



# Particle Beams

- Not just one particle, but a "bunch" of particles
- Finite spread in particle properties
  - energy / momentum spread
  - position / direction spread
- Characterization in terms of "phase space"
- Adiabatic invariance of phase space variables
  - position/momentum; energy/time







# **Evolution of the Phase Space**

- Suppose transverse positions, x, and transverse angles, x', are distributed in a normal (Gaussian) fashion coming from the "source"
- If the distribution is allowed to "drift" a distance L, then  $x = x_0 + Lx'_0$  for each particle; the particles with largest  $x' = x'_0$  will quickly drift to larger x values, and the distribution will "shear"

Shape, orientation of distribution in "phase space" will change, but effective "area" of distribution will remain constant



**USPAS** Fundamentals





#### **Emittance in Terms of Moments**

Considering the general equation of an ellipse, the area enclosed by the ellipse is related to the coefficients by:



from the web site:

http://nicadd.niu.edu/~syphers/uspas/2018w/some-notes-on-ellipses.html





#### **Emittance in Terms of Moments**

Considering the general equation of an ellipse, the area enclosed by the ellipse is related to the coefficients by:

$$\begin{array}{c|c} \mathbf{x}' \\ \hline \mathbf{x} \end{array} \qquad ax^2 + bxx' + cx'^2 = 1 \qquad \qquad \mathcal{A} = \frac{2\pi}{\sqrt{4ac - b^2}} \\ \mathbf{x} \end{array}$$

Can define scaled quantities from our distribution:

$$\alpha \equiv -\frac{\langle xx'\rangle}{\epsilon/\pi} \qquad \beta \equiv \frac{\langle x^2\rangle}{\epsilon/\pi} \qquad \gamma \equiv \frac{\langle x'^2\rangle}{\epsilon/\pi} \qquad \epsilon = \pi\sqrt{\langle x^2\rangle\langle x'^2\rangle - \langle xx'\rangle^2}$$

 $\alpha$ ,  $\beta$ ,  $\gamma$  collectively are called the *Courant-Snyder* parameters, or *Twiss* parameters

the "rms emittance"

So, equation of the **blue** curve above:

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \epsilon/\pi$$

The ellipse (red curve above) that contains ~95% has area ~6 $\epsilon$ 

Winter Session 2018 MJS





### **Essential Beam Transport and Focusing**

- Can imagine using a section of finite length containing pure uniform magnetic field to bend a charged particle's trajectory through a portion of a circular arc, thus steering it in a new direction. An arrangement of such magnets can thus be used to guide an "ideal" particle from one point to another
- However, most (all?) particles are NOT ideal! Hence, as particles drift away from the ideal trajectory, we wish to guide them (using quadrupole magnets or solenoids) back toward the ideal.
- Will use discrete electromagnets of finite length and assume a linear relationship between a particle's exit trajectory to its entrance trajectory, depending upon the strength of the magnetic field
  - •(similar rules for electrostatic bending and focusing devices)





### **Linear Optics**

Let x be the transverse (horizontal, say) displacement of a particle from the ideal beam trajectory. Let the angle it makes to the ideal trajectory be x' = dx/ds, where s is the distance along the ideal trajectory. Transport through a magnetic element is then described by a matrix *M*, such that

$$\vec{X} = M\vec{X}_0$$
  $\vec{X} = \begin{pmatrix} x \\ x' \end{pmatrix}$ 

•An arbitrary trajectory, relative to the design trajectory, can be computed via matrix multiplication for elements all along the beam line...







#### **Piecewise Method -- Matrix Formalism**

- Write solution to each "piece" of the beam transport system in matrix form
  - for each piece, assume K = const. from s = 0 to s = L

• 
$$K = 0:$$
  $\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$ 

free space/drift, or bending magnet

focusing (quadrupole) field

• 
$$K > 0$$
:  
 $\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} \cos(\sqrt{K}L) & \frac{1}{\sqrt{K}}\sin(\sqrt{K}L) \\ -\sqrt{K}\sin(\sqrt{K}L) & \cos(\sqrt{K}L) \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$ 

• 
$$K < 0:$$

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} \cosh(\sqrt{|K|}L) & \frac{1}{\sqrt{|K|}}\sinh(\sqrt{|K|}L) \\ \sqrt{|K|}\sinh(\sqrt{|K|}L) & \cosh(\sqrt{|K|}L) \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$$

defocusing (quadrupole) field

note: detM = 1





#### "Thin Lens" Quadrupole

 If quadrupole magnet is short enough, particle's offset through the quad does not change by much, but the slope of the trajectory does
 -- acts like a "thin lens" in geometrical optics



• Take limit as L --> 0, while KL remains finite

$$\begin{pmatrix} \cos(\sqrt{K}L) & \frac{1}{\sqrt{K}}\sin(\sqrt{K}L) \\ -\sqrt{K}\sin(\sqrt{K}L) & \cos(\sqrt{K}L) \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ -KL & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{F} & 1 \end{pmatrix}$$

- (similarly, for defocusing quadrupole)
- valid approximation, if F >> L

 $KL = \frac{B'L}{B\rho} = \frac{1}{F}$ 





### **TRANSPORT of Beam Moments**

• Transport of particle state vector downstream from position 0

$$\vec{X} = \begin{pmatrix} x \\ x' \end{pmatrix} \qquad \qquad \vec{X} = M\vec{X}_0$$

• Create a "covariance matrix" of the resulting vector...

$$\vec{X}\vec{X}^{T} = \begin{pmatrix} x^{2} & xx' \\ x'x & x'^{2} \end{pmatrix} = M\vec{X}_{0}(M\vec{X}_{0})^{T} = M\vec{X}_{0}\vec{X}_{0}^{T}M^{T}$$

• ... then, by averaging over all the particles in the distribution,

$$\Sigma = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle x'x \rangle & \langle x'^2 \rangle \end{pmatrix} \qquad \text{we get:} \qquad \Sigma = M \Sigma_0 M^T$$





### **TRANSPORT of Beam Moments**

• So, since 
$$\Sigma = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle x'x \rangle & \langle x'^2 \rangle \end{pmatrix} \sim \begin{pmatrix} \epsilon\beta & -\epsilon\alpha \\ -\epsilon\alpha & \epsilon\gamma \end{pmatrix} = \epsilon \cdot K$$

- where  $K \equiv \left( \begin{array}{cc} \beta & -\alpha \\ -\alpha & \gamma \end{array} \right)$
- then,

$$K = M K_0 M^T$$

$$\beta \equiv \frac{\tau}{\epsilon/\pi}$$





# Conservation of Emittance

• Note that from  $\Sigma = M \Sigma_0 M^T$ 

$$\Sigma = \epsilon \cdot K \qquad \qquad K \equiv \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$

• then,

$$\det \Sigma = \det M \ \det \Sigma_0 \ \det M^T = \det \Sigma_0$$

and

$$\det \Sigma = \epsilon^2 \det K = \epsilon^2 (\beta \gamma - \alpha^2) = \epsilon^2$$

note: detM = 1

• Thus, the emittance is conserved upon transport through the system





# **Computer Codes**

- Complicated arrangements can be fed into now-standard computer codes for analysis
  - TRANSPORT, MAD, DIMAD, TRACE, TRACE3D, COSY, SYNCH, CHEF, many

more ...



Winter Session 2018 MJS

**USPAS** Fundamentals





# Let's Think About the Numbers & Units...

$$\epsilon = \pi \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

- If  $\langle x^2 \rangle \sim mm^2$ , and  $\langle x'^2 \rangle \sim mrad^2$ , then the emittance can have units of mm-mrad (*also* =  $\mu$ m)
- Courant-Snyder parameters

$$\beta = \frac{\pi \langle x^2 \rangle}{\epsilon}$$

$$\alpha = -\frac{\pi \langle xx' \rangle}{\epsilon}$$

$$\gamma = \frac{\pi \langle x'^2 \rangle}{\epsilon}$$

1

**n** 

mm<sup>2</sup>/(mm-mrad) ~ mm/mrad = m

 $mrad^2/(mm-mrad) \sim 1/m$ 

(mm-mrad)/(mm-mrad) = dimensionless

The " $\pi$ " comes from our definition of emittance as an area in phase space; emittance is often expressed in units of " $\pi$  mm-mrad"





# Summary

 Given an initial particle distribution in phase space at the input to a beam transport system, can describe that distribution (sometimes not all that well, but we try...) using Courant-Snyder parameters:

$$\epsilon = \pi \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$



• The C-S parameters can then be computed downstream, using

$$\Sigma = M \Sigma_0 M^T$$