Physics Review

Newtonian Mechanics
 Gravitational vs. Electromagnetic forces
 Lorentz Force
 Maxwell's Equations
 Integral vs. Differential

Relativity (Special)

Newtonian Mechanics

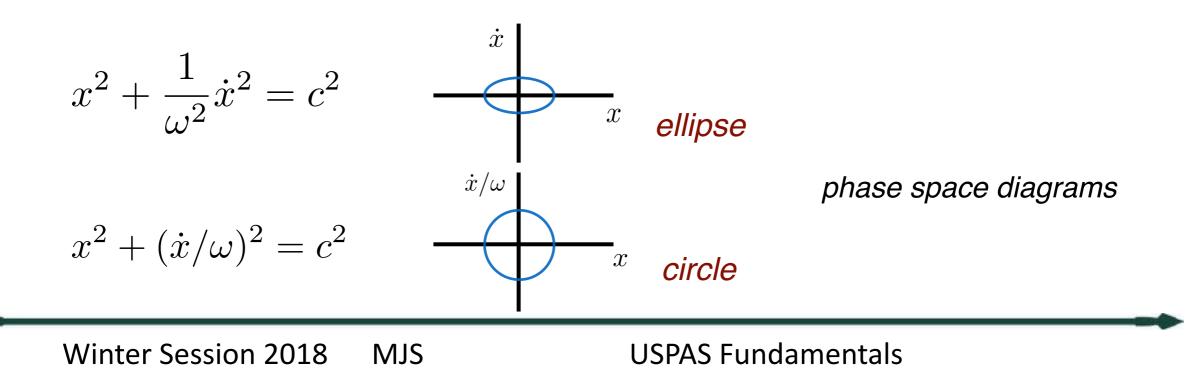
v = dx/dt $\oslash F = dp/dt$ $\oslash dW = F dx$ $\Im F_q = G Mm/r^2 [F_e = 1/4\pi\epsilon_0 Qq/r^2 F_b = qv x B, etc.]$ The Simple Harmonic Oscillator + Phase Space

Simple Harmonic Motion

$$\ddot{x} = -kx \qquad \qquad \ddot{x} + kx = 0$$

$$x = a\sin(\omega t) + b\cos(\omega t) = c\sin(\omega t + \delta)$$
$$\dot{x} = c\omega\cos(\omega t + \delta)$$
$$\ddot{x} = -c\omega^2\sin(\omega t + \delta) = -\omega^2 x$$

 $\omega = \sqrt{k}$

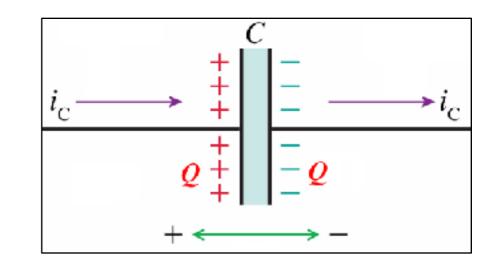


Maxwell's Equations

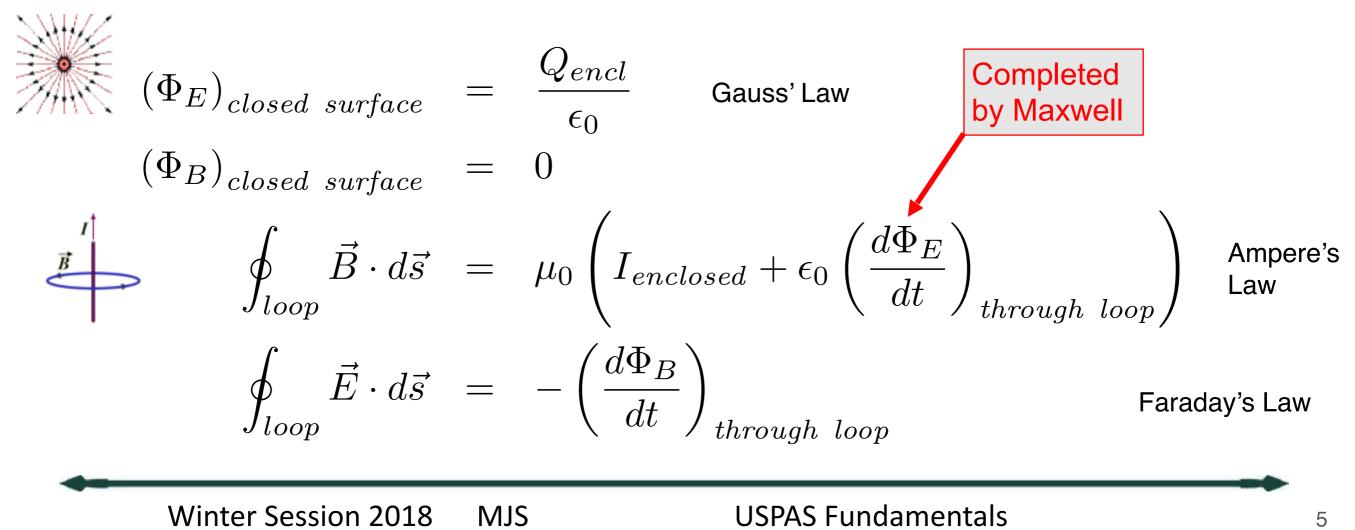
- Integral Form
- Ø Differential Form
- One Consequence: EM Waves
 - Speed of waves given by $c = (\mu_0 \varepsilon_0)^{-1/2}$
- Another Consequence:

If μ₀, ε₀ are fundamental quantities, same in all reference frames, then so should be the speed of light!

$$\Phi_B \equiv \oint_{surface} \vec{B} \cdot d\vec{A}$$
$$\Phi_E \equiv \oint_{surface} \vec{E} \cdot d\vec{A}$$



Maxwell's Equations:



Differential Relationships

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\begin{split} (\Phi_{E})_{closed \ surface} &= \frac{Q_{encl}}{\epsilon_{0}} & \nabla \times \vec{A} = \hat{i} \left(\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z} \right) - \hat{j} \left(\frac{\partial A_{z}}{\partial x} - \frac{\partial A_{x}}{\partial z} \right) + \hat{k} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right) \\ (\Phi_{B})_{closed \ surface} &= 0 & \\ \oint_{loop} \vec{B} \cdot d\vec{s} &= \mu_{0} \left(I_{enclosed} + \epsilon_{0} \left(\frac{d\Phi_{E}}{dt} \right)_{through \ loop} \right) \\ \oint_{loop} \vec{E} \cdot d\vec{s} &= - \left(\frac{d\Phi_{B}}{dt} \right)_{through \ loop} & \nabla \cdot \vec{E} = \rho/\epsilon_{0} \\ \nabla \cdot \vec{B} = 0 & \\ \text{Stoke's Theorem:} & \nabla \times \vec{B} = \mu_{0} \left(\vec{J} + \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \right) \\ & \int \int_{S} \nabla \times \vec{A} \cdot d\vec{S} = \oint_{\partial S} \vec{A} \cdot d\vec{r} & \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \end{split}$$

USPAS Fundamentals

Wave Equation and the Speed of Propagation

Suppose in free space, no current sources...

$$\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \qquad \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

in general:
$$\nabla\times\nabla\times\vec{f}=\nabla(\nabla\cdot\vec{f})-\nabla^{2}\vec{f}$$

 $\nabla \times \nabla \times \vec{B} = \nabla (\nabla \cdot \vec{B}) - \nabla^2 \vec{B} = -\nabla^2 \vec{B}$ SO,

$$-\nabla^2 \vec{B} = \mu_0 \epsilon_0 \frac{\partial (\nabla \times \vec{E})}{\partial t} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2}$$

thus,

$$abla^2 \vec{B} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2}$$
 and, likewise, $abla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$
nter Session 2018 MJS USPAS Fundamentals

Wi

Wave Equation and the Speed of Propagation

$$\nabla^2 \vec{B} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} \quad \text{and} \quad \nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$

wave equation

Example: let
$$B = b\cos(\omega t - kx) = b\cos(2\pi ft - 2\pi x/\lambda)$$

$$\frac{d^{2}B}{dx^{2}} = -k^{2}B$$

$$\frac{d^{2}B}{dt^{2}} = -\omega^{2}B$$

$$\frac{d^{2}B}{dt^{2}} = -\omega^{2}B$$

$$\frac{d^{2}B}{dt^{2}} = -\omega^{2}B$$

$$\mu_0 \epsilon_0 = (k/\omega)^2 = 1/(\lambda f)^2 = 1/v_{wave}^2$$

$$speed = 1/\sqrt{\mu_0\epsilon_0} \equiv c$$

 $c = 1/(4\pi x 10^{-7} \times 8.8 x 10^{-12})^{1/2} \text{ m/s} = 3.0 \times 10^8 \text{ m/s}$

Maxwell's Equations

- Integral Form
- Ø Differential Form
- One Consequence: EM Waves
 - Speed of waves given by $c = (\mu_0 \varepsilon_0)^{-1/2}$

Another Consequence:

If μ_0 , ε_0 are fundamental quantities, same in all reference frames, then so should be the speed of light!

Special Relativity

The Principle of Relativity

The Laws of Physics same in all inertial reference frames

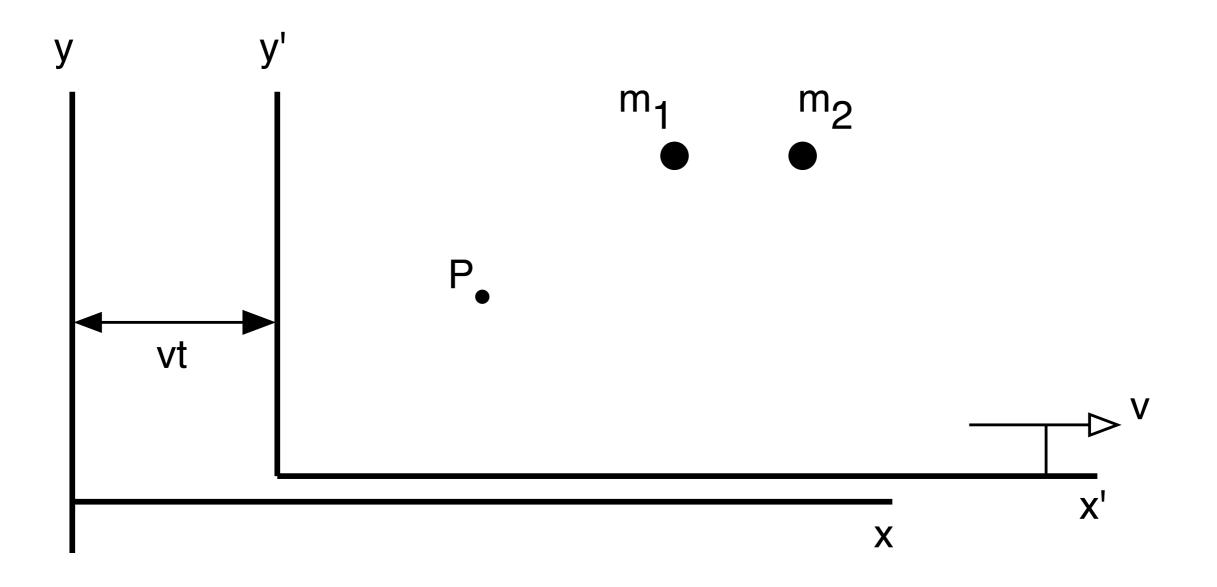
The Problem of the Velocity of Light

Simultaneity

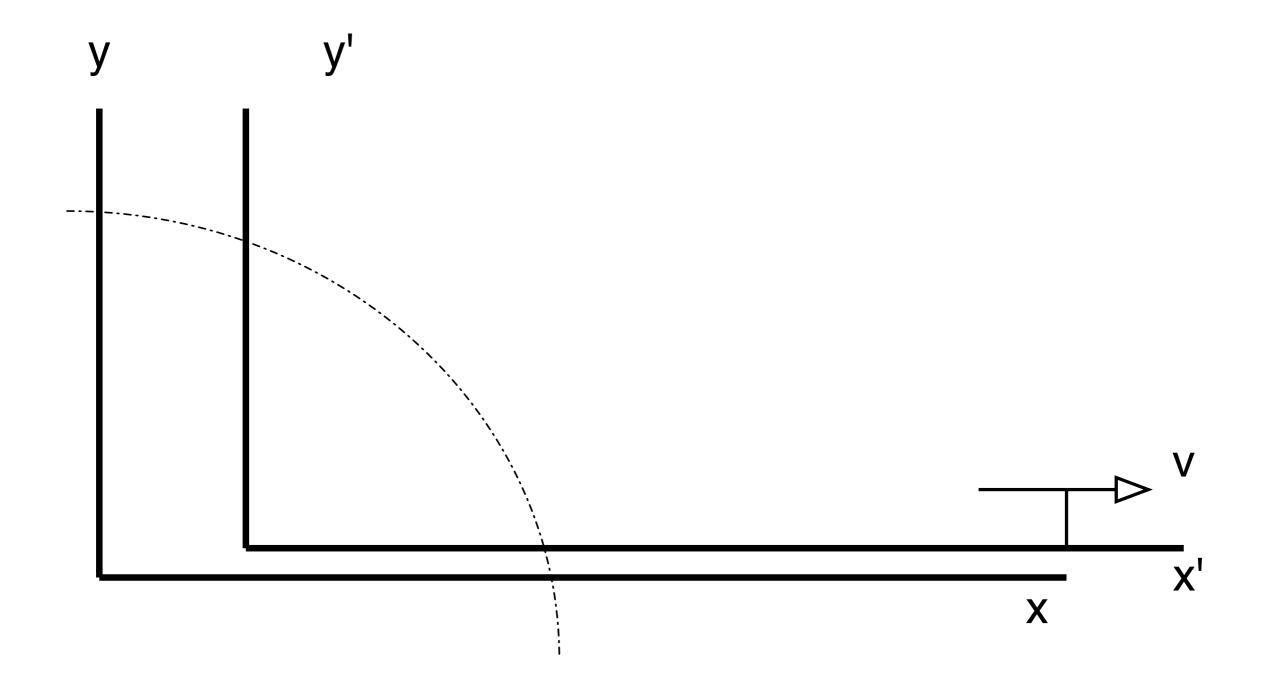
Lengths and Clocks

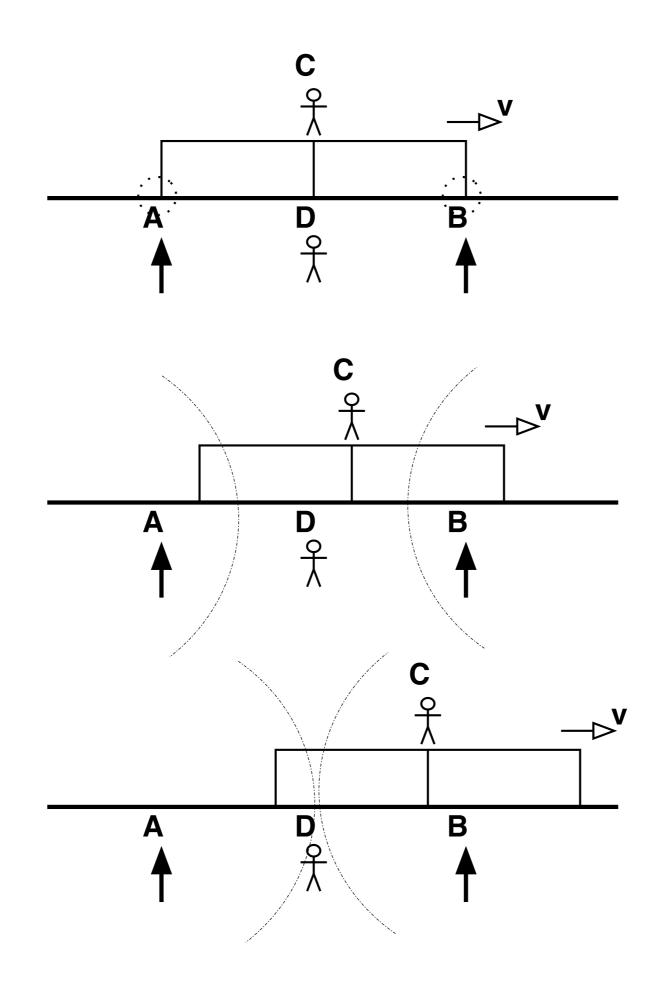
 \odot E=mc²

Ø Differential Relationships

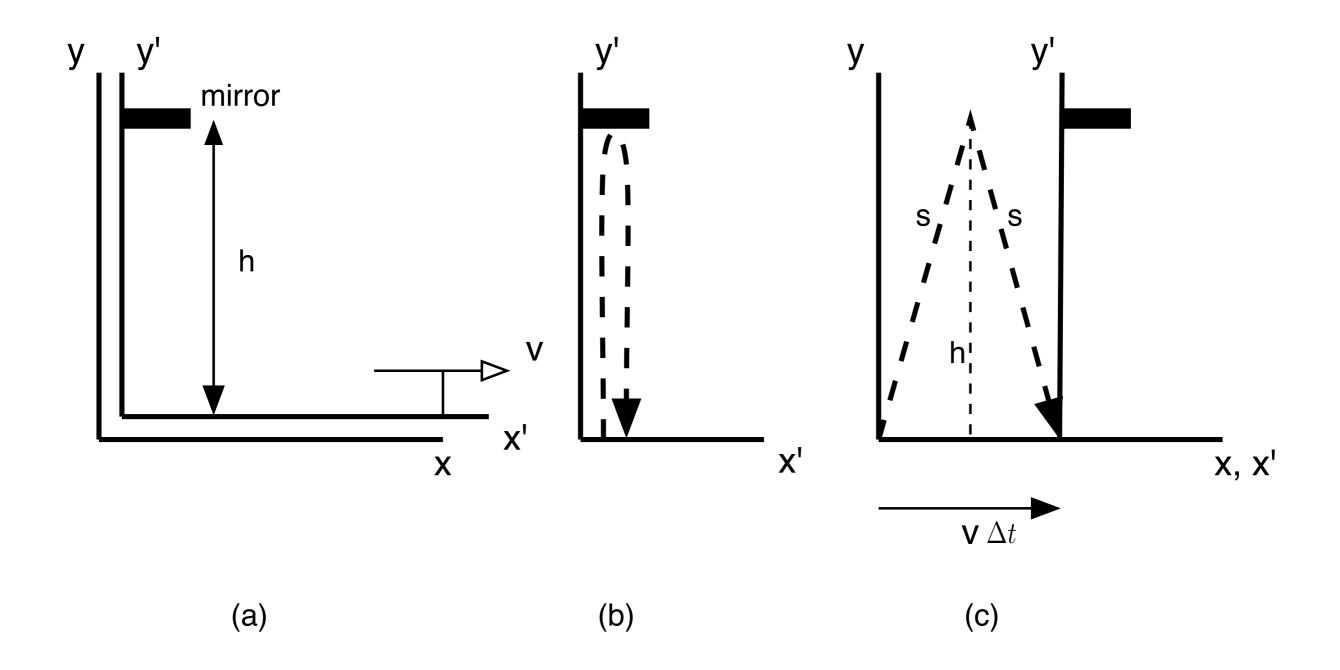


Simultaneity





Lengths and Clocks



Relativistic Momentum

Principal of relativity: All the laws of physics (not just Newton's laws) are the same in all inertial reference frames.

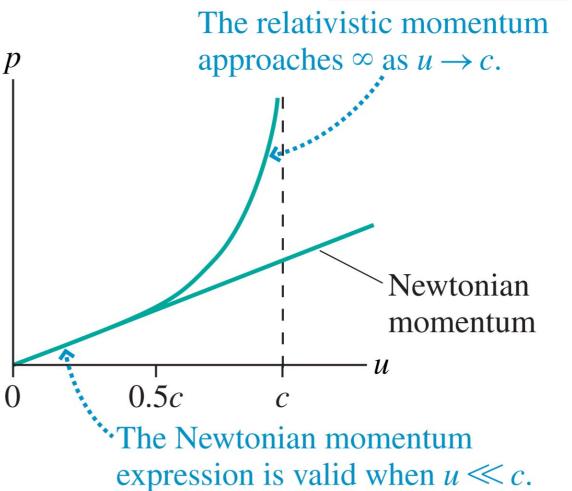
Ex:
$$F = \Delta p / \Delta t$$

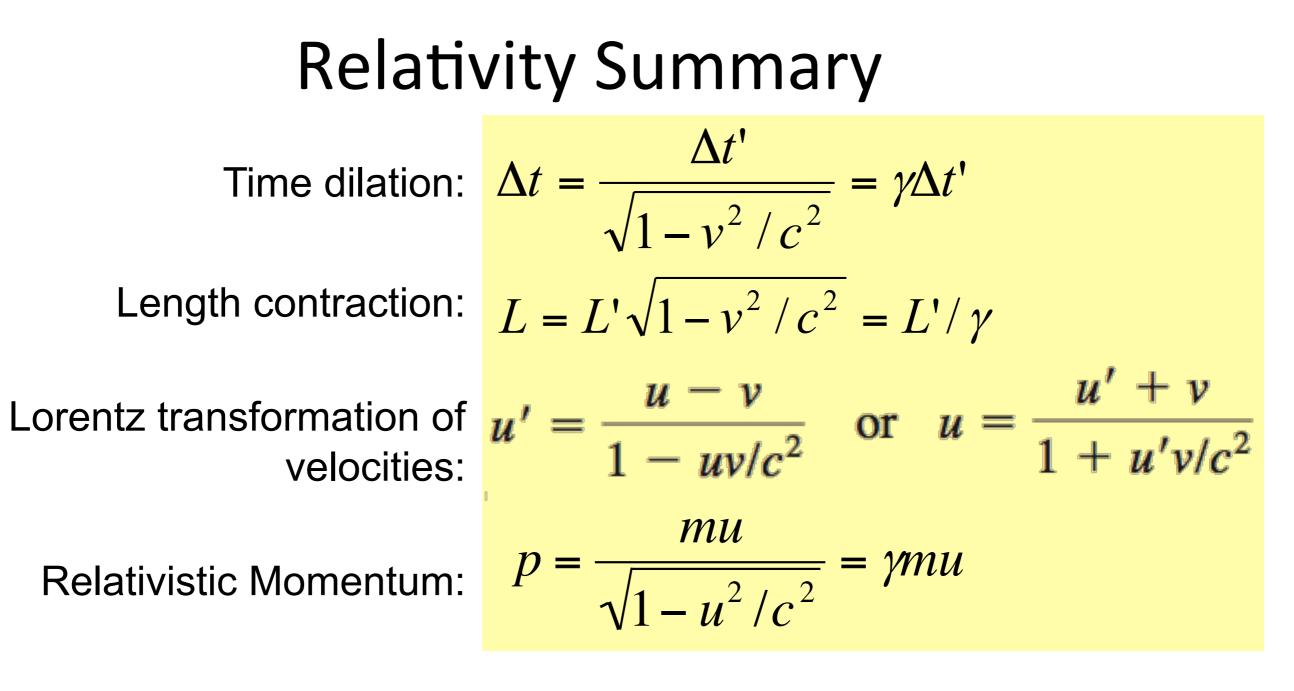
The law of conservation of momentum is valid in all inertial *P* reference frames *if* the momentum of each particle (with mass *m* and speed *u*) is *re-defined* by:

$$p = \gamma m u$$

where

$$\gamma = \frac{1}{\sqrt{1 - u^2/c^2}}$$





$E = mc^2$

The Laws of Physics, and redefining the momentum

What about Energy?

Senergy-momentum relationship

Work done by a Force Acting on a Mass

► The work done on a particle is given by

$$\Delta W = \int F \cdot ds = \int dp/dt \cdot ds = \int (ds/dt)dp = \int v \cdot dp.$$

Check: if p = mv then, starting from rest, $\Delta W = \int v dp = \int v m dv = \frac{1}{2}mv^2$.

▶ But, using our new definition of momentum, $p = \gamma mv$, then

$$\Delta W = \int v \, d(\gamma m v) = \int (v/c) \, m \, d(\gamma v/c) c^2 = mc^2 \int \beta d(\beta \gamma)$$

$$\gamma^2 = 1 + (\beta \gamma)^2 \longrightarrow d\gamma = \beta d(\beta \gamma)$$

So finally, our original integral becomes,

$$\Delta W = mc^2 \int eta d(eta \gamma) = mc^2 \int d\gamma = (\gamma_{\text{final}} - \gamma_{\text{initial}})mc^2$$

• The previous equation tells us that as we do work on a particle its energy will change by an amount $\Delta E = \Delta W = \Delta \gamma mc^2$. Thus, the energy of a particle should be defined as

$$E = \gamma mc^2$$
.

• If the particle starts from rest, then $\gamma_{initial} = 1$, and its energy is $E = mc^2$. As it speeds up its kinetic energy will be

$$KE = \Delta W = (\gamma - 1)mc^2$$
, where here $\gamma \equiv \gamma_{final}$.

So we see that the energy is a combination of a "rest energy" and a "kinetic energy":

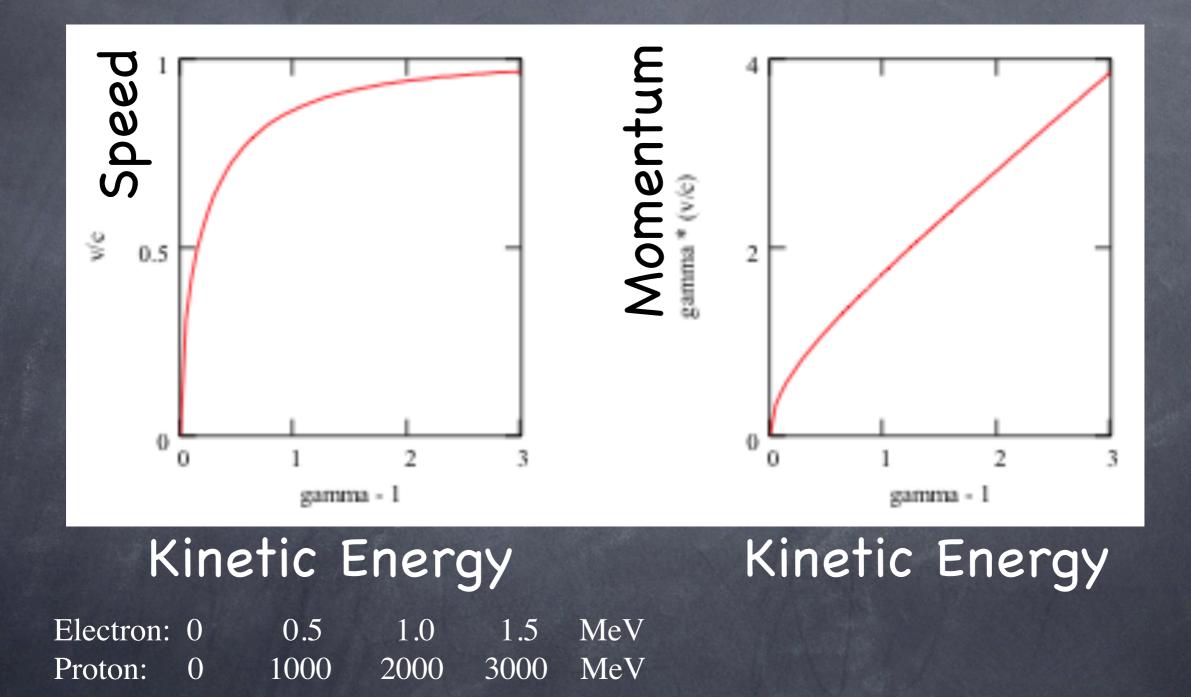
$$E = \gamma mc^2 = mc^2 + (\gamma - 1)mc^2.$$

If no work were done $(\Delta W = 0)$, and the particle were still at rest, the particle would *still* have energy (rest energy):

$$E_0 = mc^2 \rightarrow \text{mass is energy!}$$

Relativity Summary Time dilation: $\Delta t = \frac{\Delta t'}{\sqrt{1 + v^2 / c^2}} = \gamma \Delta t'$ Length contraction: $L = L'\sqrt{1 - v^2/c^2} = L'/\gamma$ Lorentz transformation of velocities: $u' = \frac{u - v}{1 - uv/c^2}$ or $u = \frac{u' + v}{1 + u'v/c^2}$ Relativistic Momentum: $p = \frac{mu}{\sqrt{1 - u^2/c^2}} = \gamma mu$ Relativistic Energy: $E = \frac{mc^2}{\sqrt{1 - w^2/c^2}} = \gamma mc^2$ The total energy is made up of two contributions $\gamma = \frac{1}{\sqrt{1 - v^2 / c^2}} \qquad E = \underline{mc^2} + \underbrace{(\gamma - 1)mc^2}_{\text{Rest energy } E_0} \quad \text{Kinetic energy } K$

Speed, Momentum, vs. Energy



Relationships Differential, and Otherwise $\gamma = 1/(1-\beta^2)^{1/2}$ $\oslash \beta = v/c$ $\oslash F = dp/dt$ $p = \gamma m v = \beta \gamma m c$ $\oslash E = \gamma mc^2 = mc^2 + W$ $W = (\gamma - 1)mc^2$ given E, find p; given p, find W; given W, find v If find: $d\beta/\beta$ in terms of dp/p; dE/E in terms of dp/p \oslash find: $d\beta/\beta$ in terms of dW/W; dW/W in terms of dE/E \oslash (coefficients only to contain factors of β , γ)

Quantization

- Accelerator and Beam Physics are typically "classical" physics; occasionally (esp. wrt synchrotron radiation and light sources), quantum physics comes into play
- Solution Photon: $E = h\nu = hc/\lambda = pc$ (i.e., m = 0)
- De Broglie Wavelength: $\lambda = h/p$ $\Delta x \cdot \Delta p_x = h/4\pi$ (Uncertainty Principle)