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Electron Cooling*

The appeal of electron cooling is easy to illustrate. In conventional
kinetic theory, the gas temperature is related to the mean energy of the
molecules by

(r*)
2m

kT.
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So for an ion beam, one can define a “temperature” for each degree of
freedom by
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where the Boltzmann constant has been supressed. The subscript ““0”
implies that the momenta are measured with respect to the rest frame of
the beam centroid.
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*G.1. Budker, Proc. Intl. Symp. on Electron and
Positron Storage Rings, Saclay, 1966, p. 11-1-1
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In electron cooling, an electron beam with very
small emittance is made to travel at the same speed
as the proton/ion beam that has a relatively high
emittance (transverse temperature).

The cool electrons then exchange transverse energy
with the hot protons/ions, and then the electrons
are discarded (and new electrons re-generated).
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Electron Cooling s
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Gun Collector an electron beam with W = 4.3 MeV
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Electron cooling system setup at Fermilab
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Figure 5: The momentum distribution (arb. units) as a
(MI-30 straight section) function of antiproton energy deviation (simulation by
MOCAC code [5]). The initial distribution is uniform in
energy. The final distribution is plotted after 30 minutes.
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Transverse Stochastic Cooling* s

= Transverse Cooling
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Figure 7.12. Stochastic cooling system consisting of pickup electrodes, amplifier, and beom
deflector.

IIEE I
EE

Northern Illinois
University

k samples in the ring

where in the second step we have assumed that the various x; are uncorre-
lated. Thus, keeping terms up to first order in 1/N,, we have for the rate of
change of (x?2)

d{x?) 26, ,. . &,
e RGO CoS (7.143)
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The cooling rate is then

(7.144)

2w
= (2g —g?%). (7.145)

Averaging over many samples, (x,) = 0 and so

o

1 d{x?
(x?) dn

=[-28 +8%(1 +U)]—A17, (7.149)
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fomx = T = 57 = 57 (7.136)

where T is the revolution period. For a system with a flat frequency response
from f=0to f= W, W determines f,,,. So the number of particles in a
samplie, in terms of the bandwidth W, is given by

N—N ad 7.137
L= = S (7.137)
M= 7.150
! (' )

where T, = (N,/N)T = 1/(2W) is the sample time, and AT is the change in
the revolution period due to the momentum deviation Ap/p. Then
1

M= WTmkap/p)

(7.151)

For ideal mixing, M = 1. Intuitively, one would expect the cooling rate to
degrade by a factor of M as we depart from perfect mixing. Actually, this
factor of M appears only in the incoherent term, and so the emittance
decreases according to

« =ee'/T, (7.152)

where we have for the cooling rate

1-—2W[2 (M + U)]
- =128 g% )]

*D. Mohl, G. Petrucci, L. Thorndahl, and S. van der Meer, “Physics and Technique of Stochastic Cooling,” Physics Reports 58, No.2 (1980).
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Longitudinal Stochastic Cooiing i
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Figure 7.13. Particle density function ¢(E). Figure 7.14. Momentum stacking.

As in the discussion of beam-gas scattering, the flux arising from diffusion
can be written in the form
. T T T T T 2] T .
P i —
= -DVy, (7.154) 0" ]
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where J is the particle flux. In the case under consideration here, since = i0* - -
energy is the only degree of freedom, 2 i T
s 10k —
W > ! ]
J=-D(E)—, (7.155) E i
IE 2 r
& 10} -
e . . o - 1
where the diffusion “constant” may be a function of energy. To this, we must L J
add coherent forces. If the rate of energy gain is C(E), then we must add 0 -
¢ C(E) to the flux, obtaining i 1
[ i ! L ]
i -75 -60 -45 -30 -5 O 18 30 45
/= C(E)y — D(E) 7. (7.136) ENERGY RELATIVE TO THE CENTRAL ENERGY (MeV)
Figure 7.15. Design curves for ontiproton energy density at FNAL Accumulator Ring, showing
. . development of the /p stack’’ over time. From Tollestrup and Dugan, with permission.
in which the flux is zero. Suppose there is a coherent force driving particles P P P ve P
toward some central energy E,, where the force is proportional to the energy

deviation E — E,, and suppose that the diffusion force is a constant. Then

C(E) = —aE ~ E,) and D(E) = D,,. So this static situation is described by So we have
31!1 3 2 2 2
J= ~a(E = E))¢ ~ Doz = 0. (7.163) No__ eV v Y Ei, (7.171)
: oE 4J,TA4 2J,T*A 44TY, E,
The solution to the above equation is the Gaussian
or
Y = yge *EE2/2D0, (7.164)
Y = e EENVE, (7.172)
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Figure 2. Use of Continuous Gaseous
Absorber for Emittance Exchange
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* G.I. Budker, in: Proceedings of 15th
International Conference on High
Energy Physics, Kiev, 1970
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