
Add Some Realism to our Ideal 
Accelerator

§ Steering (dipole) Errors 
§ Focusing (quadrupole) Errors 
§ Errors creating Linear Coupling 
§ Chromatic (momentum) Effects 
§ Nonlinear Motion and Resonances 

§ Not only will errors create perturbations in the beam size, etc., but they 
will also tend to identify operational considerations, such as frequency 
choices, corrector placement, alignment tolerances, power supply 
specifications, etc.
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Steering (dipole) Errors
§ dipole field error: 

• manufacturing; powering; control setting, … 

§ dipole field “roll” (about the longitudinal axis) 

§ Quadrupole misalignment:
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Steering (dipole) Errors
§ A field error creates a betatron oscillation…
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Steering (dipole) Errors
§ Closed orbit distortions in a circular accelerator 

• These are not “one-time” kicks; they affect the particle motion every revolution
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The	trajectory	of	each	particle	
will	be	altered	by	the	angle	!"	
every	time	it	passes	through	
the	error	field

black	=	nominal	
red	=	w/	error	field

see	ClosedOrbit.R



The Closed Orbit
§ Want to find the one trajectory which, upon passing through the error 

field, will come back upon itself 
• this is the “closed” trajectory, or closed orbit 

§ When find x0, x’0, can find x,x’ downstream:
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Closed Orbit Distortion from Single Error
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Closed Orbit Distortion from Single Error
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Trajectory/Orbit Correction

§ To make a local adjustment or correction of the position of the beam in a 
beam line or synchrotron, three correctors are required (in general):
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Orbit Corrections

§ As an example, in a “FODO” synchrotron, one would place correctors 
near the location of each quadrupole — at maximum beta locations, and 
at the source of likely steering errors (misaligned quads)
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Alignment Specifications Discussion
§ see TrajTrace.Rmd 
§
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Focusing (gradient) Errors
§Sources of gradient focusing errors 
• Quadrupole magnet field error 
» powering error; control error; manufacturing error 

• Dipole pole tip error (non-parallel poles) 
• etc. 

§ Impact of gradient errors 
• Look at Hill’s Equation: 
» errors in the values of K will alter… 
• phase advance (tune, or betatron frequency)
• amplitude function, $
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Focusing (quadrupole) Errors
§ β, % distortions and “beta-beat”
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β Distortion in a Synchrotron

§ In a circular accelerator, the closed solution of the amplitude function(s) 
will be altered by the gradient error.  With analysis similar to the situation 
for a closed orbit distortion, the gradient error will produce a closed β-
distortion all around the ring according to (for small errors):
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Focusing (quadrupole) Errors

§ Phase/tune shift 

• a gradient error will distort the amplitude function, and therefore distort 
the development of the phase advance downstream.  As the $ distortion 
will oscillate about the ideal $ function, the phase advance will slightly 
increase and decrease along the way.  This is particularly important in a 
ring where the betatron tune, #, might need fine control. 

• To see the change in tune for a synchrotron, we look at the effect on the 
matrix for one revolution…
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The Tune Shift Formula
§ M0 is the one-turn matrix of ideal ring 
§ M is the one-turn matrix of the ideal ring 

followed by a small gradient error of 
strength q:
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Focusing (quadrupole) Errors
§ What happens if the gradient error is too big?   

§ Half-integer stop band
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Beta-Mismatch Invariant
§ We noted that a local gradient error will produce an unintended distortion 

in the amplitude function (in its slope, in particular): 

§ In the absence of further gradient errors,  
•    | !$!' - !α2 |  is an invariant, and thus will have the same value further 

down the beam line 

§ proof:
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Gradient Specifications Discussion
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Tune correction/adjustment

§ In the same way that an error will change the tune of a synchrotron, so 
can a quadrupole field adjustment be made to implement a desired 
change in the tune 

§ Note, however, that a quad change will alter the horizontal tune in one 
direction, but will alter the vertical tune in the other direction.  Also, since 
the amplitude functions, $x and $y, may be different, the actual shifts in 
the two tunes will also be different in magnitude. 

§ Thus, to exercise independent control of #x and #y, there needs to be two 
quadrupoles (or 2 circuits)
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Tune correction/adjustment
§ Suppose we have a FODO arrangement, and we put adjustable 

quadrupoles near every “main” quadrupole (N = # quads): 

§ The quadrupoles can be wired in two separate circuits, and thus the two 
tunes can be independently adjusted by any (reasonable) amount 
desired.

20M. Syphers          PHYS 790-D             FALL  2019

�⌫x =
N

4⇡

h
�̂�q1 + �̌�q2

i

�⌫y = �N

4⇡

h
�̌�q1 + �̂�q2

i

�̂

�̌



Errors creating Linear Coupling

§ So far, have discussed systems where the horizontal and vertical motion 
are distinct.  This occurs naturally when using dipole and quadrupole 
fields: 

•       By = B0 + B’ x        Bx = B’ y 
• vertical fields cause motion in x, horizontal fields cause motion in y 

§ We’ve seen that a rotated (about its axis) dipole magnet will create a field 
component in the other plane, causing steering effects.  A rotated 
quadrupole magnet will produce focusing fields that depend on both x and 
y — coupled motion.
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Errors creating Linear Coupling
§ Rotated quadrupole magnet
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Linear Coupling From Solenoid Fields
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Effects of coupling on betatron tunes

§ Coupling moves the frequencies about — moves the betatron oscillation 
tunes, in the case of an synchrotron — and so can defeat the precise 
tune control needed to avoid resonances in devices such as colliders and 
other storage rings.  

§ At an even more elementary level, coupling is an irritant in diagnosing 
beam behavior, for the eigenfrequencies and eigenmodes are no longer 
associated with the degrees of freedom specified in the design.
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Eigen-frequencies of Coupled Oscillator
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Beam Transport through Coupled 
Systems

§ We’ve just seen the possible introduction of a “4x4” matrix approach to 
analyzing coupled motion 

§ If we look at 4x4 transport matrices that operate on (x,x’,y,y’ ) vectors, 
then the transport of covariance matrices works just as before:
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Chromatic Effects

§ We may think of dispersion (and the Dispersion function) as being 
the propagation of a steering error, where the error was introduced 
due to !p/p.  

§ !p/p will similarly introduce gradient “errors” 
• thus, expect the tune to depend upon !p/p 
• and, expect the amplitude function $ = $(!p/p) 

§ Some Examples 
• Chromatic Aberration in a final focus 
• Tune spread in a synchrotron due to momentum — chromaticity
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Chromatic Aberration in Final Focus
§ Example:  dQ/Q >> dp/p, so dominates the discussion in FRIB design 

§ In the Final Focus, the beam is big through the final triplet 
• thus, since 

• we get approximate values at the target:
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Chromaticity of a Circular Accelerator

§ Chromaticity -- change in the betatron tune, #, with 
respect to relative momentum deviation (!p/p): 

§ There will be a different chromaticity value for each 
degree of freedom:
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The Natural Chromaticity
§ While there may be error fields that contribute to chromatic effects 

(sextupole fields — later), there will be a “natural” chromaticity due to the 
ideal magnets of the synchrotron lattice 

§ Starting from                    for a single gradient error,
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Natural Chromaticity of a Low-$ Insertion
§ We saw in our LHC example that the beta function has values: 

• 180 m in cells 
• ~4500 m in final focus triplet 
• 0.5 m at the Interaction Point 

§ Estimate )nat due to IP:
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Chromatic Corrections
§ Example:  suppose synchrotron has ) = -60, and the beam has a 

momentum spread of ±0.1%; then the particle distribution will have a 
spread in tunes between #0 ± 0.06 #0. 

§ In order to ensure that all particles have the same tunes (hor/ver), within 
tolerable levels, need to be able to adjust the overall chromaticity of the 
ring. 

§ Desire focusing element with a focusing strength that depends on 
momentum (linearly, preferably). 

§ This can be accomplished using sextupole fields in regions with horizontal 
dispersion.
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Chromatic Corrections
§ Sextupole Field:  
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defocusing in the other plane

Thus,	need	2	sextuples	(or	2	families	of	sextuples)	for	
	optimal	independent	corrections/adjustment	of	)x,	)y.

Also	Note:		introduces	(intentionally!)	a	non-linear	field!!

1

f
=

(@By/@x)`

B⇢
=

B00`

B⇢
·D �p

p
�⇠ =

1

4⇡
� D

B00`

B⇢

�⌫ =
1

4⇡
�/f

gradient



Correction/Adjustment of Chromaticity
§ Suppose we have a FODO arrangement, and we put adjustable sextuple 

magnets near every “main” quadrupole (N = # sextupole magnets): 

§ The sextupoles can be wired in two separate circuits, and thus the two 
chromaticities can be independently adjusted by any (reasonable) amount 
desired.
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The Introduction of a Non-Linear Element
§ For the first time in our discussion, have introduced a “non-linear” 

transverse magnetic field for explicit use in the accelerator system — 
sextupoles for chromatic and/or chromaticity correction 

§ This opens the door to new and interesting phenomena, just as in the 
nonlinear longitudinal motion: 

• phase space distortions 

• tune variation with amplitude 

• dynamic aperture 

• …
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Effect on Phase Space due to Single 
Sextuple

§ Track the trajectory of a particle around an ideal ring, but include the kick 
from a single sextupole every revolution: 

• transform to new coordinates: 

• transform again: 

§ The topology of the phase space here only depends upon the choice of 
tune, #.   Let’s see what happens…
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Sextupole Tracking Code Demonstration
§   while (i < Nturns+1) { 
§     du1   <-  du  + u*u/2 
§   u1   <-  a*u  + b*du1 
§   du   <-  c*u  + d*du1 + u1*u1/2 
§        u    <-  u1 
§     points(u, du, pch=".") 
§     i = i + 1 
§   } 

§ Let’s run a code…
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Sources of Transverse Nonlinearities
§ Real accelerator magnets 

• Finite width of the field region in a dipole magnet produces a 6-pole 
(sextupole) term  -- By(y = 0)  ~  x2 

• Real magnets also have: 
» Systematic construction errors 
» Random construction errors 
» Eddy currents in vacuum 
»    chambers as fields ramp up 

§ So, real life will introduce sources of linear AND nonlinear field 
perturbations which can affect the region of stable phase space ....
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Linear Resonances in Circular 
Accelerators

§ Imperfections of the ideal “linear elements” lead to implications of the 
motion 

• guide-field errors 
» the ‘closed’ trajectory about the synchrotron will become distorted -- average beam 

trajectory must be adjusted using small, corrector magnets 

• focusing field errors 
» distortions of the beam envelope 
» if too many, can have |trM| > 2  ==> entire accelerator is unstable
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Resonances and Tune Space
§ Error fields are encountered repeatedly each revolution -- thus, can be 

resonant with the transverse oscillation frequency 
§ Let the  “tune”   ν  =  no. of oscillations per revolution 

• repeated encounter with a steering (dipole) error produces an orbit distortion: 

» thus, avoid integer tunes 

• repeated encounter with a focusing error produces distortion of amplitude 
function, β: 

» thus, avoid half-integer tunes

�x � 1
sin⇥�

��/� � 1
sin 2⇤⇥
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Nonlinear Resonances
§ Phase space w/ sextupole field present (~x2) 

• topology is tune dependent: 
• frequency depends upon amplitude 
• “dynamic aperture”
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With	sextupole	field	present,	must	avoid	
tunes:	

integer,		integer/2,		integer/3,	...

“normalized”	
		phase	space;	ideal	
trajectories	are	circular



An Application
§ Put the transverse nonlinear fields to work for us 
§ Can pulse an electromagnet to send the particles out of the accelerator all 

at once; but Particle Physics experiments often desire smooth flow of 
particles from the accelerator toward their detectors 

§ Resonant Extraction 
• developed in 1960’s, particles can be put “on resonance” in a controlled 

manner and slowly extracted 
• third-integer:  carefully approach  ν = k/3 
» driven by sextupole fields 

• half-integer:   carefully approach  ν = k/2 
» driven by quadrupole and octupole (8-pole) fields
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Phase Space used for Extraction
§ Linear restoring forces with 

Sextupole perturbation, running 
near a tune of k/3 

§ Linear restoring forces with 
Octupole (8-pole) and quadrupole  
perturbations, running near a tune 
of k/2
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Figure 2: Horizontal phase space during tune scan, for tunes above 29/3.
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Third-integer Extraction
§ Example:  particles oscillate in 

phase space in presence of a 
single sextupole 

§ Slowly adjust the tune toward a 
value of k/3 

• (here, k=1) 

§ Tune is exactly 1/3 at the 
separatrix 

§ The lines that appear are 
derived from a first-order 
perturbation calculation 

§ Particles stream away from the 
“unstable fixed points”, stepping 
across a “septum” which leads 
out of the accelerator
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Half-integer Extraction
§ Similar to last movie, but 

“ideal” accelerator has 
extra quadrupole and 
octupole (8-pole) fields 

§ Slowly adjust the tune 
toward a value of k/2 

• (here, k=1) 

§ Here, lowest-order 
separatrices defined by two 
intersecting circles 

§ Eventually, when very close 
to half-integer tune, entire 
phase space becomes 
unstable (|trM|>2)
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Coupling Resonances
§ We’ve seen that coupling produces conditions where the motion in one 

plane (x) can depend upon the motion in the other plane (y) and vice 
versa.  When the frequencies of the coupled motion create integer 
relationships, then coupling resonances can occur:

m �x ± n �y = k

46M. Syphers          PHYS 790-D             FALL  2019

In	general,	a	“difference”	resonance	will	simply	exchange	the	
energy	between	the	two	planes,	back	and	forth,	but	the	motion	
remains	bounded	

A	“sum”	resonance	will	exchange	energy,	but	the	overall	
motion	can	become	unbounded

m⌫x + n⌫y = k

m⌫x � n⌫y = k

ax

ax

ay

ay



Coupling Resonances
§ Always “error fields” in the real accelerator 

§ “Skew” fields can couple the motion between the two transverse degrees 
of freedom 

• thus, can also generate coupling resonances 
» (sum/difference resonances) 

• in general, should avoid: m �x ± n �y = k

avoid	ALL	rational	tunes???
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Tune Diagram

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hor tune

v
e
r 

tu
n
e

Through	order	
k	=2

48M. Syphers          PHYS 790-D             FALL  2019

m �x ± n �y = klines	of	
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