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17. The appeal of electron cooling is easy to illustrate. In conventional 
kinetic theory, the gas temperature is related to the mean energy of the 
molecules by 

( P 2 >  3 
- =  -kT. 

2m 2 

So for an ion beam, one can define a “temperature” for each degree of 
freedom by 

( P : o )  ( P,20 ) ( P:o) 
9 9 2 m m m 

where the Boltzmann constant has been supressed. The subscript “0” 
implies that the momenta are measured with respect to the rest frame of 
the beam centroid. 
(a) Show that for one transverse degree of freedom 

where all the quantities are now measured in the laboratory frame. 
Here, (@’I2 = ( ( x ’ ) ~ ) .  Note that, because of the presence of the 
amplitude function p, the temperature is a function of position. 

(b) Evaluate T, for typical injection parameters from a proton linac into 
a synchrotron. Take ( u / c ) y  = 0.7, eN = 7r/2 mm mrad, and p = 10 
m. 

(c) Repeat the calculation for the longitudinal degree of freedom. Show 
that 

Take up = to obtain a numerical estimate. 
(d) In electron cooling, an electron beam traveling at the same speed as 

the ion beam centroid interchanges energy with the ion beam. Esti- 
mate the temperature of an electron beam emitted from a hot 
cathode, in the same units as that used for the ion temperatures 
above. 

18. In this chapter, we have concentrated on transverse emittance growth, in 
large part because of the importance of transverse emittance to the 
luminosity of a collider. But longitudinal emittance cannot be ignored, 
for eventually dilution processes may lead to loss of particles from stable 
buckets. Derive an expression for longitudinal emittance growth analo- 
gous to Equation 7.112. 
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In	electron	cooling,	an	electron	beam	with	very	
small	emittance	is	made	to	travel	at	the	same	speed	
as	the	proton/ion	beam	that	has	a	relatively	high	
emittance	(transverse	temperature).			

The	cool	electrons	then	exchange	transverse	energy	
with	the	hot	protons/ions,	and	then	the	electrons	
are	discarded	(and	new	electrons	re-generated).		

LEIR	ring,	CERN

M. Steck
CAS 2011

Chios
Greece

Electron Cooling Time

cooling time

cooling rate:

�slow for hot beams  ∝θ3

�decreases with energy ∝γ -2 (βγθ is conserved)
�linear dependence on electron beam intensity ne and cooler length η=Lec/C
�favorable for highly charged ions Q2/A
�independent of hadron beam intensity

cooling rate is constant and maximum at small relative velocity
F ∝vrel ⇒τ = ∆t = prel/F = constant

for large relative velocities

for small relative velocities

first estimate:
(Budker 1967)
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CAS 2011
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Models of the 
Electron Cooling Force
binary collision model
description of the cooling process by successive collisions of two particles
and integration over all interactions
analytic expressions become very involved, various regimes
(multitude of Coulomb logarithms)

dielectric model
interaction of the ion with a continuous electron plasma 
(scattering off of plasma waves)
fails for small relative velocities and high ion charge

a simple empiric formula (Parkhomchuk): 

*G.1.	Budker,	Proc.	Intl.	Symp.	on	Electron	and	
Positron	Storage	Rings,	Saclay,	1966,	p.	11-1-1	
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• The beam optics needs to be analyzed and adjusted to 
establish the design beam size and the rms angular 
spread in the cooling section. 

• The electron beam energy needs to be measured and 
adjusted to match the antiproton energy.  The electron 
beam relativistic factor, γ, needs to be within 0.3% of 
that for the antiproton beam. [8] 

By the middle of this summer our plan is to attain a stable 
beam current of 0.5 A at the correct energy.  Using the 
BPM system in the dc mode we will adjust the antiproton 
beam position to be within 0.1 mm of the electron beam 
center.  Also, we will stabilize the electron beam position 
by a position feed-back loop. 

Cooling process demonstration 
The ultimate goal for the cooling system 

commissioning effort is to demonstrate the electron 
cooling of 8.9-GeV/c antiprotons.  There are three major 
requirements: (1) the beam current needs to be at a 0.5-A 
level, (2) the rms angular spread of the electron beam 
needs to be quite low, 0.2 mrad and (3) the energies of the 
two beams need to be well matched.     

 
Figure 5: The momentum distribution (arb. units) as a 
function of antiproton energy deviation (simulation by 
MOCAC code [5]).  The initial distribution is uniform in 
energy.  The final distribution is plotted after 30 minutes. 

Since the cooling process is quite slow, we anticipate 
that the energy matching will be challenging.  Our plan is 
based on two assumptions: (1) the Recycler absolute 
energy is known to 0.1% and (2) the Recycler momentum 
acceptance is greater than 0.3%.  Measuring and adjusting 
the electron absolute energy to 0.3% would allow us to 
land the electron beam energy somewhere within the 
Recycler momentum acceptance.  To observe the cooling 
process we will implement the following procedure.  A 
small (10×1010) antiproton beam current will be 
debunched and cooled transversely (by the stochastic 
cooling system) to a small transverse beam emittance.  
Using rf noise the momentum spread of this beam will be 
increased to create a uniform momentum distribution 0.3-
0.4% wide.  The cooling process will be observed with the 
help of a longitudinal beam Schottky-noise monitor, 

which measures the momentum distribution function.  
Figure 5 demonstrates a simulation of this process. 

The simulation in Fig. 5 was performed with a coasting 
antiproton beam perfectly matched in energy with the 
electron beam of 0.1 A and with 0.5 mrad of rms angular 
spread.  The spike in the distribution, formed by the 
electron cooling process, increases the distribution 
function by a factor of 2 – a value easily detectable by a 
Schottky-noise spectrum analyzer. 

After the cooling demonstration, we will begin a 
process of optimization to maximize the electron cooling 
rate.  By mid-2006, the cooling system should be fully 
integrated into the Tevatron collider operations. 

CONCLUSIONS 
• The commissioning is on schedule. 
• No interference with present Recycler operations is 

anticipated. 
• Cooling demonstration is expected by the end of FY05. 
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Pelletron
(MI-31 building)

Cooling section 
solenoids

(MI-30 straight section)

S. Nagaitsev – Electron Cooling

To	cool	W	=	8	GeV	proton	beam	requires	
an	electron	beam	with	W	=	4.3	MeV	
					must	have	same	speeds:

�p = �e

Wpme/mp = We
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How does electron cooling work?How does electron cooling work?

Storage ring

Electron
Gun

Electron
Collector

1-5% of the ring
circumference

Electron beam

Ion beam

The velocity of the electrons is made equal to the average 
velocity of the ions.
The ions undergo Coulomb scattering in the electron 
“gas” and lose energy, which is transferred from the ions 
to the co-streaming electrons until some thermal 
equilibrium is attained.

S. Nagaitsev – Electron Cooling



EMllTANCE REDUCTION - 257 

Proceeding as before, 

[ x  - g ( ( x )  + .,)I 2 = x 2  - 2 g x ( ( x )  + x , )  + g 2 ( ( x ) 2  + 2 x , ( x )  + 4)  
(7.147) 

for a single particle, and averaging over the sample gives 

Averaging over many samples, ( x , )  = 0 and so 

1 d ( x 2 )  1 
--= [ - 2 g  + g2(1  + U ) ]  - 9  

( x 2 >  dn Ns 
(7.149) 

where U = ( x ~ > / ( x > ~  is the ratio of the expected noise to the expected 
signal power. 

Our second refinement is to take into account the fact that the fluctuation 
in the centroid position may not be regenerated independently from one turn 
to the next. In other words, if particles move rapidly from one sample to 
another, each sample will rerandomize during the course of one turn and we 
will have the ideal situation. But the “mixing” may not be perfect, and we 
have to allow for this possibility. 

The movement from sample to sample is due to the spread in orbital 
frequencies arising from the spread in particle momentum. The number of 
revolutions required for a particle of momentum A p / p  to pass from one 
sample to another is 

T, 
A T ’  

M =  - (7.150) 

where T, = ( N , / N ) T  = 1/(2W) is the sample time, and AT is the change in 
the revolution period due to the momentum deviation A p / p .  Then 

(7.151) 

For ideal mixing, M = 1. Intuitively, one would expect the cooling rate to 
degrade by a factor of M as we depart from perfect mixing. Actually, this 
factor of M appears only in the incoherent term, and so the emittance 
decreases according to 

= ~ ~ e - ’ / ~ ,  (7.152) 

Transverse Stochastic Cooling*
§ Transverse Cooling
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Figure 7.1 2. Stochastic cooling system consisting of pickup electrodes, amplifier, and beam 
deflector. 

orbital path length between the two devices to ensure that the signal reaches 
the kicker at the same time as the beam. 

It is desirable to reduce the transverse emittance of a beam containing a 
very large number of particles. If the system had infinitely fine time resolu- 
tion, each particle could be sensed and corrected and the process could be 
successfully concluded in a few revolutions. However, a real system does not 
have this capability, and so there will be only finitely many particles in the 
sample that are corrected. Clearly, the smaller the number of particles in the 
sample, the closer one approaches the ideal. 

First, we relate the sample size to the system bandwidth. Suppose there 
are N particles uniformly distributed around the ring. If the sample size is 
such that the beam is divided into k samples, each containing N, particles, 
then the minimum wavelength that can be resolved in the analysis of the 
data is 

2 c  
Amin = - k ’  

where C is the ring circumference. Therefore, 
information extends to 

U ku 
fm,= - 5 - = 

’min 2C 

(7.135) 

the frequency content of the 

k 

2 T ’  
- (7.136) 

where T is the revolution period. For a system with a flat frequency response 
from f = 0 to f = W ,  W determines f,,. So the number of particles in a 
sample, in terms of the bandwidth W, is given by 

N N  
k 2TW 

Ns=-=- (7.137) 

We now consider a measurement of a particular sample. Each particle in 
the sample receives a correction proportional to the sample’s mean displace- 
ment (x ) .  So an individual particle’s displacement after the kick is x - g ( x > .  
To get at the emittance reduction, we need to consider the change of the rrns 
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We can analyze the last term as follows: 

1 
= - C(X’> 

Ns k 

1 
= - - N S ( x 2 )  

= ( x 2 > ,  (7.142) 

Ns 

where in the second step we have assumed that the various xi are uncorre- 
lated. Thus, keeping terms up to first order in l / N s ,  we have for the rate of 
change of ( x 2 >  

The cooling rate is then 

1 de 2 g  - g 
-- E dn = - (  N, 2 ) ,  

(7.143) 

(7.144) 

or, in terms of time, 

1 de 1 dE 1 2 g - g 2  2W - = - ( 2 g  - g2). (7.145) 
1 - = = ---- = 
7 E dt E dn T NST N 

Let’s add two refinements to this relationship. System noise is an important 
consideration in the design of a cooling ring. Suppose that the noise intro- 
duced at the kicker is equivalent to a position error x ,  at the pickup. Then 
the correction applied to each particle becomes 

x - g ( ( x >  + x , ) .  (7.146) 
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where we have for the cooling rate 

1 2w 
r N  
- = - [ 2 g - g Z ( M +  V ) ] .  (7.153) 

7.3.2 Longitudinal Stochastic Cooling 

The transverse cooling sketched in the last section is able to reduce the 
transverse emittances of antiprotons to the level appropriate for pj5 collider 
operation. We have not thus far addressed the question of how one accumu- 
lates large numbers of antiprotons. It is inherent in the production process 
that antiprotons are produced over a broad range of momenta, and this 
spread needs to be reduced. Longitudinal cooling is able to achieve both 
goals, as we shall see. 

Suppose we detect momentum differences by their related orbital fre- 
quency differences. We need a way of applying no correction if the frequency 
is correct; this can be accomplished by adding a filter to the layout shown in 
the preceding section. If a correction is required, it will be applied by a 
longitudinal kick, rather than a transverse kick as was done in the previous 
section. Because the cooling systems have a wide bandwidth, this implies that 
the filter remove not only the fundamental of the derived frequency but its 
harmonics as well. 

In a system devised for accumulation of particles it is natural to speak in 
terms of particle flux and density functions. The time evolution of the density 
function $(El  will represent a trade off between the diffusive effects of the 
incoherent interactions and the collective flow arising from the coherent 
forces. The equation that describes the time evolution of a density function 
subject to these processes is called the Fokker-Planck equation. 
As in the discussion of beam-gas scattering, the flux arising from diffusion 

can be written in the form 

J”= -DV3, ,  (7.154) 

where J” is the particle flux. In the case under consideration here, since 
energy is the only degree of freedom, 

(7.155) 

where the diffusion “constant” may be a function of energy. To this, we must 
add coherent forces. If the rate of energy gain is C(E) ,  then we must add 
+ C ( E )  to the flux, obtaining 

a* 
J = C ( E ) *  - D ( E ) -  

aE 
(7.156) 
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We now consider a measurement of a particular sample. Each particle in 
the sample receives a correction proportional to the sample’s mean displace- 
ment (x ) .  So an individual particle’s displacement after the kick is x - g ( x > .  
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k	samples	in	the	ring

Text,	Ch.7.3.1

*D.	Mohl,	G.	Petrucci,	L.	Thorndahl,	and	S.	van	der	Meer,	“Physics	and	Technique	of	StochasYc	Cooling,”	Physics	Reports	58,	No.2	(1980).	
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coefficient and the diffusion (noise) coefficient are given by 

I d  
D ( E )  = - - ( E i ) .  

2 dt 

(7.161) 

(7.162) 

We may now apply the above relationships to momentum stacking and 
cooling. We will examine two cases for which the particle density does not 
depend upon time. In such equilibrium circumstances the Fokker-Planck 
equation tells us that the flux is constant. We first consider a simple example 
in which the flux is zero. Suppose there is a coherent force driving particles 
toward some central energy E,, where the force is proportional to the energy 
deviation E - E,, and suppose that the diffusion force is a constant. Then 
C ( E )  = - a ( E  - E,) and D ( E )  = Do. So this static situation is described by 

(7.163) 

The solution to the above equation is the Gaussian 

(7.164) -a( E -E&!/ZD, + = +oe 

A large particle density results if the noise ( D o )  is small and if the restoring 
force (a) is large. 

Now suppose we were to introduce a small group of particles with central 
energy Ei,  where Ei - E ,  is large compared to the rms of the distribution 
above. Then the coherent force would dominate the force due to diffusion, 
and this small group would be driven toward the larger distribution over 
some time interval, as depicted in Figure 7.14. Such a scenario is referred to 
as momentum stacking; small pulses of particles are continuously injected 
into the synchrotron at an energy Ei and then are collected into an equilib- 
rium distribution with a central core at E,. 

The remarks concerning momentum stacking in the preceding paragraph 
suggest the basis for the method of antiproton accumulation used at CERN 
and Fermilab. In this method-the Van der Meer method-the flux is 
constant with time, with particles continuously being injected into the accu- 
mulator storage ring. We note that the coherent force, in terms of the voltage 
V ( E )  applied by the kicker each turn, would be 

(7.165) 

where T is the revolution period. To arrive at an approximate expression for 
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where we have for the cooling rate 

1 2w 
r N  
- = - [ 2 g - g Z ( M +  V ) ] .  (7.153) 
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where the diffusion “constant” may be a function of energy. To this, we must 
add coherent forces. If the rate of energy gain is C(E) ,  then we must add 
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(7.156) 

Longitudinal Stochastic Cooling
§ Cooling
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Text,	Ch.7.3.2

EMlllANCE REDUCTION - 259 

Figure 7.13. Particle density function )(€I. 

We can now obtain the time rate of change of $ from the continuity 
equation: 

+ a [ C (  E ) $  - D( E )  1. (7.157) 
a* 
at aE 
- = - v .  J = _ _  

This is called the Fokker-Planck equation. 
Let’s arrive at the expression for the flux by an alternative route so that we 

may identify the coefficients C ( E )  and D ( E )  in terms of the kicker voltage. 
Suppose $ ( E )  appears as in Figure 7.13. We are interested in the flux at E ,  
due to an energy increment Ek generated by the kicker. The number of 
particles present in the shaded area is 

(7.158) 

On the time scale associated with the kicker frequency, the particle 
distribution changes very little. Therefore, we may average over a time 
interval sufficiently short that $ does not change, but sufficiently long to get 
meaningful averages of the kicker voltage factors. We get 

(7.159) 

Therefore, the average flux of particles passing through this region will be 

(7.160) 

By comparison with our earlier expression for the flux, the coherent force 
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Eo 

Figure 7.14. Momentum stacking. 

the diffusion coefficient, assume that the expectation value of E i  arises solely 
from the incoherent noise in the sample. Then, recalling the argument in the 
preceding section relating ( x 2 >  to ( x ) ,  

( E z )  = (E,)’  x N,. (7.166) 

In this case, since we are sampling frequencies (and therefore energies), the 
number of particles in the sample is proportional to +. Hence, we expect the 
diffusion coefficient to be of the form 

D ( E )  =AVZ+, (7.167) 

where A is a constant determined by the design of the cooling system. 
So, putting this all together, the constant flux is given by 

eV a+ 
J = -+ - A V *  - = J , .  

T aE 

Solving for d+/dE, we have 

e + -  a+ 
aE AVz+ AVT 

Jo - -- _ -  

(7.168) 

( 7.169) 

We now choose a kicker voltage which will make a$/aE as large as possible: 

2 TJ, V =  - *  (7.170) 
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ENERGY RELATIVE TO THE CENTRAL ENERGY (MeV) 

Flgure 7.15. Design curves for antiproton energy density at FNAL Accumulator Ring, showing 
development of the "p stack" over time. From Tollestrup and Dugan, with permission. 

So we have 

(7.171) 
a* e2* e2* - * e2* 

z- +-=- - = -- 
dE 4JoT2A 2JoT2A 4AT2Jo Ed ' 

or 

Therefore, in the equilibrium state, there is a constant flux of particles being 
injected at energy E,; over time, the particle density increases exponentially 
with the energy difference E - Ei as shown in Figure 7.15. [In this figure, the 
particle flux is negative (from the right) and hence the density increases to 
the left as shown.] 

To generate the density profile described above, the kicker voltage must 
be given by 

(7.173) 

which tells us that the particles in the higher density region need to receive 
less kick in an exponential fashion. As can be seen in Figure 7.15, the particle 
density in the core can be increased many orders of magnitude in just a few 
hours. For a sense of scale, the central energy of this accumulator ring is 
8 GeV. 
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3. Laser Cooling

excitation with directed 
momentum transfer

isotropic emission

the directed excitation and
isotropic emission result in
a transfer of velocity vr

Lorentzian with width Γ/k ~ 10 m/s

minimum temperature                      (Doppler limit)
typical 10-5 �10-4 K

typical cooling time ~ 10 µs 
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*	G.I.	Budker,	in:	Proceedings	of	15th	
International	Conference	on	High	
Energy	Physics,	Kiev,	1970


