β2 + 8Kββ′ = 0

β′′′ + 4Kβ′ + 2K ′β = 0.

Typically, K ′(s) = 0, and so

(β′′ + 4Kβ)′ = 0

or
β′′ + 4Kβ = const.

is the general equation of motion for the amplitude function, β.

x
′′ + K(s)x = 0 Hill’s Equation

trial solution:

requires:

and

 (s) =

Z
ds

�(s)

(for K’ = 0)

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

�(s) = �0 +
�0
0

2
p
K

sin(2
p
Ks) +

�00
0

4K
[1� cos(2

p
Ks)]

for K = 0 :

for K > 0 :
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Courant-Snyder Parameters, & Connection to Matrix Approach

• Suppose, for the moment, that we know the value of the 
amplitude function and its slope at two points along our particle 
transport system.

• Previously have seen how to write the motion of a single particle 
in one degree of freedom between two points in terms of a matrix.  
We can now recast the elements of this matrix in terms of the 
local values of the amplitude function.  

• Define two new variables,

• Collectively,                 are called the Courant-Snyder Parameters 
(sometimes called “Twiss parameters” or “lattice parameters”)

α ≡ −

1

2
β′, γ ≡

1 + α2

β

β, α, γ

2��00 � (�0)2 + 4K�2 = 4 becomes K� = � + ↵0
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Courant-Snyder Parameters, & Connection to Matrix Approach

• Suppose, for the moment, that we know the value of the 
amplitude function and its slope at two points along our particle 
transport system.

• Previously have seen how to write the motion of a single particle 
in one degree of freedom between two points in terms of a matrix.  
We can now recast the elements of this matrix in terms of the 
local values of the amplitude function.  

• Define two new variables,

• Collectively,                 are called the Courant-Snyder Parameters 
(sometimes called “Twiss parameters” or “lattice parameters”)

α ≡ −

1

2
β′, γ ≡

1 + α2

β

β, α, γ

2��00 � (�0)2 + 4K�2 = 4 becomes K� = � + ↵0
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YES!		
			The

y	ARE
	the	s
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!,	",	#	
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Solutions using Courant-Snyder Parameters
• Our previous results become
‣ drift space:

‣ gradient field:

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

�(s) = �0 +
�0
0

2
p
K

sin(2
p
Ks) +

�00
0

4K
[1� cos(2

p
Ks)]

�(s) =
�0

2
[1 + cos(2

p
Ks)]� ↵0p

K
sin(2

p
Ks) +

�0
2K

[1� cos(2
p
Ks)]

�(s) = �0 � 2↵0s+ �0s
2—>

—>
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The Transport Matrix
• We can always  write:

• Solve for a and b in terms of initial conditions and 
write in matrix form
‣ we get:

(

x
x′

)

=

⎛

⎜

⎝

(

β
β0

)1/2

(cos ∆ψ + α0 sin ∆ψ)
√

β0β sin ∆ψ

−
1+α0α
√

β0β
sin ∆ψ −

α−α0√

β0β
cos∆ψ

(

β0

β

)1/2

(cos ∆ψ − α sin ∆ψ)

⎞

⎟

⎠

(

x0

x′

0

)
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x(s) = a
p
� sin� + b

p
� cos� 

       is the phase advance from 
point s0 to point s in the beam line
� So,	can	write	any	of	our	transport	matrices	in	

terms	of	values	of	C-S	parameters	at	the	two	end	
points,	and	the	phase	advance	between	them.	
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Tracking β, α, γ ...
• Saw earlier that if given values of the Courant-Snyder parameters at 

one location in the beam line, and if know the matrix of the linear 
motion between that location and another location downstream, then 
can compute the values at the second location via:

• Have not explicitly proven that the ellipse coefficients found earlier are 
the SAME as the parameters above, but they are — and, we will.

15

where K ⌘
✓

� �↵
�↵ �

◆
K = M K0 MT
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Evolution of the Phase Advance
• Also, if know parameters at one point, and the matrix 

from there to another point, then

• So, from knowledge of matrices, can “transport” 
phase and the Courant-Snyder parameters along a 
beam line from one point to another

M1→2 =

(

a b
c d

)

=⇒
b

aβ1 − bα1

= tan ∆ψ1→2

16
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Simple Examples

• Propagation through a Drift:

• Propagation through a Thin Lens:

• Given α, β at one point, can calculate α, β at all downstream points 

M =

(

1 L
0 1

)

=⇒ ∆ψ = tan−1

(

L

β1 − Lα1

)

β = β0 − 2α0L + γ0L
2

α = α0 − γ0L

γ = γ0

M =

(

1 0

−1/F 1

)

=⇒ ∆ψ = 0

β = β0

α = α0 + β0/F

γ = γ0 + 2α0/F + β0/F 2

17

K = M K0 MT
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Betatron Oscillation Amplitude
• Transverse oscillations in a synchrotron (or beam line) are called Betatron 

Oscillations (first observed/analyzed in a “betatron” accelerator)
• Write x,x’ in terms of initial conditions x0, x’0 :

=⇒ x(s) =

√

β(s)

β0

[x0 cos∆ψ + (α0x0 + β0x
′

0) sin∆ψ]

amplitude: A =

√

x2

0
+(α0x0+β0x′

0
)2

β0
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x = a
√

β sinψ + b
√

β cos ψ

x′ =
1
√

β
([b − aα] cos ψ − [a + bα] sinψ)

↓

a =
x0√
β0

, b =
α0x0 + β0x

′

0√
β0

x0 =
1p
�
([b� a↵] cos� � [a+ b↵] sin� )

x(s) = a
p
� cos� + b

p
� sin� 
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Free Betatron Oscillation
• Suppose a particle traveling along the design path is given a 

sudden (impulse) deflection through angle
• Then, downstream, we have

∆x
′
= x

′

0 = ∆θ

s0

s

x

x(s) = ∆θ
√

β0β(s) sin[ψ(s) − ψ0]

19

Example:
Suppose �✓ = 0.4 mrad, �0 = 4.0 m, �(s) = 6.4 m,
and � = n⇥ 2⇡ + 30�. Then x(s) = 1 mm.
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Courant-Snyder Invariant
• In general,

x = A
√

β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ

A2
= γx2

+ 2αxx′
+ βx′2

x2 + (βx′ + αx)2 = A2β

A2 =
x2 + (βx′ + αx)2

β

=
x2 + α2x2 + 2αβxx′ + β2x′2

β

While C-S parameters evolve along the beam line, the 
  combination above remains constant.

20
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Properties of the Phase Space Ellipse
area = πA

2

x
′

x

area = πA
2
≡ ϵ

x̂ =

√

βϵ/π

x̂′ =

√

γϵ/π

x(x′ = 0) =
√

ϵ/πγ

x′(x = 0) =
√

ϵ/πβ

i.e., while the ellipse 
changes shape along the 
beam line, its area remains 
constant

Emittance =  area within a phase  
        space trajectory

γx2
+ 2αxx′

+ βx′2
= A2

• The eqn. for the C-S invariant is that of an ellipse.
• If compute the area of the ellipse, find that … 

21



Winter	Session	2018						MJS USPAS	Fundamentals

Motion in Phase Space
• Follow phase space trajectory...

x

x’

x’

x equal areas

Bea
m 

Lin
e .

..

22
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Courant-Snyder Parameters
• So, we see that the solution to Hill’s Equation leads to 

an amplitude function "(s) and a related phase advance 
$(s) such that d$(s)/ds = 1/"(s).  The general solution is

•         x(s) = A √"(s)  sin[$(s) + %]
• We see that if we define functions α(s) = -1/2 d"(s)/ds 

and #(s) = (1+α(s)2)/"(s), then the phase space 
trajectory of a single particle lies on an ellipse given by
‣             #(s) x2 + 2 α(s) xx’ + "(s) x’2 = A2

• AND, the area of the ellipse is given by &A2

• THUS, α, ", # are the same parameters found to 
describe the phase space distributions discussed earlier

23
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Choice of Initial Conditions
• Have seen how  β, ! can be propagated from one point 

to another.  Still, have the choice of initial values...
• If periodic system, like a “ring,” then natural to choose 

the periodic solutions for  β, ! 
• If beam line connects one ring to another ring, or a ring 

to a target, then we take the periodic solution of the 
upstream ring as the initial condition for the beam line

• In a system like a linac, wish to “match” to desired initial 
conditions at the input to the system (somewhere after 
the source, say) using an arrangement of focusing 
elements

24



§Transverse oscillations imply transverse momentum.  As accelerate, 
momentum is “delivered” in the longitudinal direction (along the s-
direction).  Thus, on average, the angular divergence of a particle will 
decrease, as will its oscillation amplitude, during acceleration. 

§The coordinates x-x’ are not canonical conjugates, but x-px are;  thus, from 
classical mechanics, the area of a trajectory in x-px phase space is 
invariant for adiabatic changes to the system.

Adiabatic Damping from Acceleration

s

∆p, from RF system
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Adiabatic Damping from Acceleration
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~p
~p0

�~p�

Note:		particles	at	peak	of	their	betatron	oscillation	will	have	
little/no	change	in	x’,	while	particles	with	large	transverse	
angles	will	have	their	x’	affected	most

details…

=) �x0 = �x0
0
�p

p0

x0 =
px
p

=
pxp

p20 +�p2 � 2�p p0 cos�
=

px
p0

✓
1� �p

p0
+ . . .

◆
⇡ x0

0

✓
1� �p

p0

◆

Note:		assuming	that	ALL	particles	
receive	the	same	'p	from	the	cavity

x0
0

~px



Adiabatic Damping from Acceleration
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details…

Now	assuming	that	the	incremental	change	in	momentum	is	small	compared	to	the	overall	
momentum,	and	that	the	changes	occur	gradually	on	time	scales	large	compared	to	those	of	
the	betatron	motion…

a2 = a20 +�a2 � 2�a a0 cos�

= a20 +�a2 + 2�a a0 sin 

= a20 +�a2 + 2�a � x0
0

= a20 + (��x0
0
�p

p0
)2 + 2(��x0

0
�p

p0
)�x0

0

= a20 + (�x0
0)

2(
�p

p0
)2 � 2(�x0

0)
2�p

p0

�ha2i = �ha2i�p

p
�✏

✏
= ��p

p
✏ / 1

p
xrms /

1
p
p

Note:

So,

�x0 = �x0
0
�p

p0

2h(�x0)2i = 2hx2i = ha2i

a

a0

'a	=	"'x’
(

$
x

"x’

=) ha2i = ha20i � 2h(�x0
0)

2i�p

p0

(!	=	0)



Normalized Beam Emittance
§Hence, as particles are accelerated, the area in x-x’ phase space is not 
preserved, while area in x-px  is  preserved.  Thus, we define a 
“normalized” beam emittance, as 

§In principle, the normalized beam emittance should be preserved during 
acceleration, and hence along the chain of accelerators from source to 
target.  Thus it is a measure of beam quality, and its preservation a 
measure of accelerator performance. 
§In practice, it is not preserved -- non-adiabatic acceleration, especially at 
the low energy regime; non-linear field perturbations; residual gas 
scattering; charge stripping; field errors and setting errors; etc. -- all 
contribute at some level to increase the beam emittance.  Best attempts 
are made to keep the emittance as small as possible.
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ϵN ≡ ϵ · (βγ)
Lorentz
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Emittance of a Stationary Gaussian Distribution
• Imagine a transverse distribution of particles with a Gaussian profile 

in transverse coordinate x with zero mean and standard deviation σ.
‣ The distribution can be described as follows:

βx’+αx

x

r2 = x2 + (βx′ + αx)2

Radius, a, containing fraction, f, of 
particles, corresponding to phase 
space area with emittance, ϵ:

ρ(r, θ)rdrdθ =
1

2πσ2
e−r2/2σ2

r drdθ

a2 = −2σ2 ln(1 − f) = ϵβ/π

∫ 2π

0

∫
a

0

ρ rdrdθ = f

29
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Emittance of a Stationary Gaussian Distribution
• So, the normalized emittance that contains a fraction f of 

a Gaussian beam is:

• Common values of f :
ϵN =

−2π ln(1 − f)σ2(s)

β(s)
(βγ)

Lorentz!

f ϵN/(βγ)
95% 6πσ2/β

86.5% 4πσ2/β
39% πσ2/β
15% σ2/β

Perhaps most commonly 
used, typically called the 
“rms” emittance; but, always 
ask if not clear in context!

30

more	typical	for	light	sources,	e-	colliders


