Phase Space Propagation

M J Syphers
1/4/2018

Creating a Distribution

Consider a collection of Ny, particles, each with a transverse coordinate x lying on a corresponding trajectory
with slope 2’ relative to the ideal trajectory. Suppose the particles are distributed “normally” about the ideal
trajectory, with rms spreads in position and slope of o, and o,/, respectively. To model this situation, we
call up R on the computer and enter the following commands into a console window:

Npar = 10000
x = rnorm(Npar,0, 5)
xp = rnorm(Npar,0,2)

The “random normal” function in R creates coordinates x from a normal, or Gaussian, distribution with a
desired mean of zero and an rms spread of o, = 5. (Let’s presume that the units are in mm.) The distribution
of slopes #’ should have an rms spread of o,» = 10. (Here, let’s presume that the units are in mr = 1073
radians.)

We can see how well we have done by finding the rms of the above variable distributions, using the var ()
function (variance) in R, which finds {(z — (x))?):

sqrt(var(x))
sqrt (var (xp))

We can also plot simple histograms of the distributions in x and z’, as well as a “phase space plot” as follows:

hist(x)
hist (xp)
plot(x,xp,pch=".")

As will be presented in class, and as can be found in the on-line notes (see Appendices on the web site), the
phase space distribution can be characterized by a set of parameters, namely an “emittance”, ¢ — which is
related to the area in phase space occupied by the particles — and the Courant-Snyder parameters, «, 3, and
.

In addition to var (x) for finding the variance (z2) of a variable, the covariance (xy) of two variables is found
using cov(x,y). The function CScalc() defined in the code below computes the Courant-Snyder parameters
and the emittance using the variance and covariance functions applied to the = and z’ distributions created
earlier.

CScalc = function(x,xp){
epsx=sqrt (var (x) *var (xp) -cov (x,xp) ~2)
betx= var(x)/epsx
alfx=-cov(x,xp)/epsx
gamx= var (xp)/epsx
c(alfx,betx,gamx,epsx)

3

A simple call to this function prints out four numbers: «, 8, v and e:

CScalc(x,xp)

« How does the emittance, €, found from CScalc()relate to the initial rms values \/(x2) and +/(z'2)
generated earlier?

e The value of the covariance cov(x,xp) should be nearly zero for our example; check that this is so.
What would a non-zero value tell you about the phase space distribution?

cov(x,xp)

Propagating the Distribution

We know that as the particles move down the beam line unencumbered through a distance L, the angles of
their trajectories will not change, but their transverse positions will change according to

x+—x+a L.

Input the following code into your R program to see how the distribution changes. . .
drift a distance L

L=3

x = x + xpxL

hist(x)

hist (xp)
plot(x,xp,pch=".")
CScalc(x,xp)

You should notice that the Courant-Snyder parameters have changed; the value of a changes significantly,
indicating a correlation developing between x and z’.

e Why would this happen?
o How has the value of € changed (or has it)?

Next, since we see the extent of the x distribution getting very large, let’s go through a thin lens quadrupole
of focal length F'. The magnet will alter the slopes of the trajectories according to

¥ a2 —x/F

while leaving the positions z unchanged (in the “thin lens” approximation). The code below performs this
transformation and generates results.

focus through a quadrupole, focal length F

F=2

xp = xp-x/F

hist(x)

hist (xp)
plot(x,xp,pch=".")
CScalc(x,xp)

Notice that the correlation has changed — in fact, the covariance has changed sign for our chosen parameters.

Create a system of lenses

We now have the tools to model the propagation of our distribution through a series of lenses. Let’s create
two lists, one a list of lens focal lengths F' and the second a list of the spaces between these lenses, L. Let’s
assume these distances to be in meters (and remember, x is in mm and 2’ is in mrad).

L=c(5, 2,7, 4, 3, 3, 6, 8
F = c(-8, 4,-9, 4,-7, 9,-5, 7)

We now write a code that models a particle being focused through a thin lens of focal length F;, then
propagating a distance L;. We then loop this operation through the entire list of N lenses, where i € [1, N].
At the end of each drift we compute the Courant-Snyder variables and keep track of the results. In the code
below, the vector V is V = («a, 8,7, €) and at the end of each loop we bind the new results with the previous
results using the rbind () function (bind by row) in R. The final result will be a matrix of values where each
row will be the values of V' at the end of the i-th drift.

i=0
V = CScalc(x,xp) # values at s=0
while(i < length(L)){

i= i+l

xp = xp-x/F[i]

x = x+xp*L[i]

V = rbind(V,CScalc(x,xp))

}

After exectuing the above code we can see the final result simply by typing
'
in the console window.

To ease the analysis we’ll define new varibles in order to capture the values found in each of the 4 rows of V:

alpha = V[,1]

beta = V[,2]
gamma = V[,3]
eps = V[,4]

Finally, we can make a plot of the beam envelope through our beam line. First, to get the path length
coordinate, let s;41 = s; + L;. The cumsum() function in R makes this fairly easy, though we must include
the initial value of s = 0 to get aligned with the proper number of values found in our loop above:

s = c(0,cumsum(L))

plot(s, beta ,typ="1",ylim=c(0,1.2*max(beta)))
plot(s,sqrt(beta) ,typ="1",ylim=c(0,1.2*max(sqrt(beta))))
o Why might we plot /3, as we did in the second plot, above rather than 3 ?
« Use R to plot the value of 7 — a? at each of the points in our beam line calculation.

e With the result of this plot, write the general relationship between v and the other two Courant-Snyder
parameters.

	Creating a Distribution
	Propagating the Distribution
	Create a system of lenses

