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The Notion of an Amplitude Function...

e Can trace single particle
trajectories through a periodic
system

e Can represent either
* multiple passages around a
circular accelerator, or
* multiple particles through a
beam line

o
L. 3
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The Notion of an Amplitude Function...

e Can trace single particle
trajectories through a periodic
system

e Can represent either
* multiple passages around a
circular accelerator, or
* multiple particles through a
beam line

Can we describe the maximum amplitude of
particle excursions in analytical form?

of course!  coming up next ...

o
L. 3
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Pushing the “Envelope” Sy
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e Wish to look for a functional form of the outer envelope of particle motion, and the rate at
which the phase of the oscillatory motion develops within that envelope

e This will enable us to decouple the motion of individual particle from intrinsic properties of the
accelerator design

Envelope described by an
“amplitude function”
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Hill’'s Equation — Analytical Solution

!
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e \We saw that the equation of transverse motion is Hill’s

Equation: N

X

K(s)x =20

e Note: “similar” to simple harmonic oscillator equation, but
“spring constant” is not constant -- depends upon longitudinal

position, s.

e S0, assume solution is sinusoidal, with a phase which
advances as a function of location s; also assume amplitude
IS modulated by a function which also depends upon s:

e Then, plug into Hill's Equation ...
z(s) = Ay/B(s)sin[ih(s) 4 9]

o
L. 3
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Analytical Solution (cont’d)

x(s) = A+\/B(s)sin|y(s) +
v = %Aﬁ_%ﬁ'sin[w( )+5 | + A/ B cosip(s) + 6|y

T p—

Plugging into Hill's Equation, and collecting terms...

Ko = AVE |0+ | coslu(s) + 6
-I-A\f[ 1 5/2 —|—%%’—(¢’)2—I—K sin[y(s) + 6] =0

A and ¢ are constants of integration, defined by the initial
conditions (xg, x;) of the particle. For arbitrary A, 6, must
have contents of each [ ] = 0 simultaneously for sum = 0.
L,
L. 3
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Analytical Solution (cont’d) sy

= Thus, we must have ...

thus, we need

w// _I_

/

&

' =0

and

IIEE I
EE
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z(s) = Ay/B(s) sin[i(s) + 9]

1(6/2 15//
i@ tzg WITKS



Analytical Solution (cont’d) i
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z(s) = Ay/B(s) sin[i(s) + 9]

= Thus, we must have ...
thus, we need

/ I\ 2 /!
1 (5 13
/! / /N2
— ' =0 | - - - (W) K =
w _I_ /3 w an 4 52 ! 2 6 (w )
BU" + B =0
(By) =0
B’ = const
/
V' =1/p
| The function (s
Note: the phase advance is an
observable quantity. So, while local Wavelength ()\/27’(’)
could choose different value of fth 1lat t
const, then ( would just scale U € O5C1llalor'y 11OU1OII.
accordingly; thus, valid to choose
const =1.
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Analytical Solution (cont’d) @
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— A+/B(s)sin[1)(s) + 6]

= Thus, we must have ...
thus, we need

! 1 (3 /"
¢//‘|‘§¢/:O and Z(ﬂﬁQ) 5%—(¢/)2—|—K:O
/Bwll_l_ﬁlwlzo 266/!_(6/)2_45 ('QD/)Q——4K62:O
(By) =0 266" — (8')? + 4K B* = 4

B’ = const
' =1/p

Differential equation
that the amplitude
Note: the phase advance is an function must obey
observable quantity. So, while
could choose different value of
const, then 8 would just scale
accordingly; thus, valid to choose

const = 1.

o
L. 2

local wavelength (\/2m)
of the oscillatory motion.
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Some Comments

z(s) = Ay/B(s) sin[y(s) + 9]

* We chose the amplitude function to be a positive definite function in its
definition, since we want to describe real solutions.

= The square root of the amplitude function determines the shape of the
envelope of a particle’s motion. But the amplitude function is also a local
wavelength of the motion.

= This seems strange at first, but ...

* Imagine a particle oscillating within our focusing lens system; if the lenses are
suddenly spaced further apart, the particle’s motion will grow larger between
lenses, and additionally it will travel further before a complete oscillation takes
place. If the lenses are spaced closer together, the oscillation will not be
allowed to grow as large, and more oscillations will occur per unit distance
travelled.

* Thus, the spacing and/or strengths (i.e., K(s)) determine both the rate of
change of the oscillation phase as well as the maximum oscillation amplitude.
These attributes must be tied together.

o
L. 3
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Equation of Motion of Amplitude B
Function ot hern ol
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From
268" — ()% + 4K 52 = 4

we get
26/6//+266W_26/6//+4K/52+8K66/:O

A"+ 4KB +2K'8 = 0.
Typically, K'(s) = 0, and so

(6// ‘|‘4K6), —0

or
3" + 4K 3 = const.

is the general equation of motion for the amplitude function, 5.

(in regions where K is either zero or constant)
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Piecewise Solutions b
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1 \
s K=0: 5// — const — 6(3) — 50 + 6(’)3 + §ﬂ6/32 Pa(abo\a

« since B > 0, then from original diff. eq. ...

/1 / L //_4‘|'(B/)2
288" — ()" =4 =5 >0

* Therefore, parabola is always concave up

s K> 0K<0O: sinusoidal + constant

/

= ' bo SIn S) - B — COS S
B(s) = Fo+ 5 e sin(2VEs) + (1~ cos(2V/Ks)

o
L. 3
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Summary

" + K(s)x =0 Hill's Equation
trial solution: = A+\/[(B(s)sin|y(s) + 6]

requires:

ds

/:1/6 e Y(s) = 50s)
and

286" — (3')2 +4K[% =4 weli (3" +4Kj3 = const.
(for K’'=0)
fork=0: (" = const — B(s) = fo + Bhs + 554 5”
sin(2V K s) + [1 — cos(2V K s)]

4K

. 8,
* forK>0: B(s) = 50—#2\/?
L. 2
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Courant-Snyder Parameters, & B

Connection to Matrix Approach

University

Suppose, for the moment, that we know the value of the amplitude
function and its slope at two points along our particle transport system.

Previously have seen how to write the motion of a single particle in one
degree of freedom between two points in terms of a matrix. We can
now recast the elements of this matrix in terms of the local values of
the amplitude function.

1+ o?

. . 1
Define two new variables, o= —55’, 1=

Collectively, 3, a7y are called the Courant-Snyder Parameters
(sometimes called “Twiss parameters” or “lattice parameters”)

268" — (5/)2 + 4Kﬁ2 =4 becomes KB =n~+ o'

o
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Courant-Snyder Parameters, & 5

Connection to Matrix Approach

University

Suppose, for the moment, that we know the value of the amplitude
function and its slope at two points along our particle transport system.

Previously have seen how to write the motion of a single particle in one
degree of freedom between two points in terms ¢ atrix. We can

al values of

Collectively, (3, the Courant-Snyder Parameters
(sometimes called parameters” or “lattice parameters”)

268" — (5/)2 + 4K52 =4 becomes KB =~+ o

o
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Solutions using Courant-Snyder B
Pa ra m ete rs Northern Illinois
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= Our previous results become

1
- drift space: B(s) = By + Bys + 56{)’52

—  B(s) = Bo — 208 + Y058

 gradient field:

— | & sin S) - 0 — COS S
Bs) = o+ 5 = (2VEKs) + 721 — cos(2V K s)

874

VK

—  [(s) = %[1 + cos(2V K s)]
P
L. 3

sin(2vV' K s) 4 ;[0([1 — cos(2V K s)]
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The Transport Matrix @
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= We can always write:  z(s) = a\/8sin Ay + by/B cos Ay

= Solve for a and b in terms of initial conditions and write in matrix form
* we get:

- (%) e (cos Ay + ag sin A)) V B0 sin A 2
( z’ ) T | _1tage sin A1) — 2220 cos A (@)1/2 (cos A1) — asin Aqp) ( T )
V/ BoB3 /BB E

So, can write any of our transport matrices in
terms of values of C-S parameters at the two end
points, and the phase advance between them.

o
L. 3

A1) is the phase advance from
point sp to point s in the beam line
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Tracking B, a, v ... @
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= Saw earlier that if given values of the Courant-Snyder parameters at one
location in the beam line, and if know the matrix of the linear motion
between that location and another location downstream, then can compute
the values at the second location via:

K:MKOMT where KE(B _&)

= Have not explicitly proven that the ellipse coefficients found earlier are the
SAME as the parameters above, but they are — and, we will.

o
L. 3
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= Also, if kKnow parameters at one point, and the matrix from there to
another point, then

Evolution of the Phase Advance

a b b
My = — tan Ay,
12 (c d>:>a61—boz1 A Ay

= So, from knowledge of matrices, can “transport” phase and the Courant-
Snyder parameters along a beam line from one point to another

o
L. 3
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Simple Examples

= Propagation through a Drift: Mo - ( (1) f )
_ —1 L
— Ay = tan (61—La1>
8= o —2a0L + L’
= Propagation through a Thin Lens: o = ap — YL
. . =70
M= ( ~1/F 1 >
— Ay =0 T
8 = B, K=MKyM
a=ap+ o/ F

v =70+ 2a0/F + B/ F”
= Given a, 8 at one point, can calculate a, 8 at all downstream points
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Another Summary @
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= S0, with knowledge of the layout of (linear) magnetic (and electrostatic)
fields from which matrices describing the horizontal and vertical motion
can be derived, and with an initial set of Courant-Snyder parameters
describing the beam distribution, can transport the Courant-Snyder
parameters along the beam line
* Hence, can design a first-order focusing system without having to track

particles. Within such a system the beam size will be determined by the
value of the emittance used.

= These same C-S parameters describing the beam ellipse in phase space
are found to be the same parameters found in the analytical solution to

Hill's Equation if we identify . 1+ a2 s d
— / — - 2 i

= A+\/B(s)sin[i(s) + 9]
o
e
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The Weak Focusing Synchrotron/Betatron @
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= Early accelerators (betatrons in particular, and early synchrotrons) employed
what is now called “weak focusing”

b
T
/\ y \
! n is determined by

a | adjusting the opening
-« > angle between the poles
B ul . X
LT S ! n = “field index”

~ 0

"

Let’s look at the stability
of transverse motion in this system...

o
L. 2
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Equation of Motion

* |n rotating coordinate system,

M
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r=Ry+=x
2

d’x Ro+=x eB, . x

— - > _ Y

ds Rg

} VAL = 1A8

p

D Ry
= Hence,

/

Reference

Particle
orbit

trajectory
Figure 3.9. Comparison of reference orbit path length ds and particle path length v, dft.

Since v, < v, and v, < v,, to a very good approximation the total momen
tum p of the particle is ymv,. So

. evlB
F-rg?=-—=>. 3.38
. (3.38)
— O) — B 0 _— Now, change to s as the independent variable. Then
r d dsd 339
dt  dt ds’ (3-39)
and from Figure 3.9 we see that
P
ds=pdd=v, dt:. (3.40)
n
1 n
B:BO %Bg(l——ili)
14+« / Ry

Hence, assuming d’s/dt? = 0,

d? ds \* d? p\?d? 341
d,z‘(d,)af-("sr)a:f- (341)
Replacing » with p + x, the equation of motion becomes

p+x B

& " B [1 ¥ %)2 (342
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Stability within a Weak Focusing System @

Thus:

S0 we get,

or,

;” | 1_":1;:3
Rg
mn

Yyt Y=

\_ 0 J

M. Syphers

TATH
TATR
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(V x B =0)
1 ) 0
— X
2
RO
PHYS 790-D FALL 2019 83



TATH
TATR

Stability within a Weak Focusing System @
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nByg nBg S

= Thus: By =By - - Be = —py (V x B=0)
Iy T nBO/R() 1 o
= S0 we get, o'+ Kpx =2 +<— BoRe +R—%)aﬁ—0
= Ol
-
- 1—n _\
T - 5L = 0 must have
R§ > 0<n<1
., n for stability
SRS
\_ 0 J
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g=3

Stability within a Weak Focusing System
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nByg nBg S

= Thus: — B, — Y _ _IPo _
us B, = By Rox B, Roy (V x B=0)
7 o nBO/RO 1 _
= S0 we get, o'+ Kpx =2 +<— BoRe +R_3) r =10
LK = no
Yy yy—y +R8y—
" Of,
4 )
v l—n
T 5 x =0 must have
R
0 0<n<l1
B N ﬁ B > for stability
\_ 0 /
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Aperture of Weak Focusing System

= The solutions of the equations of motion are:

1 —n v1—n . Ry . V1 —n

1" — 0 T = X COS S) + x Sin S
xr —+ R(Q) ZT 0 ( RO ) Om ( RO )
P>
n n Ry n
y"+R—%y:O y_yocos(\/_ )—I—y0781n(\/_3)

SO, maxima in x, y grow with the RADIUS of the accelerator,
for a given set of initial beam conditions

Higher energies required larger radii (for ~ constant B), and
hence the apertures had to grow as well

o
L. 3
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Aperture of Weak Focusing System B
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= The solutions of the equations of motion are:

1—n vV1—n Ry vV1—n

" _ T = T COS s) + z! sin S
T R(Q) L 0 0 ( RO ) Om ( RO )
>
7 n \/ﬁ Ry \/ﬁ
Y +—=y=0 — o COs(~— s I — gin(~— s

SO, maxima in x, y grow with the RADIUS of the accelerator,
for a given set of initial beam conditions

Higher energies required larger radii (for ~ constant B), and
hence the apertures had to grow as well

sitting inside the beam chamber of the Bevatron (LBNL)

o
L. 2
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Betatron Oscillation Amplitude @
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= Transverse oscillations in a synchrotron (or beam line) are called Betatron Oscillations
(first observed/analyzed in a “betatron” accelerator)

= Write x,x’ in terms of initial conditions xo, X% :

z(s) = ar/f cos Ay + by/ S sin Ay

r = %([b — aa) cos AY — |a + ba] sin A))
l
. - T - apZo + Pog
VBo v Bo
B(s)

[0 cos AY + (axo + Boxg) sin Ay

2 /
amplitude: A = \/mo+(0éoag)o+ﬁog;0)2
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Free Betatron Oscillation @
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= Suppose a particle traveling along the design path is given a sudden
(impulse) deflection through angle

= Then, downstream, we have
Ax' = x5 = Af

= A~/ BoB(s) sinfy(s) — 1]

Example:
Suppose Af = 0.4 mrad, By = 4.0 m, B(s) = 6.4 m,
and Ay =n x 27 + 30°. Then x(s) = 1 mm.
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Courant-Snyder Invariant
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= |n general,
r = Ay/Bsiny
A
' = —=[cosy — asiny]

VB
Bx' = Av/Blcosy — asiny]
= A\/Bcosy —ax
B’ +ax = A\/Bcost
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Courant-Snyder Invariant
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* |n general,
r = Ay/Bsiny ? + (B +ax)? = A%
= %[cosw — asin | A2 — z? + wg + ar)?
Bx' = Av/Blcosy — asiny] _ 7% + o?x? + 2afxx’ + 32x'?
= Ay/Bcost) — ax 16

B’ +ax = A/Pcosy
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* |n general,

Courant-Snyder Invariant

A/ Bsine

%[cosw — asin 9]
A+/Blcos — asin 4]
A\/E cos ) — ax
A/ cos

i

Northern Illinois

University
? + (B +ax)? = A%
2 r? + (Bx’ + ax)?
b
2 4+ o’x? + 2abxz’ + B%z'?

p

A® = ~ya? + 2axx’ + Ba'?
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Courant-Snyder Invariant

= |n general,
r = Ay/Bsiny
A %[cosw — asin 1]
Bx' = Av/Blcosy — asiny]
= A\/Ecosw —ax

B’ +ax = A\/Bcost

EE
EE

g=3
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v? + (B2’ +ax)? = A%
2 r? + (Bx’ + ax)?
b
2 4+ o’x? + 2abxz’ + B%z'?

p

A® = ~ya? + 2axx’ + Ba'?

While C-S parameters evolve along the beam line, the

combination above remains constant.

o
L. 3
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Properties of the Phase Space Ellipse i

Northern Illinois
University

= The initial conditions of a freely-oscillating particle in the beam optics system determine
its C-S invariant and hence the particle’s phase space ellipse

area = wA?

while the ellipse changes /
shape along the beam line,
its area remains constant

Emittance = area within a phase
space trajectory

vt + 2o’ + Br’? = A? / ' L
area = TA* =€ r(z' =0) = e/my

o
L. 3
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