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Series Preface 

More than 50 years ago the discovery and understanding of radiation led to 
the idea of a beam of elementary particles. Since then the development of 
processes for the collection, focusing, and acceleration of such beams has 
given rise to a growing number of facilities designed to produce a variety of 
particle beams for a multitude of purposes. 

The higher particle energies achieved in accelerators have provided a 
major stimulus for research into the constituents and nature of matter. Since 
the 1930s new sciences, from atomic to nuclear to particle physics, have 
emerged concurrent with newly developed beam probes which allow research 
to proceed to smaller and smaller sizes, deeper into matter. Fueled by 
technological innovation and motivated by scientific curiosity, the increase in 
energy of particle accelerators has been about an order of magnitude every 
seven years. Present strong focusing synchrotrons can achieve TeV (lo'* eV) 
energies-six orders of magnitude higher than the MeV (lo6 eV> energies 
achieved by the cyclotrons of 50 years ago. 

Today, beams represent a novel state of matter of remarkable scope. 
During the past few decades, the energy of particle beams has been extended 
from keV to MeV to GeV to TeV; beam currents have gone from microam- 
peres to milliamperes to amperes to megamperes; beam pulse durations have 
ranged from nanoseconds to continuous; beam lifetimes have been extended 
from microseconds to a week; species have multiplied from electron and 
proton beams to atomic, molecular, laser, and neutron beams, and then to 
pion, kaon, muon, neutrino, and antiproton beams; in addition, beams are 
bunched, squeezed, expanded, modulated, and chopped. 

Beam physics is the study of particle and photon beams, their nature, their 
behavior, and their interactions, including the interaction of beams with 
matter, of beams with beams, and of particle beams with radiation. Evolving 
from concepts and ideas derived from classical mechanics, electromagnetism, 
statistical physics, and quantum physics, the study of beams is opening up a 
very rich field, with new effects being discovered and new types of beams with 
novel characteristics being realized. There are in fact a growing number of 

E ix 



PREFACE 

research areas in beam physics that need theoretical understanding and 
experimental verification, and these represent challenging opportunities for 
present and future generations of scientists and engineers. 

The growth of beam physics is intimately tied to an expanding base of 
accelerator technology, including magnet systems, superconductivity, ra- 
diofrequency systems, particle sources, and others. The development of new 
types of particle beams is often tied to an extension of existing technology, 
for example, superconducting magnets for high energy accelerators, intense 
sources to produce very low emittance beams, and very high gradient acceler- 
ating fields to produce high energy beams in short distances. As a conse- 
quence, a substantial part of the research and development is directed 
toward advances in associated technologies. 

The invention and continued development of particle accelerators and 
associated technologies have contributed profoundly to many subfields of 
pure and applied science and to our overall technological capabilities. In the 
fields of high energy and nuclear physics, a large complement of accelerator 
facilities exists around the world. In other areas of science, synchrotron light 
sources and accelerator driven pulsed neutron sources have opened up 
revolutionary new research opportunities in materials, chemistry, and biol- 
ogy. Hardly a field of science is not benefited. In industry and medicine there 
are thousands of accelerators in use in medical treatment, radiation steriliza- 
tion, radiation processing, ion implantation, microchip production, etc. In 
defense, research is directed toward the use of particle beams in view of their 
very small transit times and potential ability to transmit large energy density 
over long distances. 

The field of beam physics is still in its infancy, and many new develop- 
ments have only begun to be applied to accelerators. The US Particle 
Accelerator school is dedicated to this new science. For more than a dozen 
years it has been organizing courses of study and publishing extensive 
compilations of pedagogical articles. The maturation of this rapidly growing 
field, however, requires the development of real text and reference books on 
important topics within it. For this reason, the school, in association with 
John Wiley & Sons, takes pride in presenting this new series on beam physics 
and accelerator technology. It is our hope that the school’s continuing 
courses, enhanced by these new books, will help stimulate students, scientists, 
and engineers to contribute to the progress of this important and exciting 
field. 

I would like to take this opportunity to extend to all the authors in this 
series our congratulations and gratitude for the enormous effort they are 
putting into this project and for the exceptional quality of the books they are 
writing. 

MELVIN MONTH, DIRECTOR 

US Particle Accelerator School 



Preface 

The traditional physics curriculum has at its core a series of courses in 
mechanics, electricity and magnetism, statistical physics, quantum physics, 
and other basics. This core may be supplemented by specialized courses the 
intent of which is to show how the principles come together to find applica- 
tion in a field of science or technology. The purpose of this textbook is to 
illustrate the application of the principles of physics in the field of high 
energy particle accelerators. 

The first half of the book deals with the motion of a single particle under 
the influence of electric and magnetic fields. Much of the basic language of 
linear and circular accelerators is developed in this material. The principle of 
phase stability is introduced, and phase oscillations in linear accelerators and 
synchrotrons are studied. Next, the by now standard treatment of betatron 
oscillations is presented, followed by an excursion into nonlinear dynamics 
and its application to accelerators. Up to this point only one degree of 
freedom perturbations from the ideal motion will have been considered; we 
conclude the discussion of conservative single particle motion with a chapter 
devoted to coupling between the two transverse degrees of freedom. 

In the first half of the book the particles are assumed neither to interact 
with each other nor to influence their environment. For the second half of 
the book, these restrictions are removed, and much of the discussion relates 
to intensity dependent effects-in particular, space charge and coherent 
instabilities. There is a wealth of phenomena that could be discussed under 
these headings; we will only be able to suggest the rich diversity by the few 
examples that space will permit. One chapter is devoted to common pro- 
cesses which may lead to the increase of transverse beam size in a syn- 
chrotron and provides some discussion about methods of its reduction. The 
dominant factor in the design of high energy electron accelerators is syn- 
chrotron radiation, and the basics of this process are the subject of the final 
chapter. We conclude with a bibliography and tables of parameters for a 
selection of accelerators which are used in the problems. 
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Homework problems are provided at the end of each chapter. These 
problems not only illustrate the material of the chapter but expand on it as 
well. Many of the problems are based on actual activities associated with the 
design and operation of existing accelerators. The problems are really an 
integral part of the text. In fact, most of the numerical content of our book is 
contained in them. 

Throughout, we use the rationalized mks system of units, except where 
common usage dictates some other choice. The outstanding exception is in 
the specification of particle energy, where the electron-volt (eV) or its 
successive thousandfold multiples (keV, MeV, GeV, TeV) will be used. The 
electron-volt is the energy conveyed to a particle having one electronic unit 
of charge after it has been accelerated through an electrostatic potential 
diffference of one volt. So 1 eV = 1.6 X 

This book is the outgrowth of a graduate course in accelerator physics 
which we have taught over the past several years. In lecture note form this 
material has been used in standard quarter or semester courses at North- 
western University, the University of Texas at Austin, and at the University 
of Hamburg, Germany. The program of the US Particle Accelerator School 
has given us the opportunity to use the same material in intensive two-week 
courses at Cornell University, Harvard University, and Stanford University. 
In addition we have used our notes in informal courses at Fermilab, SSC 
Laboratory, and the International Centre for Theoretical Physics in Trieste, 
Italy. We have benefited greatly from the advice and comments of our 
students and colleagues. 

We do not attempt to survey the entire field of accelerator physics. 
Rather, we have selected topics that are consistent with our experience and 
that we think are interesting. Since we have primarily worked with syn- 
chrotrons, much of the discussion is related to this type of accelerator. 

A specialist in accelerator dynamics would likely use more sophisticated 
techniques than are used in much of the discussion. Though we do make use 
of the Hamiltonian formalism in some of the treatment of nonlinear motion, 
we feel that a more elementary approach is better suited for an introduction 
to the subject. 

Our major published sources are referenced within the body of the text 
and in the bibliography at the end. In addition to the general expression of 
thanks to our students and colleagues above, we are especially grateful to our 
close associate Alex Chao for many insightful discussions, and to Me1 Month 
for making possible our participation in the program of the US Particle 
Accelerator School and for encouraging the transformation of our rough 
notes into this book. 

J. 

DON EDWARDS 
MIKE SYPHERS 

Cedar Hill, Texas 



CHAPTER 1 
I 

Introduction 

The use of macroscopic electromagnetic fields for the acceleration of charged 
particles dates from the mid-nineteenth century. The early x-ray tubes 
already contained in miniature the same systems-source, vacuum, power 
supply, accelerating structure-of later and much larger devices. In his 
discovery of the electron, J. J. Thompson toward the end of the century 
employed primitive particle accelerators of this sort. Today’s cathode ray 
tube, which accelerates electrons to some tens of kilovolts, is the direct 
descendant of these devices. 

Some decades elapsed before technology permitted the development of 
electrostatic potentials in the range of hundreds of kilovolts. Even as the 
progress in DC acceleration was accomplished, time varying electromagnetic 
fields were recognized as the route to still higher energies. The predecessor 
of the modern linear accelerator was developed first by Wideroe in 1928; the 
cyclotron was proposed in the following year by Lawrence, and acceleration 
was demonstrated in this first variety of circular accelerator in 1931. The 
development of the cyclotron proceeded rapidly, and by the end of the 
decade kinetic energy in excess of 10 MeV had been achieved. 

The following decade saw the invention of the synchrotron, the synchrocy- 
clotron, betatron, and the AIvarez linac. By 1950, protons and electrons had 
been accelerated to a kinetic energy of some 300 MeV. Yet higher energies 
were soon achieved, aided by the invention of the alternating gradient 
synchrotron. Figure 1.1 shows the dramatic increase in center of mass energy 
of the frontier accelerators with time. 

Nuclear physics, and its descendant high energy physics, provided much of 
the motivation for the construction of particle accelerators until recently. But 
of late, the user community has expanded greatly beyond its traditional 
population as other applications of accelerators have been developed. Cases 
in point include synchrotron radiation sources and medical accelerators. 

E l  
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Figure 1 . l .  Increase in center of mass energy of the frontier accelerators with time. This figure 
is traditionally called a Livingston plot. 

Figure 1.2. Aerial view of the Fermi National Accelerator Laboratory, in Batavia, Illinois. Photo 
courtesy of FNAL. 
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Figure 1.3. View of main tunnel at Fermilab showing the Tevatron (below) and original Main 
Ring synchrotrons. Photo courtesy of FNAL. 

At the time of this writing, the highest energy particle accelerator in the 
world is the Tevatron at Fermilab, operating at a center of mass energy of 1.8 
TeV as a proton-antiproton collider. (See Figures 1.2 and 1.3.) The highest 
energy electron devices are the SLAC Linear Collider and the LEP project at 
CERN; both develop 100 GeV electron-positron center of mass energies. A 
host of electron and positron storage rings on the GeV energy scale provide 
sources of synchrotron radiation for many scientific and industrial applica- 
tions. For many years the venerable Harvard Cyclotron has been used in 
proton therapy; in recent months a 300 MeV proton synchrotron designed 
specifically for medical application has been brought into operation at the 
Loma Linda Medical Center in Southern California. An impressive array of 
ongoing projects is leading us toward even higher energies and broader 
applications. 

1.1 PREREQUISITES 

The bulk of the discussion in this text presumes that the reader has studied 
classical mechanics as well as electricity and magnetism at the level of 
completion of an undergraduate curriculum in physics or engineering. We 
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assume some past exposure to special relativity. A brush with Hamilton’s 
equations would be helpful, but is not essential. No background in accelera- 
tor or particle physics is needed. In the remainder of this section we sketch 
these essentials. 

The equation of motion for a partick %f charge e moving under the 
influence of electric and magnetic fields E, B is 

- - e e ( z + v ’ x q ,  dp’ 
dt 

where p’ = ymv’ is the momentum, 0’ is the velocity, and m is the invariant 
mass. In the expression for the momentum, y is the Lorentz factor: 

1 

The fields must satisfy Maxwell’s equations. In a vacuum, Maxwell’s 
equations in differential form are 

1 

€ 0  
v . E =  - p ( F , t ) ,  

+ ail 
at 

V X E =  --, 

1 aE 
C *  at ’ v x il= pof iF , t )  + -- 

where p and Tare the charge and current densities respectively. 
Frequently-particularly in simple geometries-the integral forms of 

Maxwell’s equations are more convenient than the differential equations. 
These are 

(1.11) 
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Here, the line, surface, and volume integrals are connected by the usual 
conventions. The physical interpretation is more transparent in the integrG 
form. The first is Gauss’s Law-- charge 4 is the source of q / E o  lines of E. 
The second states that lines of B neither begin nor end; that is, there are no 
free magnetic poles. The third is Faraday’s law of electromagnetic induction. 
The fourth is Ampere’s law as modified by Maxwell to include the displace- 
ment current contribution. 

We don’t encounter any dielectric materials in this text, so there is no 
need to write down the equations in such media. But we will have occasion to 
use magnetic materials; then the last of Maxwell’s equations becomes 

with H’ and B’ related through the magnetization A? according to 

- + +  B’= p O H  + M .  

(1.12) 

(1.13) 

In a simple conducting material, the current density is proportional to 
the electrk field, where the constant of proportionality is the conductivity, 
u: 7= uE. The permeability and permittivity of free space are related 
through poco = 1/c2, and their values are p o  = 47r X lo-’ henries per 
meter, to = 8.85 x lo-’* farads per meter. 

A slowly moving but accelerating charge will radiate power according to 
the Larmor formula 

1 e2a2 p=- -*  
6 ~ t o  c3  

(1.14) 

The angular distribution of the radiated power varies as sin2 6,  where 8 is the 
angle between the line joining the particle to the point of observation and the 
line along the direction of the acceleration of the particle. 

Regarding relativity, we will occasionally make use of a Lorentz transfor- 
mation. Suppose two inertial frames are moving relative to one another with 
speed u as in Figure 1.4. For clarity, the x and x’ axes are shown with a 
separation; they actually are the same line. If their origins coincide at time 
t = 0, then the transformation equations are 

X’ = y (  x - u r )  

Y‘  = Y ,  

z t  = z, 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
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Y 

I 

Figure 1.4. Inertial reference frames moving with respect to one another with relative speed v .  

Two celebrated consequences of these transformations are time dilation and 
the Lorentz contraction. Time dilation can be obtained from the last equa- 
tion. A clock in the primed frame located at x = ut will show a time 
t' = t / y .  The Lorentz contraction follows from the first of the transformation 
equations. Suppose an object of length L' along the x'-axis is at rest in the 
primed frame with one end at the origin. At f = 0 the first transformation 
gives L! = yL, so the length of the object in the unprimed frame is L = L'/y. 

Y Y '  

Figure 1.5. Application of Gauss's law to demonstrate invariance of electric field component 
parallel to direction of relative motion of two inertial frames. 
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The electromagnetic field transformations follow readily from the above. 
We will occasionally need to relate the fields in the rest frame of the beam to 
those in the laboratory frame. In the rest frame-the primed frame-there 
are only electric fields. To obtain the transformation of the electric field 
component in the direction of motion, suppose there is a large parallel plate 
capacitor at rest in the primed frame. Application of Gauss’s law as in Figure 
1.5 in both reference frames yields the result that E , , =  E’,, , because the 
surface charge density is the same in both. The relationship between the 
transverse field components can be found by looking at the fields produced 
by a constant linear charge density A’ stretched along the x’ axis. In the rest 
frame, El, = Af/(2m0rf). In the laboratory frame, the same expression 
holds, but without the primes. Due to the Lorentz contraction, the line 
density is larger in the lab frame by a factor of y .  The radial dimensions are 
unchanged by the transformation, so E ,  = YE, . Also, there is a transverse 
magnetic field in the lab frame, encircling the x-axis, because the moving line 
charge represents a current I = Au. Using Ampere’s law and comparing with 
the expression for the transverse electric field gives B ,  = YE’, u / c 2 .  

1.2 USES OF ACCELERATORS 

The construction of the early particle accelerators of the 1930s was motivated 
by nuclear physics. Now, some 60 years after the initial steps in the field, 
particle accelerators are found in a wide variety of applications, as illustrated 
by the by no means complete selection in the list below. 

Accelerators used for elementary particle physics. This category includes 
the highest energy per particle devices. The character of this field has 
changed as the notion of what “elementary” means has evolved. 
Accelerators for nuclear physics research. This now mature field, initi- 
ated in the 1930s, includes a broad spectrum of studies emphasizing 
energy precision, beam intensity, beam species, and polarized beams, 
ranging from traditional measurements of nuclear energy levels to the 
study of the quark-gluon plasma. 
Synchrotron radiation sources for a wide variety of applications of 
ultraviolet and x-ray beams in materials science. From a modest ex- 
ploratory effort in 1952, this use has grown explosively. Users here far 
outnumber high energy physics experimenters. 
Accelerators for medical applications. These range from relatively low 
energy electron accelerators as x-ray sources to synchrotrons or linacs at 
the hundred MeV scale to provide hadron beams for radiation therapy. 
Ion beams for plasma heating in fusion reactor experiments. 
Electron linacs used for oil and natural gas exploration. 
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Accelerators for food sterilization. This is more a potential than a real 
application at present; the countries that have need of the technology 
tend not to have the capital, and buyers in developed nations are 
suspicious of food that has been sterilized by these techniques. 

Any of these topics could fill a textbook in itself. However, the same 
considerations concerning beam quality, focusing, stability, and so on are 
each common to many of them. Hence, we will spend the remainder of this 
section discussing two uses to serve as points of departure for the remainder 
of the text. The first is an example of a facility in which two beams are 
brought into collision in order to achieve high center of mass energy-a 
collider. The second example is of an accelerator whose use is derived from a 
single beam-a synchrotron radiation source. 

1.2.1 

Because of the use of time varying fields to produce acceleration in high 
energy accelerators, these devices tend not to produce continuous particle 
beams, but rather beams that consist of a sequence of “bunches” of particles. 
In colliding beam physics, two such beams are brought into collision. 

Suppose one bunch of particles moving in one direction collides head on 
with a bunch moving in the opposite direction. Let the bunches both have 
cross-sectional area A and both contain N particles. Any particle in one 
bunch will “see” a fraction of the area of the other bunch Nuint/A obscured 
by the interaction cross section gin, (the total area of overlap of two colliding 
particles). This situation is suggested in Figure 1.6. For our purposes we 
allow the entire interaction cross section to be attributed to the particles in 
one beam encountering a point test particle in the other beam. The number 

luminosity of a High Energy Collider 

Figure 1.6. Collision of a single test particle from one beam with a particle bunch of the other 
beam. 
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of interactions per passage of two such bunches is then N2uin,/A. If the 
frequency of bunch collisions is f ,  then the interaction rate is 

N 2  
R = f-ui,,,. 

A 
(1.19) 

The luminosity, 9, is defined as the interaction rate per unit cross section: 

N 2  

A 
P=f--. ( 1.20) 

That is, the luminosity contains all the factors in the above expression that we 
think we can control and hence represents a figure of merit for a collider. 

It would be surprising if beams came with bunches that were neat 
cylindrical uniformly populated volumes. Let us repeat the argument with a 
more realistic situation. Suppose that the particle distribution in the plane at 
right angles to the direction of motion is a “round Gaussian,’’ or more 
properly, a Rayleigh distribution. As a function o f  radius, r ,  in the cylindri- 
cally symmetric distribution, the density function for the distribution is 

(1 21)  

The contribution to the luminosity from two cylindrical shells at the same 
radius r and of the same thickness dr is 

(1.22) 

Then, after adding up the contribution to the luminosity from shells of 
differing radius, we have 

N 2  
9=f- 

4 T U 2  * 
( 1.23) 

Luminosities are often expressed in cgs units, and the numbers look large 
and impressive. For instance, the CERN and Fermilab proton-antiproton 
colliders operate at a luminosity of more than lo3’ cm-2sec-’. The total 
cross section is about 100 mb (1 millibarn = cm2), so the interaction 
rate of 105/sec also looks large. But the cross sections of interest are much 
smaller-by a factor of about lo8 for intermediate boson production. A more 
informative way to characterize collider performance is luminosity integrated 
over time and expressed in units of the relevant cross section. In that 
language, the 1988-89 collider run at Fermilab yielded an integrated lumi- 
nosity greater than 10 pb-’ (1 picobarn - lo-’’ barns). 
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The point of the numbers above is to suggest that there is continual 
pressure to increase luminosity, particularly as the search for higher mass 
particles continues. The production cross section varies inversely as the 
square of the mass state, so in the case of the SSC (Superconducting Super 
Collider), the design goal is a luminosity of cm-2 sec-'. Because of the 
difficulty of producing and storing large numbers of antiprotons, the SSC is 
designed as a two-ring proton-proton collider. Positrons are easier to come 
by than antiprotons, and today's electron-positron colliders routinely operate 
in the lo3' to lo3* luminosity range. The record for luminosity thus far is 
shared between the proton-proton intersecting storage rings at CERN and 
the Cornell Electron Storage Ring (electron-positron collider) at 1.3 X 

A glance at the luminosity formula reveals that to raise luminosity one 
must increase the collision frequency and bunch intensity and lower the beam 
cross sectional area. We will see that high bunch intensity moves toward 
collective single-bunch instabilities and beam-beam effect limitations, high 
collision frequency moves toward multibunch instabilities, and low transverse 
beam size places demands on beam sources and focusing systems. 

1.2.2 Synchrotron Radiation Sources 

Electrons circulating in a synchrotron are centripetally accelerated and so 
radiate just like electrons in an antenna. This process of synchrotron rudia- 
tion is the topic of Chapter 8; we will just note here that the classical antenna 
formula is enhanced by a factor of y4 for relativistic motion characterized by 
a Lorentz factor y.  Synchrotron radiation was an irritant in early electron 
synchrotrons and storage rings because of the scale and cost implications for 
the radiofrequency acceleration system. But it was not long before it was 
realized that the synchrotron radiation was a valuable product in itself for 
research requiring intense, bright sources of ultraviolet light and x-rays. 

The first light sources were synchrotrons designed for high energy physics 
research, and the light beams were generated by the main bending magnets. 
As demand for these facilities grew, storage synchrotrons designed expressly 
as light sources were constructed which incorporated special magnetic de- 
vices for enhancing and tailoring the radiation characteristics for this user 
community. For this discussion, we will assume that the radiation is produced 
by the particular device called an undulator. In contrast to bending magnets, 
an undulator produces a line spectrum (see Problems in Chapter 8); here we 
assume a single photon energy w .  

If A E is the energy lost by one electron as it passes through the undulator, 
then the number of photons emitted from the undulator per second, the flu, 
can be written as 

( 1.24) 
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where f o  is the revolution frequency of particles circulating in the syn- 
chrotron and Nlot is the total number of particles stored in the synchrotron. 
The quantity in parentheses is the number of photons emitted by one 
electron in a single passage through the undulator. 

The figure of merit analogous to the luminosity of a collider is, in this case, 
the brightness, that is, the maximum value of the flux per unit area per unit 
solid angle. This phase space density is a conserved quantity throughout an 
optical system, and hence may be evaluated at the source. If we assume 
Gaussian distributions of particle position and direction transverse to the 
beam center, then the flux per unit phase space area has the form 

5 106 .- 

Implicit here is the assertion that the photons are emitted in the direction of 
motion of the electrons; we will discuss this point in Chapter 8. 

The maximum value is obtained when all the transverse displacements are 
set to zero, and so the brightness is 

X-Ray tube - 
I 

( 1.26) 
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Here, we would like to note the similarity of this expression for the bright- 
ness to that for the luminosity of a collider, and the further similarity of the 
design implications. Again a premium is placed on small beam size, but here 
small beam divergence is also important. For high brightness, the beam 
current and energy loss through the undulator should be high. 

Figure 1.7 illustrates the spectacular growth in brightness associated with 
the development of synchrotron radiation sources.’ 

1. 

2. 

3. 

4. 

5. 

6. 

The universe contains a superb accelerator. Some cosmic ray protons 
enter the top of the atmosphere with an energy of 1 joule or more. 
Calculate the difference in speed between the speed of light and a proton 
with an energy of 1 joule. 

Derive the relativistic formula for addition of velocity. In the primed 
frame, a particle moves according to x’ = u‘r’. Find the speed u in the 
unprimed frame. 

The Stanford linac accelerates electrons to 50 GeV in a distance of 
2 miles at a constant rate of increase of energy with distance. From the 
point of view of an observer riding precariously on an electron, how long 
would this journey last? 

Starting from the definition of the work dE = 3- ds’done by a force F’ 
acting through a distance ds’show that the energy gain AE of a particle 
of mass m associated with a change in Lorentz factor Ay is 

AE = ( A y ) m c 2 .  

If we define the rest energy E ,  5 mc2, then the total energy (rest energy 
plus kinetic energy) is E = ymc2. Thus, the Lorentz factor y is the ratio 
of the particle’s total energy to its rest energy: 

E 
y = -  

Eo 

Using the result of the preceding problem, show that 

E 2  - p2c2 + m2c4 

In the next chapter, we will make use of the relationship between 
fractional energy difference and fractional momentum difference. Show 

‘H. Winick, Proc. I989 Particle Accelerator Conf., IEEE 89CH2669-0, page I. 
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7. In the text, simple charge distributions were used to illustrate the 
transformation of electric fields from one frame to another moving with 
relative velocity u along their common x and x‘  axes. The same ap- 
proach can be used to find the transformations for magnetic fields. 
(a) Suppose that a line current is directed along the positive x‘-axis in 

the “primed” frame. In order that it produce a magnetic field only, 
assume that a positive line charge density A‘ moves with speed u’ in 
the positive x’ direction and that a negative line charge density -A’ is 
at rest. Then there is a magnetic field in the primed frame transverse 
to the x’-axis of magnitude 

where r’ is the distance from the x’ axis to the field point. 
(b) By transforming the charge distributions and their velocities to the 

laboratory frame, show that the magnetic and electric fields in the 
latter frame are given by 

B,=  y ( u ) B ;  E L =  Y ( u ) u B Y .  

8. 

9. 

10. 

Remember that the positive line charge density A’ is not at rest in the 
primed frame, so its line density in the laboratory frame is not to be 
found just by dividing by the Lorentz factor relating the primed and 
unprimed frames. 

No mention was made of gravity as a force to be taken into account here. 
Make an order of magnitude estimate to confirm that gravity can be 
neglected. The earth’s magnetic field is approximately 1 gauss or 
tesla-small compared with the various bending and focusing fields that 
we will consider in this book. Calculate the speed that a proton would 
have in order that the magnetic and gravitation forces would be equal in 
a field of 1 gauss. Calculate the corresponding kinetic energy. 

A famous theorem in electrostatics states that the average of the electro- 
static potential over the surface of a sphere containing no charges is 
equal to the value of the electrostatic potential at the center of the 
sphere. Prove this theorem. 

The two-dimensional analog of the theorem in the preceding problem 
can be used to solve a variety of electromagnetic boundary value prob- 
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lems with modest computing resources. Suppose that we have a two- 
dimensional electrostatic field that varies with the coordinates x and y 
but not with z. Then the average of the electrostatic potential, V ( x ,  y ) ,  
over the surface of a cylinder with axis parallel to the z-axis is the same 
as the value of V on the axis of the cylinder. 
(a) Use this property of the electrostatic field to find the potential 

distribution within a square. On the boundaries of the square, the 
potentials will be specified. The potential distribution will be approxi- 
mated by a grid. Each side of the square will be divided into 11 
points, including the corners. Inside of the square there will be 
therefore 9 X 9 = 81 points. The potentials on the boundary points 
are selected by you; the problem is to determine the potentials 
within, using the averaging theorem. 

(b) Find a small computer, and set up the problem. The algorithm goes 
as follows. You specify the potentials at the boundary of the square. 
As an initial guess, set all potentials at grid points within the square 
to zero. Then starting at, for example, the upper left hand corner 
interior point, find a new value at that point by averaging the 
potential values at the four neighboring grid points. The boundary 
values will begin to enter the interior. Proceed by rows or by 
columns, and observe the boundary potentials flow into the grid 
points within the square. A number of iterations are required; 
eventually you will see the potential distribution stabilize. 

(c) Start with a problem whose answer you know. For instance, set the 
top edge of the square to 100 (volts), the bottom line to 0, and both 
edges to 0, 10, 20,. . . ,100 from bottom to top. Then set the top to 
100, the left side to 20, the right side to 80, and keep the bottom edge 
at zero. Run, and sketch in the equipotentials and field lines in the 
result. 

11. A simple bending magnet is made as shown in the figure below. N turns 
of conductor carrying current I are wound about each pole of the iron 
magnet. The poles are separated by a distance h. Assuming the perme- 
ability of the iron to be infinite, show that the field in the gap of the 

Figure for Problem 1 1. 
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magnet is given by 

2Po” B = -  
h ‘  

12. A quadrupole magnet can be constructed as shown in the figure below. N 
turns of conductor carrying current I are wound about each pole of the 
iron magnet. The magnetic field has no z-component and is independent 
of z. Within the current free interior, the-magnetic field can be expressed 
in terms of a magnetic scalar potential: B = Vam. 

Figure for Problem 12. 

(a) For the quadrupole magnet, where aB,/ay = aB,,/dx = B’ = 
constant show that curves of constant am are hyperbolae. 

(b) Each pole face of the quadrupole magnet is an “equipotential sur- 
face” given by a,,, = E’ny = constant. If the distance between oppo- 
site pole faces is 2 R, and if the permeability of the iron is assumed to 
be infinite, show that the “gradient,” B’, of the magnetic field along 
the horizontal and vertical axes is given by 

13. Generalize the previous problem to that of a 2n-pole magnet: 

V2Qm = 0 and that its solution may be written as 
(a) Show that the magnetic scalar potential satisfies Laplace’s equation 

a,,, = Cr” sin n 4 ,  

where C is a constant. 

cylindrical coordinates as 
(b) Show that the magnetic field of the 2n-pole magnet may be written in 

E ,  = Cnr“-‘sin n 4  

B, = Cnr”-’ cos n 4 .  
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The constant C can be interpreted as 

(c) Suppose there are N turns of conductor per pole, each carrying 
current I. If the pole faces are equipotential surfaces with minimum 
radius R at angles 4 = k - ( a / 2 n )  for k = 1,3,5,. . . ,4n - 1, show 
that 

p,n!NZ 

14. Consider a dipole magnet made from the following arrangement of 
current sources: +no  cylindrical uniform current dis t r ibut ip ,  one with 
current density J = Ji and the other with current density J = -Ji have 
their centers separated by a distance d ,  as shown in the figure below. The 
current in the central region is exactly canceled. Show that the magnetic 
field within this region is given by 

Figure for Probleml4. 

15. In Equation 1.23, the bunches collided head-to-head. Suppose instead 
that they collide with a small crossing angle a between their directions of 
motion. Assume that the distribution function of each bunch is also 
Gaussian in the direction of motion, with standard deviation uz. Then, 
show that the expression for the luminosity becomes 

fN 1 
9 ,  - 

4 m 2  {1 +ffZ(u;2/402) - 
16. Two unbunched beams, each with A particles per unit length distributed 

as a round Gaussian with standard deviation u, collide with crossing 
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angle a. Show that the luminosity is 

in the high energy limit. 

17. High luminosity comes more easily in fixed target physics than in collider 
operation. Suppose a beam of 10" protons per second is incident on a 
liquid hydrogen target one meter in length. Calculate the luminosity. The 
density of liquid hydrogen is 0.07 g/cm3. Assume that the protons are 
sufficiently energetic that they are traveling very close to the speed of 
light. 



CHAPTER 
L 

Acceleration and 
Phase Stability 

The most common particle accelerator is the ubiquitous cathode ray tube. 
But according to present convention, the term particle accelerator is usually 
reserved for multicomponent devices achieving particle energies of the order 
of 1 MeV or more. The use of an electrostatic field to provide the accelerat- 
ing mechanism, as in the cathode ray tube, can be extended to energies on 
the order of 10 MeV per unit electronic charge. To reach higher energies, 
some repetitive acceleration procedure is normally employed. By joining a 
number of accelerating structures in series, the particle energy will increase 
in proportion to the distance traveled. In order that these structures provide 
electromotive forces, time varying fields are, by implication, involved. With 
present technology, acceleration up to 100 MeV per meter can be attained. 

In circular accelerators, economical use of a single accelerating station is 
achieved by bending the path of the particles with magnetic fields so multiple 
passes are made through the station. To date, the highest energy (man-made) 
particle accelerators are of this variety. 

Within both the straight and circular varieties, there are many variants. 
Most of our examples will relate to the conventional linear accelerator using 
microwave power sources to drive a sequence of accelerating stations-the 
linac-or to the type of circular accelerator called the synchrotron. Both 
came into prominance as the principal approaches to high energy accelera- 
tion just after World War 11. In the case of the linac, radar components could 
be easily adapted to build the first of the big linacs. In the case of the 
synchrotron, the invention of the phase focusing principal in 1945 coupled 
with significant government support for research in particle physics made 
possible the construction of a first generation of synchrotrons, which came 
into operation in about 1950. 
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ACCELERATION METHODS 

2.1 ACCELERATION METHODS 

Our limited goal in this part of the chapter is to provide an elementary 
picture of the mechanisms of acceleration on which to base the discussion of 
longitudinal stability in linear accelerators and synchrotrons. After some 
introductory remarks on static and time varying electromagnetic fields, we 
discuss at some length a simple resonant cavity which could be used in linacs 
or synchrotrons. Although the structures actually used in these devices are 
generally more complex, our simple cavity could be used and is adequate for 
the main purpose of this chapter, namely the discussion of the principle of 
phase stability. We do not explore the technology of accelerating structures; 
that is a rich subject in itself. But we do conclude with a few remarks on the 
sorts of accelerating structures that are employed in practice. 

2.1.1 DC Accelerators 

The first accelerator in the modern sense was the electrostatic accelerator 
that Cockcroft and Walton used to demonstrate the disintegration of lithium 
nuclei upon bombardment with protons. They achieved a potential of 120,000 
volts using a power supply based on the principle of charging capacitors in 

Flgure 2.1. Cockcroft-Walton preaccelerator at the Fermi National Accelerator Laboratory. 
This device provides negative hydrogen ions at 750,000 eV kinetic energy for subsequent 
occeleration through the Fermilab facility. Photo courtesy Fermilab. 



20 e ACCELERATION AND PHASE STABILITY 

+V 

Source I 

- 
Figure 2.2. Circuit diagram of Cockcroh-Walton electrostatic accelerator. High voltage is 
produced by charging capacitors in porallel and discharging them in series. 

parallel and discharging them in series. A quarter of a century later, the 
Cockcroft-Walton had become the standard preaccelerator for proton syn- 
chrotron facilities, operating at typically 750,000 volts. (See Figures 2.1 and 
2.2.) At present, the Cockcroft-Waltons are being supplanted by the more 
compact and reliable radiofrequency quadrupoles. 

The Van de Graaff generator produces high electrostatic voltages by the 
ingenious technique of spraying charge onto a moving nonconducting belt, 
which conveys the charges to an insulated terminal where the electron or ion 
source is located. (See Figure 2.3.) At the high voltage terminal, the charges 
are removed from the belt by the same multineedle type of comb that 

+V 

Figure 2.3. Circuit diagram of Van do Graaff electrostatic 
accelerator. High voltage is produced by collecting charge via 
a conveyor belt an an insulated terminal; charges to be 
accelerated are produced by a source located within the 
terminal. 
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sprayed them on in the first place. By pressurization of the tank containing 
the accelerator, potential differences up to about 15 MV can be achieved. 
In the tandem Van de Graaff, in effect the voltage is doubled. In the tandem, 
the ion source is located at ground potential and emits a beam of negative 
ions-for instance, H-. At the high voltage terminal, the beam is passed 
through a foil which strips the electrons from the ions, and the protons 
continue to be accelerated, arriving at gound potential with twice the energy 
that would be associated with the electrostatic potential difference. 

Electrostatic accelerators have the advantages of providing DC beams with 
narrow energy spread. Though the energy capability of this sort of device has 
slowly increased, ultimately it is limited by voltage breakdown, and for higher 
energies one is forced to turn to other approaches. 

It might occur to one to cause the particle to pass through a DC potential 
difference repetitively as depicted in Figure 2.4. Here, by implication, the 
mechanism for causing the repetitive passages is a magnetic field to create a 
circular orbit. In order to assure that the field is nonzero only between the 
plates, the plates must extend to infinity. But then, the particle will be 
decelerated as it passes back through the plates half way around the orbit. In 
the situation of Figure 2.4 the plates are of finite extent and hence the 
electric field will be nonzero outside the capacitor; this “fringe field” will 
decelerate the particle as it approaches and departs the capacitor. No net 
acceleration will be achieved, as is of course consistent with the conservative 
nature of a static electric field. Therefore, as Faraday’s law requires, we are 
compelled to consider electromagnetic fields which vary with time. 

2.1.2 Time Varying Electromagnetic Fields 

Production of an electromotive force in vacuum requires, according to 
Faraday’s law, that the magnetic flux in some region of interest vary with 
time. There are many ways of employing Faraday’s law to this end, each in a 

Flgum 2.4. Particle being guided repetitively through 
an electrostatic field. 
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very real sense representing an invention. We listed a number of accelerator 
types in the Introduction. Here we will focus on one such, the betatron, 
which illustrates the principles in a transparent and elegant way as a 
precursor to the main theme of acceleration using resonant structures. 

The betatron was the first circular accelerator to operate at constant orbit 
radius, and transverse particle oscillations in the neighborhood of the design 
trajectories of modern accelerators are still called betatron oscillations be- 
cause they were studied in this case initially. In the betatron, a time varying 
magnetic field produces an electric field which accelerates the particles as we 
will see in the following discussion. 

Suppose that there is a uniformly distributed magnetic flux with rate of 
change 6 in a cylindrical region of space as depicted in Figure 2.5. Then at a 
radius r ,  there will be a tangentially directed electric field of magnitude 
E = &/(27rr). If we now provide a magnetic field B at r ,  directed in the 
same sense as 6, a particle can be made to follow a circular orbit of constant 
radius. From 

the condition for constant radius is 

From the law of motion, p can be replaced by e6 / (27rr ) ,  and so we arrive at 
the condition 

That is, for motion at constant radius, the flux through the orbit must 
increase at twice the rate that it would if the field on the orbit were constant 
within the orbit. 

Figure 2.5. Principle of the betatron: accelerating electric 
field produced by changing magnetic flux through an orbit 
of radius r .  
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n n n n n n  

Figure 2.6. Elementary oscillatory waveform for particle acceleration. 

The monotonic increase of flux to provide the accelerating field places a 
practical limit on the energy that can be achieved by the betatron principle. 
Nevertheless, the constant orbit radius of the betatron is attractive for high 
energy circular accelerators. 

So we need to retain the feature of constant orbit radius while avoiding 
the monotonic field increase of the betatron; that is, we turn to oscillating 
fields. Suppose the capacitor of Figure 2.4 were energized only during the 
time when the particles pass through it. For instance, the waveform of Figure 
2.6 would provide an electric field synchronized with particle passage, and 
the oscillatory character of the waveform indicates that the magnetic fields 
associated with charging the capacitor are also oscillatory in character. 

One more step is necessary in order to complete our rudimentary picture 
of a high energy accelerator. Production of high voltages from square waves 
would be costly and technologically far from an optimum solution. (As will be 
seen later in this chapter, this waveform also fails to provide “phase 
focusing.”) Typically, the fraction of the energy stored in the accelerating 
field that is transfered to the particles in each passage is small. Suppose a 
particle receives 1 MeV in passing the gap. If 10’’ particles transit simultane- 
ously as a bunch, then the total energy extracted from the accelerating device 
is only of the order of a millijoule. The energy stored in the electric field of 
the device typically will be several orders of magnitude larger. Therefore it 
makes sense to use a resonant structure for the accelerating device where the 
power delivered need only replace that extracted by the beam (and other 
losses). 

We now have a model of a high energy accelerator. The particles en- 
counter an electric field provided by one or more accelerating stations. Our 
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(a ) 

-L- 

(b)  

Figure 2.7. (a) A pillbox cavity as a possible accelerating structure, and (b) its idealized model 
for the field calculation in the text. 

model of a circular accelerator has one such station through which the 
particles pass repetitively as they are returned to it by a guiding magnetic 
field. A linear accelerator is composed of a sequence of such stations through 
which the particles make a single passage in achieving their final energy. The 
basic accelerating structure is often referred to as a resonant cavity; its 
elementary properties are described in the next section. 

2.1.3 Resonant Cavities 

A basic resonant cavity for use as an accelerating station might look like the 
cylindrical object depicted in Figure 2.7(a). A pillbox cavity has a couple of 
holes cut at either end to provide passage for the beam, and a third hole is 
provided on the cylinder surface for the coaxial drive. The current loop 
couples to the magnetic field of the cavity. So the idealized structure that we 
will look at is the closed cavity of Figure 2.7(b). 

We want a mode with an accelerating field E,, where z is in the direction 
of particle motion as indicated in the figure. Let us try to find a mode where 
this is the only component of the electric field, and where there is only one 
component of the magnetic field, Be. Maxwell’s equations then reduce to 

i a  1 aE, 
- - ( rBB)  = T - ,  r ar c at 

After differentiating the first with respect to t and the second with respect to 
r ,  we can use the second to eliminate Be, with the result 

a2E, 1 aE, 1 a2E, 
- + -- = -- 
ar2 r dr c2  a t 2  a 
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A mode with angular frequency w will have a solution of the form 

E,( r ,  1 )  = E(  r )e rw' .  

Therefore 

E' 
r 

This is Bessel's equation of zero order, so the solution is 

E ( r )  = E  J - r  . 4: 1 
At r = R, the field must vanish if the cavity material is a good conductor. 
The argument of the Bessel function must then be one of the zeros of J,, and 
the lowest frequency mode will be associated with the first zero: 

2'rrfR = 2.405. 
C 

(2.10) 

With R at some reasonable scale, 30 cm say, then f is in the 400 MHz range, 
a perfectly appropriate frequency for radiofrequency power sources. 

How long can the cavity be? Define the transit time factor T as the ratio 
of the energy actually given a particle that passes the cavity center at  peak 
field to the energy that would be received if the field were constant with time 
at its peak value. That is, if the cavity length is L ,  

IS( w z / u )  dz sin u OL 

If we ask that T = 0.9, for example, then for u = c, we have u = 0.8 and 
L/R = 2. 

The quality factor, or Q, of the cavity is defined as the ratio of the stored 
energy to the energy lost in one radian of an oscillation. When the electric 
field is a maximum, the magnetic field is zero, so we can calculate the stored 
energy from the electric field alone: 

U = &, /E2dV (2.12) 
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Here, we have used the definite integral 

p - : ( a x ) x d r  = f [ J & r ) ] '  ( 2 . 1 4 )  

and the relation JA = - J l .  Since J1(2.405) = 0.52, the stored energy is a little 
over 25% of the energy that would be associated with the field E,  filling the 
entire volume V.  

We next calculate the losses due to the ohmic heating in the cavity wall. 
Using Ampere's law, the surface current density is related to the magnetic 
field according to 

1 
J =  - B  8 ,  

PO 
( 2 . 1 5 )  

where J is directed radially inward or outward on the end plates, and is 
parallel to the axes on the inner surface of the cylinder. If we write 

B, = B( r)e'''", (2.16) 

then, insofar as magnitudes are concerned 

B ( r )  = ""II( C r r ) .  (2 .17 )  

To get the loss rate, we integrate p s J 2 / 2  over the surface, where p s  is the 
surface resistivity and the divisor 2 comes from averaging over the cycle. The 
surface resistivity is the bulk resistivity divided by the skin depth of the 
material at the frequency of interest. Surface resistivity therefore has units of 
ohms. Calling the loss rate P, we have 

(2 .19 )  

where Z o  is the impedance of free space, ( p o / ~ J 1 / * .  The integral over the 
square of the Bessel function is 

(2.20) 
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but we note that the second term vanishes when evaluated at the first root of 
1,. We can then estimate the Q from 

(2.21) 

For copper surfaces in the 400 MHz region, this expression gives Q of order 
lo4 for the geometry that we are using. 

The Q is one figure of merit for a cavity. Another has to do with seeking 
high energy gain per unit loss. The ratio of the square of the energy gain to 
the loss rate has the dimensions of resistance; this quantity is called the shunt 
impedance of the cavity, R,: 

(energy gain per unit charge)2 
P 

(2.22) R,  = 

The literature contains various different definitions of shunt impedance; the 
one above implies that the transit time factor is included in order to calculate 
the energy gain. For our case, 

- 20' L T 2  
K =--  

I T ~ ~  R ( 1  + (R/L))Jt(2.405) * 
(2.23) 

For the numbers that we have been using, R ,  is about 7 MR. 
The pillbox is easy to analyze, and could in fact be used in accelerators, 

such as linacs and electron synchrotrons, where variable frequency is not 
necessary. In practice, given the importance of R F  power costs in such 
accelerators, much effort has gone into the evolution of a simple pillbox into 
an optimized shape. 

For given stored energy, the energy gain may be increased somewhat 
through the addition of nose cones, shown in Figure 2.8(a). The losses occur 
predominantly on the cylindrical surface, and so higher Q can be obtained by 
spreading the currents out on a sphere-like surface. The resulting cavity 
would look something like the shape shown in Figure 2.8(b), and cavities of 
this style are used in the LEP electron-positron storage ring at CERN. 

(a)  (b)  

Figure 2.8. Variations of the pillbox cavity: (a) addition of nose cones; (b) spherical cavity to 
spread the surface currents. 
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Figuro 2.9. Conceptual drawing of accelerating cavity to be used in SSC low energy booster 
synchrotron. The covib uses ferrite tuners to adjust the cavity frequency from 48 to 60 MHz 
during the acceleration cycle. 

Circular proton accelerators may require a significant frequency variation 
during the acceleration process. For instance, in the Fermilab booster syn- 
chrotron, the kinetic energy of protons is increased from 200 MeV to 8 GeV. 
The speed of the protons and hence the frequency of the accelerating system 
increases by a factor of 1.76 during this process. Suppose that our simple 
pillbox cavity were filled with a material of relative permeability K ,  = p/po .  
Setting aside for the moment the problem of getting the particle beam 
through this device, the resonant frequency of the cavity will have been 
reduced by a factor of 1/ K. This can be easily seen by noting that 
Equation 2.4 will now contain a factor of K ,  on the right hand side. Now we 
need a mechanism for varying K ,  through the acceleration cycle. Figure 2.9 
shows one approach to providing tunability while retaining the material-free 
passage for the beam. 

2.1.4 Accelerating Structures 

Though the discussion of the preceding section may be useful to illustrate the 
principles of acceleration in a large accelerator, in fact a single cavity is 
seldom sufficient to provide the requisite energy gain per turn in a syn- 
chrotron and surely not sufficient to produce the final energy of a linac. In a 
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Flgure 2.1 0. Multicell occeleroting cavity simi- 
lor in concept to thot used in the PEP electron TTTTTT storage ring ot SIAC. 

variety of ways, arrays of cavities are grouped to form multicell accelerating 
structures. Often, it is convenient to drive such an array from a single source, 
as shown in Figure 2.10. Each individual cell if excited separately could 
oscillate at a common resonant frequency analogous to that of the pillbox. 
But when excited as a coupled system of five oscillators, the degeneracy is 
split and there will be five fundamental frequencies differing in the phase 
relationship of the fields from cell to cell. In the case of the structure in 
Figure 2.10, the cells are operated in the rr-mode, where at a given instant in 
time the electric fields are in opposite directions in adjacent cells. 

In a proton linac with its many cavities, fabrication methods and toler- 
ances play an important role in the choice of structure. The proton linac 
LAMPF at Los Alamos National Laboratory employs the side coupled cauity 
structure shown in Figure 2.1Nb). It can be thought of as a folded-up version 
of the r r / 2  mode arrangement indicated in Figure 2.11(a). In this mode, 
alternate cavities are unexcited in the lossless approximation. The structure 
at the left would have a low shunt impedance per unit length, because 
acceleration is provided by only half of the cells. But if the unexcited cells are 
moved off to the side, the acceleration efficiency of the wmode case is 
recovered. 

The above are examples of standing wave structures. This is a natural 
choice for an electron-positron storage ring, because it provides acceleration 
in both directions. In a proton linac, the speed of the particles changes 
throughout the accelerator, and one can design a series of structures with 
changing dimensions to match the change in energy. 
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Figure 2.12. The disk-loaded wave guide 
slows down the phase velocity of the accelerat- 
ing wave to match the speed of the particles. 

‘4 
fl 

An electron linac is a different matter. An electron with a kinetic energy 
of 3 MeV is already travelling at 99% of the speed of light. In this case, it is 
natural to think of a uniform wave guide for the accelerating structure. But 
the phase velocity in a hollow cylindrical wave guide is greater than c, so it is 
necessary to slow the phase velocity down. This can be done in a variety of 
ways, but the standard approach is to insert diaphragms into the guide. The 
result is the standard disk-loaded wave guide depicted in Figure 2.12. 
Electron linacs are usually designed for high frequency. The radar S-band 
near 3 GHz was the choice for the Stanford two mile electron linac at SLAC. 

Further discussion of accelerating structure technology would be out of 
place in this text. A number of the references in the bibliography pursue this 
subject in greater depth. 

2.2 PHASE STABILITY 

The rudimentary view of an accelerator that has emerged thus far is one in 
which a particle traverses a number of accelerating devices-a possibly long 
sequence of them in the case of a linear accelerator, and perhaps only one 
for a circular accelerator, to which bending magnetic fields return the particle 
from turn to turn. By implication, there is a special particle that adheres to 
the perfect plan for the accelerator system. That is, there is a particle that at 
each moment of time has exactly the right energy and the right time of 
passage through the accelerating structure so that it receives exactly the right 
increment of energy to stay in accord with the plan. 

But we are not solely concerned with the history of an ideal particle; 
rather, we must consiger a distribution of particles differing in energy and in 
the time between transits of the accelerating structure or structures. We thus 
confront a classical stability question. Do particles initially nearby in energy 
and transit time to those of the ideal particle remain nearby in this “phase 
space” throughout the acceleration process? The principle that ensures that 
this will be so is called the principle of phase stability. 

We will find that there is a strong stability condition which dictates that 
particles near the ideal particle will indeed remain nearby, and oscillate 
about the ideal particle in energy-transit time space. These oscillations were 
first analyzed for the device christened the synchrotron and so are called 
synchrotron oscillations. 

Of course, there are in reality three degrees of freedom for the motion of 
the particle. We are going to describe the motion in the neighborhood of the 
ideal particle in all three of them eventually. Variations in energy and transit 
time are associated with one degree of freedom. Because transit time 
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Accelerating 
station 

(4 
Figure 2.13. A sequence of accelerating stations 0 s  in a synchrotron (a) or in a linac (b). 

differences are equivalent to position differences along the general direction 
of motion of the ideal particle, this is called the longitudinal degree of 
freedom. It is not yet apparent that it is possible to treat this degree 
of freedom independently of the other two, the so-called transverse degrees 
of freedom. We will see that the frequency of longitudinal oscillations is 
generally much less than that of transverse oscillations and so, to a reason- 
able approximation, they are decoupled. 

2.2.1 Synchrotron Oscillations 

As discussed previously, acceleration of particles to very high energies 
involves the use of high frequency resonant cavities for the production of 
accelerating fields. Suppose we have a sequence of such accelerating stations. 
A “station” may be regarded as either a cavity or system of cavities, such as 
in a synchrotron, or an individual accelerating gap within a cavity, such as in 
a linac. (See Figure 2.13.) Each station is excited by a source of radiofre- 
quency power at angular frequency wrf. We assume that the system is 
designed so that the ideal particle arrives at each station at the same phase 
(modulo 27r) and receives the same increment of energy at each station. 

The progress of the ideal particle through the accelerator is charted in the 
design of the device. In general, however, a particle will deviate from the 
design motion, and we wish to develop equations of motion that treat those 
deviations. 

Let T be the time interval between passages of two successive stations for 
the ideal particle. In terms of the spacing L between stations and the particle 
speed u,  

7 = L / u .  ( 2.24) 
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The fractional change in 7 associated with deviations in L or u is 

AT A L  AV 

r L  U 
- = - - -  (2.25) 

That is, a particle moving with speed greater than that of the ideal particle 
will tend to take less time to pass between stations. But if its path length is 
larger, this deviation will tend to increase the transit time between stations. 

The second term in Equation 2.25 can be expressed in terms of the 
fractional momentum deviation by 

Av 1 A p  
y = ;i( y ).  (2.26) 

In general, the first term might also be dependent upon the fractional 
momentum deviation, In a simple circular accelerator, for instance, one 
might expect the orbit circumference to be larger for a particle of momentum 
slightly above the momentum of the ideal particle. But for a linear accelera- 
tor the distance between stations is independent of the momentum deviation. 
Here, to cover these various cases, we will just introduce a parameter yl 
defined by 

A L  1 A p  -=+) L Yt (2.27) 

The value of yl is determined by the type of device being studied as well as 
its particular design. 

Our expression for the fractional change in r is thus simplified by 
introducing the parameter 

1 1  
7 = - - -  

Y: Y Z '  
(2.28) 

Notice that at a particular energy y = yI the slip factor 77 changes sign. This 
is called the transition energy, whence the subscript 1. 

Now we can construct the equations governing the motion of a particle of 
arbitrary energy and phase. Suppose a particle arrives at the entrance to the 
nth accelerating station with energy En and phase +,, as depicted in Figure 
2.14. (This could be the nth traversal of the same station for a circular 

Station n Station n + 1 

---*+J-+ - _ _ _ _ _ _ _ _  .++-->-- 
En En+l 

Wn Wn+1 

Figure 2.14. A particle enters the nth accelerating station with energy f, and with phase +,. 
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accelerator.) At the entrance to the (n + 1)st station the phase would be 

(2.29) 

Since the ideal, synchronous particle always arrives at the stations at the 
same phase (modulo 27rr), it is convenient to switch to an angular variable 
which reflects this circumstance. We therefore define 4 as 

where T, is the time at entrance to the nth station. Then Equation 2.29 
becomes 

But Tn + T , + ~  = Tn+l and so 

(2.32) 

For simplicity we will assume that orf7 is independent of n and so drop the 
subscript on 7 in the following. For a circular accelerator the product w,.p is 
an integral multiple of 27r; this multiple is called the harmonic number. In a 
linear accelerator, the phase advance from cavity to cavity is set in the design 
of the structure; in Section 2.1.4, brief mention was made of the choices 7r 
and ~ / 2 .  

We now have one of the difference equations of motion. The second 
difference equation treats the step in momentum, or more directly, the step 
in energy in passage through the accelerating station. If (Es) t I  is the energy of 
the ideal, synchronous particle of charge e at the entrance to the nth station, 
then 

(2.33) 

where V is the amplitude of the emf across the cavity gap and 4s is the phase 
for arrival of the ideal particle, the so-called synchronous phase. 

For a particle in general, the corresponding equation will be 

E n + ,  = En + eVsin4,,  (2.34) 
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and so the difference in energy between the particle in question and the ideal 
particle, A E = E - E,, must satisfy 

A En + , = A En + eV(sin 4,, - sin 4s). (2.35) 

Since E = ymc2  and p = y m v ,  one can show that 

A p  c 2 A E  
p v 2 E ’  
- = -- (2.36) 

and so the two difference equations for the motion of the particle with 
respect to that of the ideal particle are 

(2.37) 

AE,,, ,  = AE,, + eV(sin4, - sin4,). (2.38) 

We can now address the question of whether or not a particle initially near to 
the ideal particle in energy and phase remains so as it proceeds through the 
accelerator. We will illustrate the principle for the case of a circular accelera- 
tor. For a linear accelerator, the argument is nearly identical; only a few 
words need be changed. The natural first step is to apply the difference 
equations to a variety of initial conditions. Figure 2.15 shows the result of a 

Figure 2.15. Application of the difference equations for synchrotron motion for five initial 
conditions. In each case, the starting value of the phase is equal to the synchronous phase. 
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Figure 2.16. Three particles arrive at an accelerating station at the same phose: one with ideal 
energy, the other two with higher and lower energies. Stable excursions in energy and phase can 
exist. 

few iterations of Equations 2.37 and 2.38 for a number of particles starting at 
+s on the first passage and differing in the initial values of A E. Observe that 
the particles closest to the ideal particle appear to remain close to the ideal 
particle as time develops. That is, the pattern of a stable oscillation is 
revealed. But the last particle, with the largest value of A E, is departing the 
neighborhood of the ideal particle. We may conclude that there is a finite 
region of stability. 

Some aspects of the foregoing picture can be anticipated by a simple 
discussion. Suppose three particles traverse an accelerating station at the 
same time. One is at just the right energy for entry into this station and so 
has the so-called synchronous energy and receives just the right energy gain 
to continue the nominal acceleration process. The other two particles arrive 
at the same time, but have slightly higher and lower energies. Figure 2.16 
depicts three successive traversals of the accelerating station of our circular 
accelerator example. On the first passage of the station, all three particles 
receive the same increment in energy. Suppose the slip factor is negative. 
That is, speed changes are more important than path length changes. The 
higher energy particle thus arrives at the station the second time sooner than 
the ideal particle and hence receives less energy than the ideal particle 
receives. The lower energy particle acquires more energy than does the ideal 
particle. The energy difference has begun to shrink. The diminution in energy 
difference implies that the phase slip between the second and third passage 
will be less than that between the first and second passage. This reduction of 
both the phase change and the energy difference from turn to turn is the seed 
of stable oscillations. That is, the situation for stable excursions in energy and 
phase exists. This argument cannot identify the boundary between stability 
and instability; it only suggests that there is a region of stability. 

We should point out that if we had carried out the foregoing discussion 
with the same initial conditions, including the same 4s, but with a positive 
slip factor, we would have arrived at the conclusion that the motion is very 
likely unstable. We will discuss this point in more detail later in this section. 
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Figure 2.1 7. Application of the difference equations to a number of initial conditions demon- 
strotet that regions of stoble and unstable motion exist. 

Now we return to the numerical solution of the difference equations to 
obtain a more detailed view of the trajectories in the &A E phase space . In 
Figure 2.17, the process initiated in Figure 2.15 is extended to a large number 
of turns and includes more cases. Several features are noteworthy. There is a 
well-defined boundary between stable and unstable motion. This boundary is 
called the sepurutrix. There are two qualitatively different points in phase 
space at which the particle undergoes no phase motion. The ideal particle 
occupies one of these points, called the stable fixed point, at 4 = and 
AE = 0. The other lies on the separatrix and is called the unstable fixed 
point. The closer point separation in the neighborhood of the unstable fixed 
point indicates that particles move more slowly in this region; in particular, a 
particle on the separatrix and moving toward the fixed point would require 
infinitely many turns to reach it. 

Figure 2.17 displays the circumstance that the harmonic number in a 
circular accelerator is generally larger than one and so there can be many 
stable fixed points distributed in azimuth, spaced in phase by 21r. The figure 
shows three such stable fixed points. The area in phase space within the 
separatrix is called a bucket in accelerator jargon, and so the figure depicts 
three stable buckets. All buckets need not be populated. For example, in the 
electron-positron storage ring (LEP) at CERN only four buckets are popu- 
lated by each particle species. However, since the circumference of the LEP 
is 27 km and the bucket spacing is slightly less than a meter, just over a tenth 
of a percent of the buckets are occupied. Again, in the jargon, the collection 
of particles sharing a particular bucket is called a bunch. 
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Figure 2.18. Applicotion of the difference equotions to o number of initiol conditions for 
4, = 0 or T .  The regions within the seporotrices ore colled stotionory buckets. 

Figure 2.17 shows a situation in which the ideal particle is undergoing 
acceleration. If the synchronous phase is 0 or 7r, we have the situation shown 
in Figure 2.18 in which the ideal particle is unaccelerated and the phase 
stable region is 27r in extent. These are called stationary buckets. For the 
case of the accelerating buckets of Figure 2.17 a particle outside the separa- 
trix diverges in both energy and phase and ultimately will depart from the 
accelerator. But for this case, a particle outside the stationary bucket will 
only undulate in energy and may well remain within the accelerator indefi- 
nitely. It is still characterized as unstable, since it will wander progressively 
farther in phase from the ideal particle. 

In a sense we have already solved the problem of phase and energy motion 
by numerical integration of the difference equations. We do not, however, 
have the convenience of a closed form analytical solution. A traditional 
analytical approach is to approximate the difference equations by differential 
equations. The legitimacy of treating phase and energy as continuous vari- 
ables has already been suggested by the numerical treatment leading to 
Figures 2.15, 2.17, and 2.18 in that these dynamical variables change by 
rather small amounts from turn to turn. We may thus treat the turn number 
n as an independent variable and rewrite the difference equations as 

dAE 
- = eV(sin 4 - sin 4$). 

dn 

(2.39) 

(2.40) 
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These two first order differential equations may be turned into a single 
second order equation 

(2.41) 

provided that we assume a constant accelerating voltage and sufficiently small 
dE,/dn. (We will relax this restriction in the following subsection.) 

A first integral can be obtained by the standard prescription of multiplying 
by d 4 / d n  and integrating over n: 

d4 
v2Es dn 

dn = 77w‘TeVc2 /(sin 4 - sin 4$) - dn (2.42) 

1 d 4  qlwrfTeVc2 

2 0 dn u2E, 
3 - -  = -  (cos 4 + 4 sin 4s) + constant, 

(2.43) 

or, 

1 d 4  771w,7eVc2 -(-) 2 dn + v2Es 
(cos 4 + 4 sin 4s) = constant. (2.44) 

This is formally identical to the expression for the total “energy” T + 
V = U, where the first term on the left is the “kinetic energy” T, and the 
second term is the “potential energy” V. We can therefore make an energy 
level diagram where horizontal lines indicating the total “energy” of the 
particle are drawn in addition to the “potential energy” function V .  The 
“potential energy” drawn in Figure 2.19 is for a nonzero value of sin 4$. The 

I . .  

0 5 10 15 20 25 30 
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Figure 2.19. “Energy” diagram: the function cos & +&sin &, is plotted along with horizontal 
lines indicating levels of constant total “energy.” The intersections of horizontal lines with the 
potential function indicote turning points of the motion, where dQ / dn = 0. 



PHASE STABILITY G 39 

intersection of the horizontal lines and the potential energy curve is a turning 
point where the “kinetic energy” term is zero. Of the three total “energies” 
shown, one depicts stable motion within a bucket, while another represents 
unstable motion unbounded to the left in the figure. The third represents a 
particle on the separatrix. The maximum extent in phase of stable motion on 
the separatrix is the subject of a problem at the end of the chapter. The 
unstable fixed point, at the limit of a converging sequence of turning points, 
is at + = 7r - +s. 

Combining Equations 2.39 and 2.44, we find the expression for contours 
describing particle motion in +-A E phase space: 

2v2E,eV 
AE’ + (cos + + + sin +s) = constant. (2.45) 

17WrfTC’ 

The existence of these stable contours requires, strictly speaking, that the 
parameters such as E, be constant. A number of trajectories in longitudinal 
phase space are shown in Figure 2.20 and indeed resemble the figures 
obtained by numerical integration of the difference equations. 

We may now confidently use our analytical results to treat phase oscilla- 
tions, having demonstrated the equivalence of the difference and differential 
approaches in our parameter range of interest. In order to obtain a simple 
expression for the frequency of phase oscillations it is, as usual, convenient to 
linearize the equation of motion. We assume that A 4  = 4 - +s is small and 
then the parenthetical expression on the right hand side of Equation 2.40 can 
be approximated by 

sin( 4s + A+) - sin 4, 
= cos +, sin A+ + sin +s cos A4 - sin 4, 
= cos 4, A+. 

(2.46) 

( 2.47) 

Then 

d ’A4 
dn ’ + ( 2 7 r ~ , ) ~  A 4  = 0, ( 2.48) 

where vs is the number of synchrotron oscillations per accelerating station 
passage, often referred to as the synchrotron oscillation tune. This quantity is 
given by 

9 (2.49) 

and the angular frequency of synchrotron oscillations is 

(2.50) 
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Figure 2.20. Contours of particle motion in longitudinal phase space obtained by solving the 
differential equations of motion. The curves shown are for q > 0 and for the coses (a) 4Js = w ,  
(b) 4, = 57r / 6, and (c) 4' = 2 0  / 3. 
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From this expression, we see that the correct choice for the synchronous 
phase depends upon the value of 7 as anticipated by our earlier discussion. 
For < 0, that is, y < y,, the motion is stable for cos 4, > 0. However, for 
77 > 0 (y > y,), the synchronous phase must be such that cos 4, < 0. Circu- 
lar accelerators that cross the transition energy during the acceleration cycle 
must perform a phase jump in the radiofrequency system at the appropriate 
time in order to maintain phase stability. Note that at the transition energy 
the synchrotron oscillation period becomes infinite and there is no phase 
focusing. 

could be replaced by -l/y2, 
because particles of different momenta see essentially no difference in path 
length between accelerating stations. From Equation 2.49, one sees that as 
the particle energy increases, the synchrotron frequency approaches zero. As 
an example, for an energetic electron where y % 1, the solution to the 
Equation 2.39 would look more like A$ = constant: an electron starting out 
at a particular phase will remain at that phase. 

The equation of motion for phase oscillation, Equation 2.41, is a nonlinear 
differential equation; the synchrotron tune, v,, just discussed is valid only for 
small oscillation amplitudes. On the separatrix, as already mentioned, the 
oscillation period is infinitely long; the synchrotron oscillation tune decreases 
monotonically with increasing amplitude (see Problem 2.1 1). 

In the case of a linac, the slip factor 

2.2.2 Adiabatic Damplng and Longitudinal Emlitance 

In the preceding subsection, the change in the synchronous energy and other 
parameters was assumed to be sufficiently small over the period of interest so 
that their derivatives could be ignored. We now relax that restriction. We will 
find that if these parameters are permitted to change slowly over time, the 
concomittent changes in the oscillation amplitudes are given by simple 
expressions. 

In order to permit analytical solution we will limit the following discussion 
to small oscillations about the synchronous phase. A more natural choice of 
independent variable for this purpose is time, I ,  rather than accelerating 
station passage number, n. We begin with Equations 2.33 and 2.34 recast as 
differential equations: 

dE 
- dn = eVs in4 ,  

dE, - = eVsin4,.  
dn 

(2.51) 

(2.52) 

Noting that 

d dt d d 

dn dn dt dt 
= 7 - ,  - = -- (2.53) 
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the foregoing become 
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dE 
T ( E ) -  = eVsin+,  

dt 

dt 
T ( E , )  - dES = eVsin+,. 

Upon subtracting, we find 

eV( sin + - sin 4,). r ( E ) -  - T ( E , ) ~  = 
dE dES 
dt 

If we expand T ( E )  about E,, 

T ( E )  = T ( E , )  + - ( E  - E $ ) ,  (i; 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

then to first order in A E ,  Equation 2.56 becomes 

d 
- ( T A E )  =eV(s in+ - sin+,). (2.58) 
dt 

The conversion of the phase equation to employ time as the independent 
variable is straightforward. Our pair of linearized differential equations is 
then 

d eV cos +, 
- ( T A E )  = T (  
dt ) A +  = T ~ A + .  

(2.59) 

(2.60) 

Combining these two equations and taking into account that the quantities 
A and T are now functions of time gives the second order differential 
equation 

d 2  l d A d  
- A + - - -  dt (;)$ ' +  + =', (2.61) 
d t 2  

where SZ, = 4- is the angular frequency of synchrotron oscillations 
given in Equation 2.50. Note that since A contains rl while p contains cos +,, 
then either A > 0 and p < 0 or A < 0 and p > 0. 
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A standard approach to solving a second order differential equation of this 
sort is to choose a trial solution of the form AC#J = uu and pick u such that 
the first derivative term is zero in the equation for u. Substituting, we find 

d2u 1 d A du 
- dt2 - --(-)- A/r  dt T dt + R:.]. = 0, (2.62) 

and so the indicated choice for u is to satisfy 

du 1 d A  
dt A / T  dt (;)'* 2- = -- (2.63) 

Therefore, we may choose u = 4% where the quantity under the 
radical has to be positive. Then, the differential equation for u becomes 

d2u 1 d 2 A  - - - [ A (  3 1 

dt2 + (mz(;) 4 
A ) ] 2  + R:)u = 0. (2.64) 

dt T 

We next proceed to solve the differential equation for u using the method of 
integrated phase. That is, a solution is sought of the form 

u = f( t)exp( i l w  dt), (2.65) 

where f is a slowly varying function of time and w2 is the quantity in braces 
in Equation 2.64. Since, by our assumption, the first two quantities in the 
braces are small compared to R: we set w in our trial solution equal to R,. 
Then, the equation for f becomes 

f + i (2fn ,  + fh,) = 0. ( 2.66) 

Here, a dot refers to a derivative with respect to time. Since f is slowly 
varying, the first term is negligible compared to the second term, and so we 
have 

1 
f=- n' (2.67) 
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Combining our results, we may write the solution for the phase oscillation in 
the form 

(2.68) 

where A and 6 ,  reflect the initial conditions and we have expressed the 
result in terms of real functions. Inserting the definitions of A and R,, we see 
that 

( 2.69) 

For instance, in the high energy limit of a circular accelerator where y 3 y,, 
the phase oscillation amplitude varies inversely as the fourth root of the 
synchronous energy. This is an example of adiabatic damping. 

We now consider energy oscillations. The differential equation for r A E is 
similar to that for A4, namely, 

d 2  1 d  d 
- ( r A E )  - -- ( rp ) - (7AE)  + fl :(rAE) = 0. 
dt2 ~p dt dt 

(2.70) 

Proceeding exactly as in the case for A+, we arrive at the solution 

A E = B/* cos( /a, dt + S 2 ) ,  
7% 

where 

(2.71) 

(2.72) 

Looking again at  our example of a particle with y % y,, the oscillation 
amplitude in A E  increases with synchronous energy, but the fractional 
energy difference A E/E, will decrease. 

Our discussion thus far has described the motion in a phase space in 
which the variables are A E  and A+. Is this the most natural choice of 
coordinates? Classical mechanics tells us that a simplification in the descrip- 
tion of motion is gained by the use of canonically conjugate pairs. We can use 
our results to lead us to a familiar conjugate pair. From classical mechanics 
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we know that for a particle undergoing periodic motion the area of its 
trajectory in the appropriate phase space is an adiabatic invariant. Observe 
that the product of the amplitudes of A 4  and A E  as obtained above varies 
as 1/r. That is, the area of the A+AE phase space ellipse is 

(2.73) 

where a circumflex denotes an amplitude. 
If, on the other hand, we use excursion of* time of passage, A t ,  rather than 

excursion of phase of passage, A 4 ,  then A 4  = wrf A t  and in A E-At  coordi- 
nates the area becomes 

A TAB 

wrfr 
T ~ ? ~ ~  = -, (2.74) 

which is a constant. Of course E and t are well known to be a canonically 
conjugate pair. 

The area in phase space which contains the particles of a bunch is termed 
the longitudinal ernittance. It is to be hoped that this emittance is smaller 
than the area of the entire stable region. In AE-At coordinates, for a bucket 
with 4s = 0 or 180", the area of the bucket is 

(2.75) 

As noted earlier, such a bucket is referred to as a stationary bucket, since the 
ideal particle is not accelerated in this case. This value of 4s might be 
chosen, for example, at the injection level of a circular accelerator (+s = 0 if 
below transition), or at the maximum energy = 180" if above transition). 
In such a bucket, if A$ is the maximum extent of the presumed small 
oscillations of A 4 ,  then the beam will have a longitudinal emittance 

(2.76) 

When the synchronous phase is neither zero nor 180", the bucket area can be 
obtained numerically. Figure 2.21 shows how the bucket area varies with I$~.  

In these last few pages, we have made frequent use of a requirement that 
the parameters of the system vary sufficiently slowly that adiabaticity prevails. 
At transition, for example, our expressions would tell us that the synchrotron 
oscillation frequency goes to zero, the amplitude of the phase oscillation goes 
to zero, and the energy excursions go to infinity. This, of course, does not 
happen; many accelerators indeed cross transition. The transition region 
requires special treatment, and we will turn to that in the next subsection. 
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Figure 2.21. Bucket area as a function of 4' relative to the area of a stationary bucket. 

2.2.3 Transition Crossing 

We begin this treatment by rewriting Equation 2.61 for a circular accelerator. 
We note that the angular frequency of the RF system is w d  = hu/R, where h 
is the harmonic number and R is the circumference divided by 27r, and that 
ur = 21rR. Then, we obtain 

Let's suppose that we cross transition at t = 0 in such a way that 

d(q /E , ) /d t  = k ,  a constant, and 
eVlcos +,I = constant. 

Naturally, this implies that the synchronous phase jump occurs precisely at 
transition. Then Equation 2.77 becomes 

t A 4 = 0 .  (2.78) 
d2A+ 1 dA# khc2eV cos 4, ----- 

dt2  t dt ( 2 r R 2  

Under our two assumptions above, this equation of motion is exact. We 
expect its solutions to match at  large t the forms of the preceeding subsec- 
tion. If we cross transition holding dE,/dt constant, our Equation 2.78 
remains a good approximation. 
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Consider the regimes I > 0 and t < 0 separately. For t > 0, we have 
cos 4s < 0 and so 

t A 4 = 0 ,  (2.79) 
d2A4 1 d A 4  + ( khc2;P'z 4sl - - -- 

dt2  t dt 

whereas for t < 0, we have cos tPs > 0, and if we define t - =  -t,  then 

We see that the two equations are formally identical. Our equation is a 
special case of the general form 

u = 0, (2.81) 
u2 - u2g2 

U" + - 
Z Z 2  

where u = u ( z )  and u' = d u / d z ,  and has solutions 

u( z )  = z"J,,( 4 z g ) ,  

u( z)  = zaN,,( 4 z g ) ,  

(2.82) 

(2.83) 

where I,, and Nu are Bessel and Neumann functions of order u respectively.' 
3 For our special case, u = 1, g = :, u = 5 ,  and 

4 h c W  lcos& (k 
9 X 27R2 4 =  

Under our assumptions, the solution is 

(2.84) 

(2.85) 

where A and B are constants of integration. 

'See, for example, 1. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and Products, 
Academic Press, New York, 1980, Equation 8.491-3. 
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We should check that our solution has the proper asymptotic limits as 
t + fa. The asymptotic limits of the Bessel functions are 

It is to be hoped that the results of the previous subsection will appear. To 
avoid a proliferation of absolute value signs, we neglect them with the 
understanding that t is a positive quantity in what follows. The amplitude 
becomes 

which indeed agrees with Equation 2.69 when applied to a synchrotron. The 
phase of the oscillation should reduce to the integral of the synchrotron 
oscillation frequency over time. That is, we should be able to make the 
identification 

4t ’I2 = /as dr,  (2.89) 

implying that 

and indeed, inserting the expression for q, we find that we have R, as given 
by Equation 2.50 when applied to a synchrotron. 

Next we look at Aq5 at transition ( t  = 0). The limiting forms of the Bessel 
functions when the arguments approach zero are 

So one of the terms goes to zero: 

(2.91) 

( 2.92) 

(2.93) 
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But the second term remains finite: 

and so our solution for Ad at transition is 

( 2.95) 

Now we must examine the corresponding behavior for A E, or more conve- 
niently, T A E. Since 

27rR2 1 dA4 
T A E =  --- 

hc2 v/E, dt ' (2.96) 

we will evaluate the derivative of our solution for A&. We obtain 

By using the identity 

( 2.99) 

and the like form for the Neumann function, we find that 

We leave it to the reader to show that this solution approaches the correct 
asymptotic limit as t + do; in particular, the amplitude of T A E  varies as 
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(E,/77)'/4, as obtained earlier. The limiting case for t + 0 entails a little 
more algebra. One will find that 

(2.102) 

If we recognize that r( 5) = ($)I-( i), then the third and fourth terms cancel. 
In Equation 2.96 the quantity q / E ,  in the denominator is proportional to 

I. Hence, when multiplied by our expression for dA4/dt, the second term 
will vanish for t approaching zero. The first term, however, will remain and 
becomes 

21/3A( 2 R ~ )  2/3 
T A E ( O )  = 

h c 2 r (  3 )  k (2.104) 

These expressions for the phase and energy deviations at transition tell us 
that though a particular particle may reach A +  = 0 at transition due to its 
initial conditions, the maximum values for A+ and A E  for an ensemble 
of particles are not zero and infinity, respectively. Consider an ensemble of 
particles distributed along a common ellipse in longitudinal phase space in 
the adiabatic limit. For this ensemble, each particle will have different initial 
conditions characterized by different values of A and B. But, for all particles, 
A2 + B 2  will have the same value. The maximum value of A E at transition 
will occur for the particle which has B = 0. Note that A for this particular 
particle characterizes the amplitude of the energy oscillation for large values 
of I as well. Therefore, we may compare the maximum energy excursion at 
transition with the maximum energy excursion at large t .  To do so, we must 
write out T A E for large t explicitly. We obtain 

[ -A sin eZl3 + B cos e2/3] , 
2 4hc2eVlcos 4 J E S  

9 x 2trR2k21771 

3rR2 
r A E =  - 

hc [ 
(2.105) 

where 

For completeness, 

(2.106) 

[ A  cos 6213 + E sin O,,,]. (2.107) 
9 X 2rR21q1 

4hc2eV lcos 4,1Esk2 
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Comparing A for the particle of interest, we get 

(2.108) 

where (7 A E ) i  and (7 A E ) ,  are the initial value of 7 A E and its value at 
transition, respectively, and 

(2.109) 
4hc2eV lcos4,lES 

9 x 2.rrR2k217 

If evaluated at transition, the constant k can be expressed as 

2eV sin 4, 
k =  

d E , 2  * 

(2.110) 

(2.111) 

The meaningful quantities to compare are not necessarily the T A E ' s ,  but 
rather the fractional energy differences A E / E  at the two times, because it is 
these fractional energy differences that relate directly to aperture demand. 
With this change, in combination with the above results, 

In this expression, E ,  = mc2 is the rest energy of the particle, and the 
voltage V and synchronous phase 4s are to be evaluated at transition. 

Since A E / E ,  does not become infinite, how big does it get? Let's put in 
some numbers corresponding to the Main Ring at Fermilab, which crosses 
transition. Our model with its constant time derivative of q / E ,  does not 
correspond to the true operating cycle of that accelerator, but here we are 
only interested in an order of magnitude estimate. We take h = 1113, 
4s = 45", yI = 18, eV = 1 MeV, Ei = 9 GeV and obtain 

-- - 1.11 
A 4 / E t  
A E i / E i  

(2.1 13) 

That is, the maximum energy spread at transition is only 10% larger than the 
energy spread at injection under these assumptions. 

We conclude with an observation about one of the difficulties in crossing 
transition. Far from transition, the beam is relatively forgiving of errors in the 
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acceleration frequency, because so long as those errors are not too large, the 
beam will simply move to a new equilibrium radius. In the vicinity of 
transition, however, the beam is completely unforgiving of frequency errors. 
Since there is no synchrotron oscillation frequency, the wrong frequency 
could drive the beam into the vacuum chamber walls. Spically feedback 
systems are employed to match the acceleration system to the actual beam 
frequency. 

2.3 THE NEED FOR TRANSVERSE FOCUSING 

We have shown how a radiofrequency electromagnetic field can be used to 
accelerate charged particles in such a way that stable oscillations about the 
design energy will be maintained. However, if these were the only fields 
acting on the particles, motion in at least one direction transverse to the 
general direction of motion necessarily would be unstable. To see this, 
consider the radiofrequency (RF) wave in a linac structure as shown in 
Figure 2.22. Here, we plot the R F  voltage as a function of time as seen at a 
particular longitudinal location z. 

The synchronous particle arrives at z, when the voltage is at a value 
V sin 4s. Particles just behind the synchronous particle arrive late and there- 
fore see a higher accelerating field, and we have shown that this results in 
stable longitudinal motion for a linac or for a synchrotron below the transi- 
tion energy. If we now look at the electric field of the same wave as a 
function of z instead of t, the picture becomes that in Figure 2.23. 

Upon transforming to the rest frame of the synchronous particle, the wave 
would appear stationary; the magnetic field would be zero and the z-compo- 
nent of the electric field would remain unchanged. In this frame the z-com- 
ponent of the 5lectric field will still have a negative gradient: aE,/az < 0. 
But, since V * E = 0 in this region (neglecting the fields due to the particles 
themselves), then there must be at least one transverse component of the 

Figure 2.22. RF voltage as a function of time as seen ot a particular longitudinal location z. 
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Figure 2.23. longitudinal electric field as a function of longitudinal location I, 0s seen at a 
particular time 1. 

electric field which has a positive gradient. In fact, if the geometry of the 
accelerating station is cylindrically symmetric, then 

dE, dE, - + - = o ,  
ar az 

or 

aEr - > 0. 
d r  

(2.1 14) 

(2.115) 

Hence, the radial forces that the particles experience will be outward and 
increasing with radial position; the resulting transverse motion will be unsta- 
ble. (Upon transforming back to the lab frame, one would find that the effect 
decreases with increasing energy, due to the magnetic forces. At highly 
relativistic energies, the net force would be negligible.) 

Though the effect just described is most relevant in a proton linear 
accelerator, similar arguments will be made to show that circular accelerators 
could not operate without transverse focusing (even if they were not acceler- 
ating!). Other effects, such as the space charge forces between individual 
particles, forces on the particles due to image charges in the vacuum 
chamber, and so forth, will contribute to the transverse behavior of the 
particles. The motion in the transverse degrees of freedom and its stability 
will be the subject of the next chapter. 

PROBLEMS 

1. A betatron has accelerated electrons to an energy of 300 MeV. If the 
orbit radius was 1 meter, calculate the field at the orbit and the flux 
through the orbit at 300 MeV. Given the circumstance that magnet iron 
saturates at about 2 tesla, estimate the cross section of the magnet yoke. 
Comment on the feasibility of a 10 GeV betatron. 
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2. The skin depth S of an AC current of angular frequency w traveling on a 
conductor of bulk resistivity p is ( 2 ~ / p ~ o ) ~ / ~ .  Show that the surface 
resistivity is given by 

*CLOP 1/2 
P s = ( T )  * 

The unit of surface resistivity is the ohm, but it is frequently stated in the 
engaging unit of “ohms per square.” Calculate the surface resistivity for 
copper at f = 400 MHz. 

3. Find the ratio R/L of a pillbox cavity for which the shunt impedance R, 
of a pillbox cavity is a maximum. If the shunt impedance per unit length 
is defined by rs = R, /L ,  find the ratio of R / L  for which rs is a 
maximum. 

4. For many years, surface breakdown fields under cw conditions have been 
estimated with the empirical Kilpatrick criterion, established when un- 
trapped oil diffusion vacuum pumps were used. The criterion can be 
written in the form 

f = 1.64E,’ exp( - 8 . 5 / E k ) .  

Here, the frequency f is in MHz, and the electric field E k ,  is in MV/m. 
Nowadays, it is reasonable to design for fields above the Kilpatrick limit 
by close to a factor of two. Using a maximum surface field of 1.7Ek, find 
the energy gain possible for the pillbox cavity treated in the text. If a 
synchrotron is to produce acceleration at the rate of 3 MeV per turn, 
how many such cavities would be required, and what would be their total 
power dissipation? 

5. From the first integral of the equation of motion, show that the range of 
stable phases is from t$l - T - 4, to the solution & of the equation 

cos +2 + +*sin 4s = -cos +s + (T - +,)sin 4,. 

6. Using a graphics terminal, produce turn by turn plots in AE/E,-+ 
coordinates from the original difference equations, and compare with the 
mappings shown from the solutions of the differential equations. 

7. A set of acceleration parameters for a large synchrotron might run as 
follows. A ring with a circumference of 87 km accelerates protons from 2 
to 20 TeV in 1500 seconds. The acceleration system has a “voltage” 
amplitude of 15 MV and operates at 360 MHz. Calculate the syn- 
chronous phase and the frequency of small amplitude phase oscillations, 
assuming y * y,. Use y, = 105. 
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8. Derive the expression for the area of a stationary bucket. Evaluate the 
area for a ring with a circumference of 27r km operating with h = 1113, 
for E, = 150 GeV and V = 1 MV. Here, use y, = 18. 

9. Derive the expression for the longitudinal emittance of a beam with a 
maximum phase oscillation amplitude d,,, within a stationary bucket. Use 
this expression to estimate the longitudinal emittance of a bunch with 
4,,, = 0.5 in the synchrotron of the preceding problem. 

10. Consider a beam of particles with maximum phase deviation given by 4,,, 
and maximum momentum deviation given by (Ap/ps), , , .  Show how 
(Ap/pS) , , ,  varies with energy when (a) y 4(: y f ,  and when (b) y B yf. 

11. For a stationary bucket, show that the ratio of the synchrotron oscillation 
frequency for a particle with phase amplitude +,,, to that of a particle 
with small phase amplitude is 

where K is the complete elliptic integral of the first kind: 

12. This is a digression, but it’s interesting to note the similarity between the 
difference equations for synchrotron oscillations and a mapping that is 
frequently used in mathematical studies in nonlinear dynamics. By a 
suitable change of variables, transform the difference equations for a 
stationary bucket into the form 

% + I  = 8, + m + l ’  

k 
27r 

r , , ,  = r,, - - s i n 2 d , , ,  

for 0 2 r and 8 I 1, and with the understanding that as 8 and r are 
incremented only the fractional parts are retained. With the aid of a 
graphics terminal, exhibit the motion in 8, r for k = 0.1. You should see 
behavior familiar from the synchrotron motion plots. Now raise k to 0.9 
and start a particle at, for example, r = 0.27 and 8 = 0. The plot quickly 
develops an unpredictable and chaotic character. Fortunately, the equiva- 
lent acceleration system parameters are far from those actually used in 
synchrotrons. 
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13. Calculate the maximum relative energy deviation A E / E ,  which can be 
contained in a stationary bucket at injection into the SSC collider. Use an 
injection energy of 2 TeV, and RF voltage of 8 MV, harmonic number of 
lo5, and a transition gamma of 105. 

14. In particle-antiparticle synchroton colliders, the two beams usually share 
a single magnet ring. One may wish to manipulate the energy of one 
beam independently of the other, although both beams pass through the 
same radiofrequency accelerating system. Propose a method of achieving 
this goal. Assume that you have freedom to install as many RF stations as 
you wish at locations of your choice. 



CHAPTER R 
Transverse Linear 
Motion 

In the previous chapter we concentrated on acceleration and energy stability 
and found a stability principle that causes particles initially near each other 
in energy to remain so in the presence of oscillatory accelerating fields. We 
referred to the associated energy oscillations as motion in the longitudinal 
degree of freedom. Reasonably enough, the other two degrees of freedom 
are termed transverse, as indicated in Figure 3.1. 

One of our tasks in this chapter is to investigate transverse stability. Do 
particles of the same energy, but with slightly different transverse coordi- 
nates, either in position or direction, remain near each other in the course of 
their motion in the accelerator? We will find a criterion for such stability and 
discuss the solution of the associated equations of motion. We will show that, 
in general, stability consists in bounded oscillatory motion about the design 
trajectory. This motion is termed a betatron oscillation for historical reasons. 
We will see that the transverse oscillation frequencies are much greater than 
the typical frequency of phase oscillations, thus allowing us to treat the 
longitudinal degree of freedom independently. We will thus have identified 
stability principles for all three degrees of freedom which are passive in the 
sense that, for our ideal accelerator, they do not rely on feedback mecha- 
nisms. 

In a linear accelerator, particles of different momenta follow the same 
ideal trajectory. In a circular accelerator this is not the case, and we will 
exhibit the closed orbits of particles differing in momenta from that of the 
ideal particle. Thus, for this variety of accelerator, there is a transverse 
attribute to phase oscillations. 

We can choose our ideal accelerator such that the transverse restoring 
forces are linear in the transverse coordinates. For high energy accelerators, 
the restoring forces and the bending forces in circular accelerators are 
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Transverse plane 

I 

Figure 3.1. Characterization of transverse and longitudinal degrees-of-freedom of particle 
motion. 

produced by magnetic rather than electric fields. For a nonrelativistic parti- 
cle, in the low speed limit, electrostatic fields are more effective. But for a 
particle traveling near the speed of light, a magnetic field of 1 T and an 
electric field of 300 MV/m would each provide the same transverse deflect- 
ing force. The former field strength is typical of magnetic devices, while the 
latter is outside our present reach. 

With our ideal linear restoring forces, the transverse degrees of freedom 
are also independent of one another; however, the two transverse frequen- 
cies are comparable and hence certain imperfections in the restoring fields 
can couple the motion. This topic of transverse coupled motion is left to a 
separate chapter. We conclude this chapter with an introduction to perturba- 
tions to the ideal linear magnetic fields which cause steering and focusing 
errors. 

3.1 STABILITY OF TRANSVERSE OSCILLATIONS 

The most basic magnetic field configuration-a uniform field- produces a 
form of focusing. Consider a particle traveling along a circular orbit in such a 

Horizontal 
I deflection 

1 

Vertical deflection 

( 6 )  

Flgum 3.2. Charged particle motion in uniform magnetic field when perturbed by a deflection 
(a) perpendicular to the field lines, and (b) parallel to the field lines. 
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field. Suppose the particle receives an angular deflection in the plane 
perpendicular to the magnetic field. The resulting orbit will be just another 
circle of the same radius as the first but with a different center, as illustrated 
in Figure 3.2. One can say that the second orbit is performing a stable 
oscillation about the first. Unfortunately, if the deflection has a component 
along the magnetic field lines, the particle will subsequently spiral away 
without limit-there is no focusing in this degree of freedom. 

3.1.1 Weak Focusing 

The situation of Figure 3.2 can be rectified by designing the source of the 
magnetic field so that the field lines bend outward as shown in Figure 3.3. 
Particles above the midplane will experience a force downward; those below 
will be forced upward. However, along the horizontal plane the vertical 
component of the magnetic field decreases with increasing radius, since the 
field lines get farther apart. Thus vertical focusing is achieved at the expense 
of radial focusing, and so there is a limit to the effectiveness of the focusing 
that can be achieved in both transverse degrees of freedom simultaneously. 

Suppose the vertical component of the field along the midplane is given by 

Then, if n = 0, we would have a uniform field and no vertical focusing: 
just the situation discussed earlier. If n > 1, the field could not provide the 
necessary centripetal force to keep the particles moving in a circular path of 
constant radius. Hence, for stability, the field index n is constrained to lie 
between the values of 0 and 1. 

This form of focusing is called weak focusing. It has the disadvantage that 
as the design energy, and hence the circumference of the orbit, is increased, 
so also does the required aperture increase for a given angular deflection. 
Because the focusing is weak, the radial oscillations are essentially those 
depicted in Figure 3.2(a); the maximum radial displacement of a deflected 
particle is directly proportional to the radius of the machine. The scale of the 
magnetic components of a synchrotron, for example, would become unrea- 
sonably large and costly. This circumstance led to the invention of alternating 
gradient focusing (also known as strong focusing) in 1952. This method is the 

Figure 3.3. Cross section of weak focusing circular accelerator. 
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one most commonly used in accelerators today and we will consider its 
properties for the remainder of this chapter. 

3.1.2 Strong Focusing 

One would like the restoring force on a particle displaced from the design 
trajectory to be as strong as possible. The weak focusing scheme described 
above is limited. In the absence of current density, field gradients that 
provide restoring forces in both transvers5 degrees of freedom simultane- 
ously are not possible. The condition a X B = 0 leads to 

where x and y are the two transverse coordinates. For small displacements, 
x and y, from the design trajectory, the field may be written as 

aBY 
ax ax 

B,(O,O) + - X  + 8 4  
aY 

Bx(O,O) + - y  + 

where f and j are unit vectors in the x and y directions, respectively. The 
last term in each component produces a force at right angles to the displace- 
ment and hence cannot represent a restoring force. The remaining coeffi- 
cients of x and y are equal, according to the curl condition, Equation 3.2. 
Then the Lorentz force is focusing in one coordinate and defocusing in the 
other. The standard magnet that produces this focusing character is the 
quadrupole. 

The focal length of a thin lens quadrupole magnet can be obtained easily. 
We imagine a charged particle moving through the quadrupole at a distance 
x from the magnet’s axis of symmetry. The thin lens approximation implies 
that the length of the magnet, I ,  is short enough that the displacement x is 
unaltered as the particle passes through the magnet and hence the magnetic 
field experienced by the particle, B y  = (aB , /ax )x ,  is constant along the 
particle trajectory. In this pararial approximation, the angle is equal to the 
slope of the particle’s trajectory, x’ = dx/ds (where s is distance measured 
along the ideal trajectory). As depicted in Figure 3.4, the slope of the 
particle’s transverse trajectory thus will be altered by an amount 

where p is the radius of curvature of the trajectory through the magnetic field 
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Figure 3.4. Deflection of particle by thin 
magnetic element. 

and B' = d B , / d x  is the gradient of the quadrupole magnet, and where use 
has been made of Equation 2.1. 

Since a ray parallel to the optic axis will be bent toward the focal point of 
the lens, as depicted in Figure 3.5, the change in slope is simply Ax' = - x / f ,  
where f is the focal length of the quadrupole lens. The focal length is thus 
given by 

1 eB'1 _ -  - -  
f P  

The ratio of momentum to charge, p / e ,  is often called the magnetic 
rigidity and written (Bp); we will follow this latter convention in much of the 
text. Remember that (Bp)  is just a single symbol. In the MKS system of units, 
(Bp)  can be calculated from 

tesla-meters. 

Ax' 

(3.7) 

Figun 3.5. Ray initially parallel to the optical axis is bent by a convex lens causing it to pass 
through its focal point a distance f away. 
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1 

I 
- -  
f 

We can therefore express our focal length relationship by 

L 
1 + -  L 

(3.11) 
f 

1 0 1 L 1 0  
- - 

1 L L .  -- 1 0 1  - 1  f 2  1-7 
, , f  I \ 

As mentioned earlier, quadrupole lenses focus in one plane and defocus in 
the other. Obviously, an accelerator cannot be made up of magnets that focus 
only in one plane. But we can recall from geometrical optics that a combina- 
tion of equal strength convex and concave lenses will produce a net focusing. 
To see this, we recast Equation 3.5 in matrix form: 

For a concave lens, the focal length is of opposite sign. In this language, the 
progress of a ray through the interlens space of length L is given by 

(3.10) 

Therefore, the matrix corresponding to transport of the ray through first a 
concave lens, then a drift, and then a convex lens may be written as 

At least in the case where L is small compared to f ,  it is clear that there is 
net focusing; in this approximation the resulting matrix is that of a thin lens 
of net focal length f 2 / L  > 0. If the two lenses were interchanged, the net 
result would still be focusing. Hence a system of alternating gradient thin 
quadrupole magnets could, in principle, focus in both degrees of freedom at 
once. In fact, the focal length need not be large compared with the lens 
spacing for this to occur, which is the point of one of the problems at the end 
of the chapter. 

The above discussion suggests that one can focus in two degrees of 
freedom simultaneously using a system of magnetic elements whose gradients 
alternate in sign. The discussion was based on tracing the trajectories of 
particles through a single pass of a system of two lenses of alternating focal 
lengths. In modern accelerators, where particles must be transported through 
great distances, the stability of particle motion through repetitive encounters 



STABILIN OF TRANSVERSE OSCILLATIONS - 63 

with such structures must be studied. Below we develop a criterion for stable 
motion through an infinite number of passages through a focusing structure 
and apply the result to the thin lens alternating gradient system. The type of 
focusing achieved using alternating gradients is called strong focusing. As we 
shall see, strong focusing leads to beam sizes which are dependent upon the 
spacing of the lenses and their strengths, and independent of the scale of the 
accelerator. 

3.1.3 Stability Criterion 

In a synchrotron or long beam transport composed of alternately focusing 
and defocusing lenses, it is not obvious at the outset what relationships 
between lens strengths and spacing lead to stable oscillations as opposed to 
oscillations that grow in amplitude with time. The matrix language intro- 
duced in the preceding section can be used to establish a condition which 
distinguishes between these alternatives. 

The detailed description of the way in which magnets and intervening 
spaces are placed to form the accelerator is conventionally called the latrice. 
After having developed the matrices appropriate to the elements of the 
accelerator, the motion of a particle can be followed through the lattice. If a 
particle traverses a series of elements having matrices M I ,  M,,  . . . , M,,, then 
the input and output conditions through these elements are related by the 
matrix 

M = M,, * * .  M , M , .  

If the sequence of elementary matrices above is encountered repetitively, as 
is the case, for instance, if they represent the components all the way around 
a circular accelerator, then we can use this matrix to enquire into the stability 
of transverse oscillations. 

For an oscillation to be stable, the quantity 

(3.12) 

where M is the matrix for one turn or repetition period, must remain finite 
for arbitrarily large n. Let Vl,  V, be the two eigenvectors of M, correspond- 
ing to the eigenvalues A,,  A,. Any initial condition can be expressed in terms 
of v, , v, : 

($) = AV, + BV,, 
i n  

(3.13) 

where A and B are constants. Propagation for n periods is then represented 
by 

(3.14) 
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and so the requirement for stability is equivalent to the requirement that A? 
and A; not grow with n. 

But note that M is the product of matrices each of which has determinant 
equal to unity, so M itself is unimodular. The eigenvalues of M are thus 
reciprocals of each other: 

A, = 1/Al, (3.15) 

and we can in general write 

where p is a complex number. For stability, we see that p must be real. 
Now, solve the eigenvalue equation for M. Setting 

the eigenvalue equation 

det( M - A l )  = 0 (3.16) 

becomes 

(ad - bc) - ( a  + d)A + A2 = 0. (3.17) 

Noting that ad - bc = det M = 1 and rearranging gives 

A - ' + A = a + d = T r M ,  (3.18) 

where T r M  stands for the trace of M. Finally, expressing A in terms of 1 
gives 

e i p  + e - i p  = 2 c o s p  = T r M ,  (3.19) 

and the stability condition is just 

-1 I i T r M  s 1. (3.20) 

Note that the stability condition is independent of the starting point, since 
the trace of a product of matrices is invariant under cyclic permutation of the 
matrices. 

The significance of the angle p will appear in the next section, where it 
will be identified as the phase advance of the transverse oscillation through 
the interval contained in M. 
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As an example, consider a lattice which consists only of equally spaced 
focusing and defocusing lenses, each of which we will assume to be thin. 
(This is referred to as a FODO lattice.) If the order is first the focusing lens, 
then a drift of length L, third a defocusing lens, and finally another drift of 
length L, the matrix is 

I 
L2 

f f 

2 l - - - ( ; )  L 2 L + - - \  

M =  
L L .  

1 + -  
\ f 2  f )  

(3.21) 

Application of the stability condition gives 

- l s l - - (  1 L 2  ) S l ,  

2 7  
or, simplifying, 

(3.22) 

So we obtain the remarkably simple result that the motion is stable provided 
the focal length is greater than half the lens spacing. 
Now we are in a position to suggest one of the significant advantages of 

strong focusing. In Figure 3.6, we sketch an oscillation of a particle traversing 
a sequence of focusing and defocusing lenses for the case that the focal 
length is half the lens spacing. We see that the wavelength of an oscillation is 
just four times the lens spacing and therefore is unrelated to the size of the 
accelerator. The alternating gradient principle enables us to decouple the 
transverse aperture requirement from the size (hence, energy) of the acceler- 
ator. Even though for simplicity of the illustration we have made this 

' f  

Figure 3.6. Example of a particle oscillation through a system of lenses where f = L / 2. The 
maximum displacement is independent of the size of the accelerator. 
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argument at the limit of stability, it of course remains true for focal lengths 
within the stability bounds. 

3.2 EQUATION OF MOTION 

We are dangerously close to being able to write down the differential 
equations of motion for transverse oscillations. Consider a particle passing 
through a magnetic field with gradient B’ = aB,/dx over a distance As. 
Recalling Equation 3.5, we see that the slope of a particle’s trajectory, 
X I  = &/h, changes by an amount Ax’ = - [ B ‘ A s / ( B p ) ] x .  Thus, 

(3.23) 

Taking the limit as As + 0, we obtain the second order differential equation 

(3.24) 

If there were a nonzero magnetic field on the design trajectory, as in a 
bending magnet, then Equation 3.24 would represent the difference between 
the slope changes of the particle in question and that of the ideal particle. 
While we have obtained the essentials of the equation of motion in just two 
steps, we have an obligation to the reader to provide a more rigorous 
derivation, which we now proceed to do. 

Let us limit ourselves to the situations in which the design trajectory is a 
straight line or a single planar closed curve. By implication, we are develop- 
ing the equation of motion for betatron oscillations in a linac or synchrotron. 

Suppose that the geometry is as sketched in Figure 3.7. Locally, the design 
trajectory (reference orbit) has curvature p. The path length along this curve 
is s. Ultimately, s will be the independent variable. At any point along the 
reference orbit, we can define three unit vzctors: s^,i?,g. The position of a 
particle can then be expressed as a vector R in the form 

-b 

R = m ^ + y j ,  (3.25) 

where r = p + x. We are interested in the behavior of the deviations x and y 
from the reference orbit. 

The equation of motion is 

dp’ -t 

- = eu’x B ,  
dt 

(3.26) 
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Figure 3.7. Coordinate system for development of equation of motion. 

and we assume that there are radial y d  vertical components of 6-we will 
ignore the possible &component of B for now. So the cross product on the 
right hand side becomes 

If we ignore the radiation created by an accelerating charge for now, then the 
energy and hence the Lorentz factor y do not change in a static magnetic 
field. (Synchrotron radiation due to accelerating charges will be discussed in 
a later chapter.) The left hand side thus becomes 

dp' d A -+ 
- =  -ymR = ymR, 
dt dt 

and so 

Now we must evaluate R' in these coordinates: 

l T = L t + y j ,  

R' = 6 + ti + y j .  

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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82 - 81 

P 

Figure 3.8. Time rote of change of unit vector x*. 

We have to include the &term in the above because if there is motion in the 
s-direction, the unit vector f will have a derivative. From Figure 3.8 we see 
that 

P = h i ,  (3.32) 

where i = uJr. Therefore, 

Z= 8 + r i j  + j j ,  (3.33) 

and differentiating again, 

The new quantity in the above is s*. By the same argument as used to obtain 
3, we have 

s ^ =  -e;, (3.35) 

and so 

Thus, in the x^-direction the equation of motion is 

(3.36) 

(3.37) 
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Reference Particle 
orbit trajectory 

Figure 3.9. Comparison of reference orbit path length ds and particle path length v, df. 

Since u, K us and u, e us, to a very good approximation the total momen- 
tum I, of the particle is ymo,. So 

Now, change to s as the independent variable. Then 

d d s d  
dt dt ds ' 
_ -  - -- 

and from Figure 3.9 we see that 

Hence, assuming d 2s/dt  = 0, 

2 d 2  
ds2. 

Replacing r with p + x ,  the equation of motion becomes 

(3.38) 

(3.39) 

(3 -40) 

(3.41) 

(3.42) 
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where ( B p )  = p / e .  A similar treatment yields for the equation of motion in 
the y-direction 

(3.43) 

In general, these equations will be nonlinear. But let us restrict ourselves 
to fields that are linear functions of x and y, and keep only the lowest order 
terms in x and y. Later, we will treat the higher order terms as perturbations 
of the basic linear motion that ke consider here. 

We may use the field expansion introduced in Section 3.1.1, namely 

a 4  as, 
a Y  ax 

B, J B,(O,O) + -y + - x ,  

aBY as, B y  J B,(O,O) + - X  + - y .  
ax JY 

(3.44) 

(3.45) 

Since we are considering a planar accelerator, B,(O,O) = 0. We also do not 
wish the motion to be coupled in the basic design, and hence the coefficients 
d B y / a y  and aB,/ax are assumed to be zero. Finally, the equations of motion 
become 

d2y 1 asy($) 
Y ---- 

ds2 ( ~ p )  ax 

= 0, (3.46) 

= 0, (3.47) 

where use of the curl condition has been made to eliminate B,. 
These equations resemble Equation 3.24 closely; the equation in x differs 

only in the addition of a “centripetal” term originating in our choice of 
curvilinear coordinates. [This term is the origin of the focusing in x as shown 
in Figure 3.2(a).] For large accelerators the centripetal term is usually small 
in comparison with the gradient term. The equations of motion above are 
both of the form 

x” + K ( s ) x  = 0 (3.48) 

and so differ from a simple harmonic oscillator only in that the “spring 
constant” K is a function of position s. 

We will discuss two methods of solution. First we note that within a single 
magnetic component of the accelerator, K is normally a constant by design, 
as depicted in Figure 3.10. So within each component, we can use harmonic 
oscillator solutions, piecing them together at the interfaces. Second, we will 
examine a closed form solution using the properties of Hill’s equation. 
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1 

. (3.51) 

sinh( ml) cosh( ml) I \ X' r in 

Figure 3.10. The spring constant K varies with position, but is normally constant within 
individual components of the accelerator. 

3.2.1 Piecewise Method of Solution 

In the same spirit as the geometrical optics argument of Section 3.1.2, we 
may describe the motion of a particle through an element of the accelerator 
by a 2 X 2 matrix. There are only three cases to consider: K vanishes, K is 
positive, and K is negative. The matrix for the first is the same as that for a 
drift space L between lenses in our earlier argument: 

(3.49) 

In the y (vertical) plane, this corresponds either to a drift space between 
magnets or to propagation through a magnet with constant B y .  In the x 
(horizontal) plane, this corresponds either to a drift space between magnets 
or to a situation in which the centripetal term (l/p2) is exactIy balanced by 
the field gradient. The latter is an unusual circumstance. Frequently, for 
other than exact calculation, the radius of curvature of a high energy 
accelerator is so large that the centripetal term may be neglected. 

For K > 0 over a distance I ,  the equation of motion is just that of a simple 
harmonic oscillator, so in matrix form the solution is 

while for K < 0, the corresponding result is 



72 TRANSVERSE LINEAR MOTION 

Note that the thin lens limit emerges from the last two forms if one keeps 
Kl finite as 1 -P 0. In the limit, Kl tends to the reciprocal of the focal length 
f ,  as can be seen by comparison with the matrix for a thin lens in Equation 
3.9. 

Using the matrices above, the motion of a particle can be followed 
through an arrangement of accelerator elements. If a particle traverses a 
series of elements having matrices M,, M2,. . . , M,,, then as stated earlier the 
input and output conditions through these elements are related by the matrix 

M = M,, . * *  M2M,. 

3.2.2 Closed Form Solution 

The second method of solution is based on the observation that our equation 
of motion is a form of Hill’s equation-a differential equation studied 
extensively in the nineteenth century-and that general solutions can be 
written for it that closely resemble simple harmonic oscillations. 

The equation of motion 

x” + K ( s ) x  = 0 (3.52) 

has the property that though the “spring constant” K is a function of the 
independent variable s, for an important class of accelerators K is periodic. 
That is, there is a distance C such that 

K ( s  + C )  = K ( s ) .  (3.53) 

The repeat distance of the hardware, C, may be as large as the circumference 
of a synchrotron or it may be less; in any event, we will take K to be a 
periodic function of position. The result of nineteenth century mathematics 
that we will use is that the general solution of the equation of motion can be 
expressed in the form 

x = Aw(s)cos[$(s) + S], (3.54) 

where A and S are the two constants of integration reflecting the initial 
conditions, and w(s)  can be required to be a periodic function with periodic- 
ity C. Note the similarity to the harmonic oscillator solution. For K every- 
where a positive constant, we would immediately write 

x =Acos[Jl(s)  + 61 ( 3  -55 )  

with t,h = a s ,  and A,S the constants of integration. When K becomes a 
periodic function of position, the solution will differ from that for the simple 
harmonic oscillator by a factor representing a spatially varying amplitude and 
a phase which no longer develops linearly with s. 
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Now we must find how w ( s )  and $(s) are to be determined. Substitution 
of the general solution into the differential equation gives 

x f f  + kk = A(2w’+‘ + w+”)sin( + + 6)  

+A( W” - wt,bf2 + KW)COS( + + 6) = 0. (3.56) 

Since we want the functions w and $ to be independent of S (which depends 
upon the particular motion), we will require that the coefficients of the sine 
and cosine terms individually vanish. Multiplying the sine term by w we have 

2ww’$’ + w2$” = (w2$’)l = 0, (3.57) 

or 

(3.58) 

where k is an arbitrary constant of integration. 

yields the differential equation that w must satisfy: 
Using this relationship between $ and w, the coefficient of the cosine term 

w3( w’I + K w )  = k2. (3.59) 

Strictly speaking, w(s)  need not be periodic; it only has to be a solution of 
Equation 3.59. But if the motion we are trying to describe is that of a particle 
traveling through a periodic section of the accelerator, for instance through 
thousands of revolutions about a circular accelerator, it is much more useful 
to choose the unique periodic solution for w(s).  Hence we will restrict our 
attention for now to solutions of this equation with periodicity C. 

In the previous section, the matrix propagating a transverse oscillation 
(betatron oscillation) from one place to another in a lattice was found as a 
product of matrices representing basic components of the accelerator. We 
can also express the same matrix in terms of the parameters introduced in 
this section. If we rewrite Equation 3.55 as 

x = w (  s)( A,  cos + + A, sin +) (3.60) 

and 

A,w‘ + f!qCOS+ + ( A2wt - - sin +, (3.61) 
W W 
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then for the initial conditions x o ,  xb, at s = so, the constants A ,  and A, are 

X 
A ,  = 2 

W 

xbw - x o w l  
k 

A ,  = 

(3.62) 

(3.63) 

Now by requiring that the function w be periodic over the distance C, we 
may write down the matrix for propagation from so to so + C. The resulting 
matrix equation describing the motion is 

(3.64) 

The phase of the particle’s oscillation advances through the repeat period by 
an amount 

(3.65) 

Because w(s) is periodic, this integral is independent of the choice of so. 

3.2.3 Courant-Snyder Parameters 

Inspection of the matrix in Equation 3.64 reveals that the function w2(s> and 
its derivative both scale with the arbitrary constant k .  Since the motion of the 
particle, and in particular the advance of the phase of its motion, is what’s 
observed, choosing a different value of k must simply lead to a different 
value for the function w2(s), scaled by a factor of k .  Since w 2 ( s )  and its 
derivative are the more fundamental quantities of the problem, it is custom- 
ary to define new variables 

(3.66) 

(3.67) 

(3.68) 
1 + a 2  

- y =  - 
B ’  
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and rewrite the equation for one passage through the repeat period as 

cos A &  + a sin A& P sin Al(lc ( I t )  = ( -ysin AJlC cos AI,bc - a sin AI,bc s,+c 

Here, the phase advance is 

(3.70) 

and P ( s )  may be interpreted as the local wavelength of the oscillation divided 
by 27r. The quantities a, p,  and y are usually referred to as Courant-Snyder 
parameters collectively; from now on, the function p will be referred to as 
the amplitude function. 

So the general solution to the equation of motion can be written as 

(3.71) 

where the constant k has been absorbed into the constant A.  From Equation 
3.59, the amplitude function p ( s )  must satisfy the differential equation 

2Pp” - Pt2 + 4P2K = 4. (3.72) 

It is often easier to remember this equation when written in terms of the 
Courant-Snyder parameters: 

K P  = y + a’. (3.73) 

The matrix of Equation 3.69 is often written in a compact way as 

M = I cos AI,bc + J sin A$,-, (3.74) 

where 

Noting that J 2  = -I, where I is the identity 
Equation 3.74 in even more compact form: 

(3.75) 

matrix, one may also write 

(3  -76) 

The latter form often permits simplification of algebraic manipulations. 
Computation of the Courant-Snyder parameters may be performed by 

comparing the two ways of expressing the matrix through a repeat period. 
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Suppose that multiplying all the individual matrices of the repeat period gives 

M = ( Z  ;). (3.77) 

Equating the two versions of M, 

. (3.78) 
cos A+c + a sin A& p sin AJlC (: : ) = (  -ysinA+c cos A& - a sin A+c 

Then, first of all, 

C O S A + ~  = f ( u  + d) = f T r M .  (3.79) 

Comparison of this relation with the identical one satisfied by p in the 
stability discussion of Section 3.1.3 enables us to identify p as the phase 
advance through a repeat period. 

But 
p must be a positive quantity, so the sign of sin A+c is whatever the sign of 
the matrix element 6 happens to be. Then 

Knowing cos A+c gives us the magnitude but not the sign of sin 

b p = -  
sin AJlc ' 

and by subtraction of the diagonal elements 

U - d  
a =  

2 sin * 

(3.80) 

(3.81) 

Thus, we have the Courant-Snyder parameters at one point of the periodic 
lattice. But the same procedure works between any pair of corresponding 
points in the lattice, so one can find p ( s )  for all s. With determined at all 
points of the lattice, the particle motion from one point to another can be 
described by the matrix equation 

(3.82) 

We can arrive at an explicit representation of the matrix M ( s ,  + s2) in 
terms of the amplitude function through the use of Equations 3.60 and 3.61. 
Suppose x1 and x i  are the initial conditions at s = sl. Then the constants A ,  
and A, are 

X1 

W1 
A ,  = -, (3.83) 

x;w,  - x l w ;  
k A ,  = (3  -84) 
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Inserting these values for A, and A ,  into Equations 3.60 and 3.61 and 
rewriting in terms of the amplitude functions, the matrix M ( s ,  -, s,) may be 
written as 

1 ( $)‘/i(cos A$ + a, sin A$) 

1 /2 

cosA$ (2 )  (cos A$ - a, sinA$) 
1 + a1a2 a1 - a2 

( P 1 P 2  P2 
(3.85) 

Here, A$ is the phase advance from s, to 3,. 

mined via 
The phase advance between any two points now can be uniquely deter- 

(3.86) 

In particular, for a circular machine, the number of oscillations per turn, 

(3.87) 

is called the tune of the accelerator. Since P can be interpreted as an 
oscillation’s local wavelength divided by 27r, a sense of scale for the values of 
p is obtained. While the actual particle oscillations might have small ampli- 
tudes (e.g., millimeters), the amplitude function p should be expected to take 
on numerical values of the scale of the repeat period. This also tells us that 
the numerical value of the constant A describing a particle’s motion will be 
comparatively rather small. Note that A has dimensions of (length)’I2, and p 
has dimensions of length. 

It should be pointed out that the solution to the equation of motion, 
Equation 3.71, explicitly implies stable motion. The solution must also be 
able to describe unstable motion. Demonstration of how the amplitude 
function and phase advance are altered for the case of an unstable lattice is 
left to the problems at the end of the chapter. 

We have just gone through rather a lot of algebra to develop a way of 
representing a betatron oscillation that is at first sight a good deal more 
complicated than propagation using elementary matrices. In the thin lens 
approximation-not a bad approximation for large separated function syn- 
chrotrons-the betatron oscillation is after all just a sequence of straight line 
segments. We’ve managed to express these line segments in harmonic oscilla- 
tor language; presumably there is some benefit. We’ll try to illustrate the 
advantages as time goes on. Let us just point out that any oscillation can be 
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easily constructed once one has a tabulation of the Courant-Snyder parame- 
ters and the phase advance as a function of position. 

3.2.4 Emittance and Admittance 

Now we are in a position to approach the important questions of the space 
demanded by the beam and the space provided by the accelerator. We are 
still working in the context of a perfect accelerator-no field imperfections. 

In our solution for a betatron oscillation, 

the constant A can be expressed in terms of x and x r  by eliminating the 
trigonometric functions. Forming the combination 

a ( s ) x ( s )  + p ( s ) x ' ( s )  = - A m s i n [ + ( $ )  + S ] ,  (3.89) 

then squaring and summing Equations 3.88 and 3.89, we obtain 

A2 = y ( s ) x ( s ) 2  + 2a(s)x(s)x'(s) + p ( s ) x r ( s ) 2 .  (3.90) 

This Courant-Snyder invariant is analogous to the total energy of a harmonic 
oscillator. At any point in the accelerator, the invariant form describes an 
ellipse as depicted in Figure 3.11. 

For the case of a circular accelerator, each time that the particle passes a 
particular position in the ring, its betatron oscillation coordinates will appear 
as a point on the ellipse given by the amplitude function and its slope at that 
point, as sketched in Figure 3.12. 

For different locations through the lattice, the ellipses will have different 
shapes and orientations, but they will all have the same value of A. This 

Figure 3.1 1. Phase space ellipses along the design trajectory. 
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‘...- 

Figure 3.12. Phase space mapping from turn to turn in a circular accelerator. 

means that they all have the same area. For, consider the general equation of 
an ellipse: 

ax2 + 2 b ~ y  + cy2 = d .  (3.91) 

According to analytic geometry, the area of this ellipse is 

a d  

Gz7’ 

which in our case becomes 

TA2 
= T A 2 *  

(3.92) 

(3.93) 

The coordinates x , x ’  define a phase space for the motion that we are 
discussing, and we have shown that the area in this phase space enclosed by 
an unaccelerated particle is constant. Only a slight modification is necessary 
to find the invariant appropriate for accelerated motion and this is the 
subject of the next subsection. 

The admittance is the phase space area associated with the largest ellipse 
that the accelerator will accept. From the preceding discussion, we would 
estimate the admittance as follows. At any point in the accelerator, the 
maximum value of x is A&. If the half aperture available to the beam is 
a(s), then somewhere there will be a minimum in a h ) /  m. Then the 
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Figure 3.13. Phase space of particles emanating from a source of width w and angular 
spread e. 

admittance will be 

( 3.94) 

In the special case of a uniform half aperture a with no intruding septa, 
electrodes, and so on, then the minimum in a /  fi would occur at the 
maximum value of the amplitude function, then 

r a 2  

Pmax 
admittance = -. (3.95) 

The phase space area occupied by the beam is called the emittance, and is 
frequentIy denoted by e. The ideal beam, of course, would have zero 
cross-sectional area and all the particles would be headed in exactly the same 
direction. All the particles would occupy the same point in the phase space of 
this transverse degree of freedom. But the most elementary model of a 
particle source leads to a nonzero emittance. Suppose that you have a source 
of width w from each point of which particles are produced within an angle 
8. The phase space plot for the beam at the source will look like that 
depicted in Figure 3.13, enclosing a phase space area we.  

The phase space distribution of a beam is certainly not a uniformly 
populated rectangle, so a general definition of emittance will take this 
circumstance into account. For practical purposes, the phase space boundary 
of the beam may be considered to be an ellipse. Suppose that an irregularly 
shaped area is injected into an accelerator, with an initial state as shown in 
Figure 3.14. The subsequent motion of individual particles will lie on the 
elliptical invariant curves, as shown. As a result, the phase space demanded 
by the beam will be the area of the dashed curve. As time progresses, the 
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Flguro 3.14. A beam with an irregularly shaped phase space distribution will conform to the 
elliptical phase space dictoted by the optical properties of the accelerator, as a result of 
nonlinear forces inevitably present in o real rnochine. 

initial phase space will tend to smear out and conform to the shape charac- 
teristic of the accelerator lattice as a result of field nonlinearities. In the 
static case that we are considering, the area in phase space remains constant 
(according to Liouville's theorem) but is so distorted that the area has 
increased in effect. This process of phase space dilution is called filamenta- 
tion, and is avoided, insofar as is possible, by matching the injected beam 
shape to that of the invariant contours provided by the accelerator lattice. 
Emittance dilution will be examined in Chapter 7. 

To summarize, then, if a beam in a synchrotron has emittance E ,  then the 
phase space area is bounded by a curve 

€ 

T 
- = yx' + 2ax.v' + p x t 2 .  (3.96) 

It is often convenient to speak of the emittance for a particular particle 
distribution in terms of the rms transverse beam size. As an example, we will 
consider a beam in a synchrotron in which the particles follow a Gaussian 
distribution in one transverse degree of freedom. This is the natural choice 
for electron storage rings, since synchrotron radiation ensures that the 
equilibrium distributions are Gaussian provided that particle losses are 
insignificant. The Gaussian distribution function is also a reasonable approxi- 
mation for proton beams as well, in most instances. 

Suppose that the distribution in the transverse coordinate x normalized to 
one particle is given by the density function 

(3.97) 

and that the distribution is stationary in time at a particular location s. That 
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is, the beam is in an “equilibrium” situation where the distribution is 
indistinguishable from turn to turn. Since trajectories in x - ( a x  + px’) phase 
space are circles, as can be seen by examining Equations 3.88 and 3.89, then 
in this equilibrium situation the distribution in the coordinate a x  + px’ will 
also be Gaussian with standard deviation u. For, after all, the population on 
a given circle just rotates through an angle corresponding to the phase 
advance from turn to turn, and so the equilibrium distribution is independant 
of position along a circle, and depends only on the radius of the circle. The 
two-dimensional phase space distribution in these coordinates will be 

n( x ,  a x  + a x ’ )  drd(  a x  + a x ‘ )  

(3.98) 

We switch to polar coordinates, where the radial coordinate is 

r 2  = x 2  + ( a x  + ~ x ’ ) ~ ,  (3.99) 

and then the distribution is 

1 
n( r ,  8)rdrdO = 7 e - r 2 / 2 u z r d r d 8 .  

2 a a  
(3.100) 

If we define a radius a within which a fraction F of the particles are 
contained, then 

27r a r dr 
F = 4 i n r d r d 8  = f e - r z / 2 0 ‘ -  u2 ’ (3 .lOl) 

and, solving for a, 

a2 = - 2 u 2  In(1 - F ) .  (3.102) 

Multiplying Equation 3.96 by p, we see that 

p e / a  = x 2  + ( a x  + (3.103) 

If this emittance is the area in x-x‘ phase space that contains the fraction 
F of the particles, then p e / a  = a2. Thus, 

,ru2 = p e  = - 2 r r a 2  In(1 - F ) ,  (3.104) 

or 

2 a a 2  

B 
e =  -- ln(1 - F ) .  (3.105) 
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Table 3.1 
associated with various commonly used 
definitions of the emittance 

The fraction F of a Gaussian beam 

15 
39 
87 
95 

Equation 3.105 gives the area in x-x' phase space which contains the fraction 
F of a Gaussian beam with transverse rms beam size cr at a point in the 
lattice where the amplitude function is p. Various authors and institutions 
make different choices for the fraction F, and so there is not a standard 
significance to the numbers quoted for emittance. Table 3.1 lists a number of 
common definitions of emittance and their associated fractions F. The first 
entry is the near-standard choice in the electron accelerator community, 
where the quantity of primary interest is the rms beam size. The third and 
fourth entries tend to be used in proton accelerators in circumstances where 
one wishes to characterize the total beam size. For the remainder of the text 
we will primarily use the second entry, as it combines the significance of rms 
quantities with the emphasis on emittance as a phase space area. 

The two most frequently used relations are those that give the maximum 
displacement and angle anywhere around the ring: 

and 

(3.106) 

(3.107) 

Of course, the total number of particles contained within these maxima will 
depend on the choice of F in the relations above. 

3.2.5 Adiabatic Damping of Betatron Oscillations 

In the previous discussion we considered only the motion of particles with 
constant total momentum. We wish now to show how the amplitude of the 
motion varies as a function of the particle momentum, assuming that the 
momentum is a slowly changing function of time, or equivalently, of longitu- 
dinal position in the case of a linear accelerator. To illustrate the principle 
but avoid complexity, we begin with the equation of motion for a charged 
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particle in the presence of a magnetic field of the form B' = fB 'x :  

d -.D 

- ( p , )  = ( eu 'x  B ) ,  = -eu,B, = -euB'x. 
dt 

(3.108) 

Noting that p ,  = px', 

d 
ds 

u -( px') = u( px" + p ' x ' )  = -euB'x, (3.109) 

or 

P' eB' 
x" + -x' + - x  = 0. 

P P 
(3.1 10) 

This is just Hill's equation with an added damping term. 

the form x = uu. Then 
To solve the above differential equation, we assume the solution to be of 

P 
u = 0. (3.111) 

We now choose the function u such that the u' term is zero. That is, 

which says that u is of the form 

(3.1 12) 

(3.1 13) 

Since the momentum is changing slowly, the 0'' and p'u' terms may be 
neglected. To see this, consider the coefficient of u in the differential 
equation above. With the form of u just obtained, this coefficient is 

(3.1 14) 

Since p is changing slowly, p" is negligible with respect to the p t 2  term. Now 
the second term is on the order of 

2 

(;)2= (=J2=  A P  1 rn(?)' 1 
(3.1 15) 
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where Ap, the momentum increase per passage of the accelerating stations, 
is typically very much smaller than p. Since this term is much smaller than 
the centripetal term - l /p2 which we have already neglected from the 
outset of this discussion, the differential equation reduces to 

u” + -u u = 0, ( e:l 
eB’ 

P 
U” + -u  = 0, 

(3.116) 

(3.117) 

which is Hill’s equation. Therefore, the complete solution is of the form 

1/2 

x = uu = A o (  ;) P1’2( s)cos[ +(s) + 61. (3.1 18) 

The amplitude of the betatron oscillation is thus damped as the energy of 
the beam is adiabatically increased. Since the beam emittance is defined as a 
phase space area bounded by a Courant-Snyder invariant curve, and since 
this area is proportional to the square of the betatron amplitude, as shown 
earlier, we see that the beam emittance varies inversely with the beam 
momentum. The use of a normalized emittance, 

(3.11 9) 

permits comparisons of phase space areas independent of kinematic factors. 
This normalized emittance should, in the ideal world, remain constant 
throughout the entire acceleratian process. The fact that it does not is 
exemplied in Chapters 7 and 8. 

3.3 MOMENTUM DISPERSION 

We have just examined the motion of particles having the same momentum 
as the ideal particle but differing transverse position and direction. Now we 
want to study the motion of particles differing in momentum from that of the 
ideal particle. The source of such differences is the bend fields that establish 
the ideal trajectory. This is a moot point for the case of a linear accelerator, 
but for circular accelerators it is a primary design consideration. We will find 
that these of-momentum particles in general undergo betatron oscillations 
about a new class of closed orbits in circular accelerators. The displacement 
of these closed orbits from that of the ideal particle will be described by a 
new lattice function-the momentum dispersion function. 
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4 A e = e  - 
Po 

\ 

Figure 3.15. A bending magnet deflects particles of momentum higher than that of the ideal 
porticle through a lesser angle, leading to a variety of closed orbits for particles of differing 
momenta. 

The momentum dispersion function has its origin in the simple fact that a 
particle of higher momentum is deflected through a lesser angle in a bending 
magnet, as illustrated in Figure 3.15. It is as though a bending magnet which 
deflects the ideal particle by 8 is the source of an angular perturbation 
8 A p / p  to the trajectory of an off-momentum particle entering on the design 
orbit, where A p / p  is the fractional momentum difference relative to  the 
ideal momentum. 

In addition, higher momentum particles are bent less effectively in the 
focusing elements. That is, there is an effect completely analogous to chro- 
matic aberration in conventional optics. The dependence of focusing on 
momentum will bring in its wake a dependence of betatron oscillation tune 
on momentum; the parameter quantying this relationship is called the chro- 
maticity. 

The compensation of chromaticity is accomplished by sextupole magnets, 
and we are led to the introduction of nonlinear elements into our heretofore 
linear focusing structure. 

3.3.1 

Since all of the treatment of the previous two sections was based on particles 
having the same momentum, we must begin again with the equation of 
motion to find the orbits for particles of differing momenta. We start from 
Equation 3.42, where we had 

Equation of Motion for an Off-Momentum Particle 

(3.120) 
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Recalling that the magnetic rigidity is the momentum per unit charge, we will 
let (Bp)  represent the magnetic rigidity of the ideal particle with momentum 
p o  and include a factor of p o / p  on the right hand side of the above equation 
of motion. That is, 

(3.121) 

Furthermore, we still consider fields which vary linearly with transverse 
position, i.e., 

By = Eo + B‘x,  (3.122) 

and expand the above equation of motion, neglecting terms quadratic in x / p  
and higher. We get 

where A p  = p - po. 
Let us write the closed orbit of an off-momentum particle in the form 

AP 
x = D ( p , s ) -  

Po 
(3.124) 

and then look for the closed solution. That is, we look for the solution subject 
to the condition 

D (  P ,  s + C )  = D( P ,  s),  (3.125) 

where, as before, C is the repeat distance of the hardware. This function is 
referred to as the dispersion function. Since Equation 3.124 is a solution to 
the inhomogeneous Hill’s equation, the general solution will differ from this 
particular (closed) solution by the addition of a solution of the homogeneous 
equation. 

The equation to be solved for D is thus 

(3.126) 1 Po 
+ -- D =  - - *  

B’ 

P P 
1 2 P o - P  

(BPI P 

This is an inhomogeneous Hill’s equation, The right hand side indicates that 
bending is the source of momentum dispersion. A bend center increments 
the slope of the dispersion function by the bending angle at the momentum 
in question, just as suggested by Figure 3.15. Since betatron oscillation 
wavelengths are apt to be long compared to the lengths of bending magnets, 
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it is a good approximation to say that such a magnet changes the slope of the 
dispersion function by the magnet’s bend angle at its bend center. (For a 
pure dipole magnet, this is an exact statement.) 

3.3.2 Solution of Equation of Motion 

We can proceed in the same fashion as in the “piecewise” method used for 
the betatron oscillations. Our equation is 

(3.127) 

where K is taken to be constant in each element of the lattice. Let us also 
assume Bo is a constant within each element. 

We can adapt the matrix approach used in the discussion of betatron 
oscillations to the present case. Since a particular solution to the dispersion 
function equation is a constant in each element, it may be readily shown that 
the general solution may be written as 

(3.128) 

where the two-by-two matrix is the same as that for the treatment of betatron 
oscillations (the homogeneous solution). By the addition of a third trivial 
equation, 1 = 1, the equation above can be expressed in terms of a three- 
by-three matrix: 

(!)ou, = [ i i E ) (  qi; (3.129) 

Table 3.2 shows the values of the matrix elements e and f for the cases 
where K < 0, K = 0, and K > 0. 

By multiplying the various matrices for the pieces of the ring, we can find a 
matrix M for one turn (or, for one repeat period). The condition for the 
displaced equilibrium orbit to be closed is 

(3.130) 

and its solution yields the dispersion function at the starting point. 
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Table 3.2 Values of the matrix elements A,, and M,, for various ranges 
of the spring constant K 

K e 

1 eB,l eB,1 

2 P  P 
1 -- 0 - 

> O  
e 

- B ~  sin 
P f i  

Note that the same 3 x 3 matrices propagate either the dispersion func- 
tion or the trajectory itself. That is, M operates on the vector 

or on the vector 

(3.131) 

(3.132) 

The same procedure can be carried out starting at any point in the lattice, 
and so the dispersion function can be computed everywhere. Alternatively, 
having found the dispersion function and its derivative at a particular starting 
point, this solution can be propagated forward using either the differential 
equation or the matrices describing individual elements. 

In simple situations, the dispersion function will be everywhere positive; 
that is, orbits of higher momenta than the design orbit are at larger radius. 
The difference in perimeter between off-momentum orbits and the design 
orbit is characterized by the cumpucriun factor, which is unfortunately 
designated by the overworked symbol a and is defined by the relation 

AC Ap 
= a-, - 

C Po 
(3.133) 

where C is the accelerator circumference. The form of this equation suggests 
that the name stems from the circumstance that this parameter is less than 
unity. That is indeed the case. 
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Figure 3.16. Illustration of increment in path length difference 
between off-momentum particle and ideal particle. 

To illustrate the calculation of the compaction factor, let us suppose that 
the bending is provided by sector magnets. A sector magnet is one in which 
the ideal orbit enters and exits at right angles to the magnet ends. The 
procedure for calculating the difference in path between a particle of the 
central momentum and an off-momentum particle is sketched in Figure 3.16. 
The circumference change, AC, is given by 

AC = $( p + .”) do - $ ( p d d ) .  
Po 

(3.134) 

For the fractional circumference change we therefore have 

or 

1 

Yr 
a =  2 = (;) (3.136) 

For a simple lattice, y, = tune, as is the subject of a problem at the end of 
this chapter. The tune of an alternating gradient lattice scales with the 
number of cells, and so yr increases at the designer’s discretion with the size 
of the accelerator. So again we have a circumstance where an aperture 
requirement-in this case, the aperture set aside to accommodate the 
momentum spread-is decoupled from the overall scale of the accelerator. 
This is another major advantage of the strong focusing principle. 

We can build on our discussion of emittance to characterize the total 
beam size due to both betatron oscillations and momentum spread. For, we 
can write the displacement from the ideal trajectory of a particle as the sum 
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of two terms: 

A P  
x = D- + x B ,  

P o  
(3.137) 

where the first term represents the contribution of the closed orbit of the 
off-momentum particle and the second the free oscillation about that closed 
orbit. Averaging the square of this expression yields for the rms displacement 

(3.138) 

and we leave it to the reader to determine which of the various definitions of 
transverse emittance has been used to arrive at this last expression. 

3.4 LINEAR DEVIATIONS FROM THE IDEAL LATTICE 

We have now brought to an end our discussion of the linear transverse 
dynamics of the ideal accelerator. Thus far we have established the basic 
principles underlying single particle accelerator design. This is the framework 
upon which we will build in future chapters. We conclude this chapter with 
an introductory treatment of linear deviations from the ideal lattice, includ- 
ing steering and tune errors and adjustments. 

3.4.1 Steering Errors and Corrections 

Thus far we have described an accelerator where each magnetic or electric 
element performs exactly its prescribed task. In particular, for a circular 
accelerator, there is by design an ideal reference orbit which closes on itself 
and about which betatron oscillations would occur for particles with nonzero 
emittance. Suppose, however, that a particular bending magnet has a field 
somewhat different from its intended value. We will show that the field 
imperfection leads to a new closed orbit near, but differing from, the ideal 
design orbit. 

Suppose that in our otherwise ideal circular accelerator a single steering 
error of magnitude 8 = A B I / ( B p )  is located at s = 0, where AB is an 
unintentional uniform field over the path length 1. We want to find the new 
closed orbit, for x identically zero is no longer a solution of the equation of 
motion. Everywhere except at the location of the steering error, however, the 
equation of motion is still that of a betatron oscillation-only at the point of 
the angular impulse is the equation inhomogeneous. 

Let the orbit immediately downstream of the deflection 8 be specied by 
no, xb. To propagate this initial condition around the ring, we just multiply by 
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the single-turn matrix M. Now we are immediately upstream of the deflec- 
tion; to close the orbit we need only add the angle 8 and demand that we be 
back to xo,  xb. In symbols, 

Solving for x o  and xb, 

(:;) = (I  - M ) - 1 (  ;). 

(3.139) 

(3.140) 

The matrix (I - MI-'  can be recast using Equation 3.76. Then 

j e - J w w  
1 

2 sin rv 
=- (3.143) 

1 
2 sin T V  

=- ( J c o s a v  + I s i n r v ) ,  (4.144) 

and the closed orbit at s = 0 will be 

The closed orbit may now be expressed as a function of position or phase 
around the ring by, for instance, applying the matrix for propagation between 
one point and another (Equation 3.85). After a small bit of algebra, one finds 

ep1/2(  s ) p ; I 2  
x ( s )  = cos[$(s) - T V ]  

2 s i n m  
(3.146) 

for 0 < 4 < 2 a v .  
The solution for the closed orbit is sketched in Figure 3.17. We see that 

the new closed orbit in the presence of a single steering error exhibits a cusp 
at the location of the error, where the trajectory experiences a kink through 
an angle 8. A local maximum in the oscillation occurs at the point in the 
accelerator where $ = r v ,  Le., half way around the accelerator for typical 
lattice designs. Particles whose initial conditions do not coincide with this 
closed orbit will still be influenced by the steering error each turn and will, in 
fact, perform betatron oscillations about the new closed orbit. 
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(20 prad)( 100 m) 
2 sin T( 19.4) 

B f  = I  

- 93 

= l m m .  

Figure 3.17. Sketch of closed orbit in presence 
single steering error. 

of 0 
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accelerator located at equivalent values of the amplitude function, we would 
expect the rms value of the closed orbit distortion to be larger than the 
preceding figure by a factor of order N1/’ with the placement error S also 
reinterpreted as an rms value. In the Tevatron, N = 100, so we come to an 
estimate of 10 mm for the rms orbit distortion due to quadrupole placement 
errors, and we would expect peaks larger than the rms by some factor on the 
order of 3 or 4, depending upon the distribution. As a consequence, we need 
some means of correcting steering errors as a basic design feature in 
synchrotrons of this scale. 

Correction of closed orbit distortions can be carried out with the aid of a 
set of independently powered steering dipole magnets. The same set of 
steering dipoles can be used to make intentional closed orbit distortions to 
facilitate a variety of accelerator functions. More rigorous and quantitative 
calculations of the above are the subject of some of the problems at the end 
of the chapter. 

As a final note, referring to Equation 3.146, we observe that there is no 
closed orbit if the tune is an integer. This is the most elementary example of 
a resonance. Of course, we didn’t need to go through any algebra to find that 
out. If the tune were an integer, the steering errors would just reinforce from 
turn to turn until the oscillation amplitude became large enough to strike the 
walls of the vacuum chamber. The implication in the formula that the orbit 
goes to infinity is just an artifact of our approximations. But since infinity is 
only a few centimeters away, the approximations are pretty good. 

3.4.2 Focusing Errors and Corrections 

A gradient error would be expected to alter the tune of a circular accelerator. 
Let there be a single gradient error equivalent to a thin lens quadrupole with 
focal length f. The matrix M for a single turn is then 

(3.147) 

where Mo is the matrix for the ideal ring. From the trace of M it follows that 

1 Po 
2 f  

cos 2 r u  = cos ~ T V ,  - - - sin 2 r v o ,  (3.148) 

where Y and v o  are the new and old tunes respectively, and Po is the original 
amplitude function at the point of the perturbation. For the ideal ring, 
presumably v o  is real by design. But depending on the sign and magnitude of 
the gradient error term, Y can become complex; that is, the motion can 
become unstable. Since, for small magnitudes of the gradient error term, the 
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Figure 3.18. Phase space development of parti- 
cle trajectory in presence of half-integer reso- 
nance. 

instability will occur for Y near an integer or half integer, these instabilities 
are called half-integer resonances. There will be a range of values of y o  for 
which the motion is unstable; this range is called a stopband. 

Just as in the case of dipole error resonances, we didn't need to use any 
algebra to demonstrate that quadrupole errors can produce resonance ef- 
fects. Figure 3.18 represents the phase space history of a particle on succes- 
sive turns as it passes the gradient error. The initial motion, in the absence of 
the error, was one in which the tune was an odd multiple of one-half. 
Successive passages of the gradient error just add constant vectors parallel to 
the vertical axis. 

If the tune is not near a half-integer and the perturbation is sufficiently 
small, we can obtain a useful expression for the tune shift due to a gradient 
error by writing 

v = v g  + s v  (3.149) 

and expanding the cosine term on the left hand side of the last equation. The 
result is 

(3.150) 

If there is a distribution of gradient errors, this last result generalizes to 

(3.151) 

and is the lowest order (in gradient error) approximation to the tune shift. 
In analogy with steering errors and corrections, one can make adjustments 

to the tunes of the accelerator by intentionally introducing perturbations on 
the gradients. The capability to adjust the tune is essential to modern high 
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energy synchrotron operation. We will expand on this remark later in the 
book. 

A gradient puts a kink in the amplitude function analogous to the 
deflection of the orbit produced by a dipole field. Let us compare the slope 
of the amplitude function on either side of the gradient error, or, equiva- 
lently, the parameter a, by calculating 

1 0  1 0  
(3.152) 

from which 

P 
f A a =  -, (3.153) 

where, in this case, P is the amplitude function of the perturbed lattice at the 
location of the error. Given the change in slope of the amplitude function 
produced by a gradient error, one can go on and calculate the deviation in 
the amplitude function throughout the ring. The principle of superposition is 
not valid for amplitude function perturbation due to combinations of gradi- 
ent errors even in the linear lattice, in contrast to the situation €or steering 
errors; but for sufficiently small gradient error, the treatments and results are 
quite similar. These matters are to be found in the problems at the end of the 
chapter. 

3.4.3 Chromaticity 

As mentioned during our treatment of the dispersion function, the equation 
of motion for an off-momentum particle includes a “spring constant” term 
which depends upon the particle momentum. One would thus suspect that 
the frequency of betatron oscillations of a particle, that is, the tune, would 
depend also upon its momentum. The change in tune due to momentum is 
called the chromaticity and is defined by 

(3.154) 

where A p / p o  is the momentum deviation relative to the ideal momentum. 

to gradient errors. Recall that we had 
The chromaticity can be calculated by Equation 3.150 relating tune shifts 

(3.155) 
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where the f i  are to be identied as the focal lengths of the “error” quadrupoles 
that represent the difference between the off-momentum and central mo- 
mentum states. That is, for a quadrupole of focal length F,  

and so 

or, equivalently, 

( =  - 
1 

-#KPdr .  4.rr 

(3.156) 

(3.157) 

(3.158) 

For a simple lattice, the chromaticity is about equal in magnitude and 
opposite in sign to the tune, as is to be demonstrated in one of the problems. 
In the more complex lattices of storage rings, the chromaticity is apt to be 
considerably larger in magnitude. This arises as follows. In order to focus the 
beams to a small spot at the collision point, one makes near-parallel beams 
on either side; that is, the amplitude function becomes large in quadrupoles 
which tend to be stronger than those elsewhere in the ring. The integrand in 
the last equation is therefore unusually large in such regions. 

Another way of looking at the origin of the larger than normal chromatic- 
ity of storage rings is to make use of the differential equation satisfied by the 
amplitude function 

K P  = a’ + y (3.159) 

to rewrite the expression for the chromaticity as 

( 3.160) 

The first term vanishes when integrated around the ring. The term in y will 
be large where the amplitude function is small, which is the situation at the 
collision point. Since y is a constant in a drift space, the straight section in 
which collisions occur will contribute to the chromaticity a quantity equal to 
the straight section length divided by the amplitude function at the crossing 
for typical interaction region designs in which P is a minimum at the crossing 
point. 

The source of chromaticity discussed here is the dependence of focusing 
strength on momentum for the ideal accelerator fields; the resulting chro- 
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maticity is called the natural chromaticity. There will be additional sources, 
as we shall see in Chapter 4. 

Why worry about chromaticity? There are two reasons. If the beam has a 
large momentum spread, then a large chromaticity may place some portions 
of the beam on resonances. Secondly, the value of the chromaticity may 
determine whether or not certain intensity dependent motion is stable or 
unstable, as will be discussed in Chapter 6. 

The capabilities for chromaticity adjustment provided by the linear lattice 
are limited; some other means must be used to modify this quantity. What is 
needed is a magnet that presents a gradient that is a function of momentum. 
A distribution of sextupole magnets is normally used for this purpose. In the 
horizontal plane, the sextupole field is of the form 

B = k X 2 ,  (3.161) 

and so the field gradient on a displaced equilibrium orbit is 

(3.162) 

and the contribution to the chromaticity from sextupoles may be readily 
calculated. 

A standard way of adjusting the chromaticity in both transverse degrees of 
freedom is to place a sextupole magnet at each main quadrupole location. 
The sextupoles are connected in two circuits; those at horizontally focusing 
quadrupoles are powered in one series circuit, and those at vertically focusing 
quadrupoles in the other. For the usual FODO lattice, the chromaticity 
changes due to the sextupoles would then be given by 

N 
(3.163) 

Here, N is the number of cells, and the sextupole strengths S, and S, are 
defined by ( ~ 3 ~ B , , / d x ~ )  * length/(2Bp) evaluated at the focusing and defocus- 
ing quadrupole locations, respectively. Unfortunately, the sextupoles in- 
evitably introduce intrinsically nonlinear aberrations, and we have taken our 
first step away from a design based upon purely linear dynamics. 
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PROBLEMS 

1. In the “weak focusing” accelerators, the field index is defined as 

d B / B  
n =  -- 

d r / r  

(a) Show that the equation of motion of a particle in the vertical (axial) 
degree of freedom is 

d ’ z  
- + w2nz = 0, 
d t 2  

where w is the angular rotation frequency. Thus, vertical oscillations 
are stable so long as n > 0. 

(b) If the design radius for the machine is R and a particle’s radial 
coordinate is r = R + x ,  where x a R, show that the equation of 
motion in the radial (horizontal) degree of freedom for small oscilla- 
tions is 

d2x 
d t 2  
- + 0 2 ( 1  - n ) x  = 0. 

Therefore, radial stability requires n < 1; stability in both transverse 
degrees of freedom simultaneously is assured only if 0 < n < 1. 

2. Consider a system made up of two thin lenses each of focal length f ,  one 
focusing and one defocusing, separated by a distance L. Show that the 
system is focusing if I f  I > L .  

3. Evaluate the matrix for a quadrupole of length 10 meters, with a gradient 
of 80 tesla/meter, and traversed by a particle with an energy of 20 TeV. 
Compare with a product of thin lens matrices occupying the same length. 

4. Suppose that a particle traverses, first, a focusing lens with a focal length 
F; second, a drift of length L; third, a defocusing lens with focal length 
F; and, fourth, another drift of length L. Show that the matrix for this 
cell is given by 

M =  

L2 

F 

2 l - F - ( ; )  L 2 L + -  

L L 
l + -  

F 2  F 
-- 
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5. 

6. 

7. 

a. 

9. 

10. 

11. 

Consider a lattice made up entirely of thick gradient magnets, each of 
length L, alternating in “spring constant” between K and -K (that is, 
assume that the l/p2 term in the horizontal equation of motion is 
negligible). For what values of f i L  is the transverse motion in such a 
system stable? 

Using a graphics terminal or home computer, and with F = L in Prob- 
lem 4 above, show that the motion is stable in transverse phase space. 
That is, start out particles with various values of x and XI and demon- 
strate that no divergence to large amplitude motion is indicated. Set 
F = L / 3  and repeat; is the motion still stable? 

Find the eigenvalues and eigenvectors for the FODO case. None is real 
-is that a problem? 

Why is the transport matrix unimodular? Prove that it must be so under 
our assumptions. Suppose the particle energy changes-does the deter- 
minant still have to equal unity? If the matrix is 

show (easily) that the inverse is 

Suppose that one elects to write the matrix M for a periodic section as 
an exponential operator eK. Using the properties of M as developed in 
Section 3.1.3, show that the trace of K is zero. 

Going from point 1 to point 2, you traverse a sequence of elements that 
yield a matrix 

From point 2 to point 3, you traverse the same elements but in reverse 
order. Show that the matrix from 2 to 3 is 

Show that the amplitude function is a solution of the linear differential 
equation 

p”’ + 4P’K + 2PK’ = 0. 
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Within a lattice element, where K is constant, the solution must be one 
of the three forms 

p = a + b s + c s 2  

= a c o s 2 f i s  + bs in2 f i s  + c 

= a cosh 2 m s  + b sinh 2 m s  + c 

In each case evaluate a, 6, c in terms of a g  and P o ,  the parameters at 
the beginning of the element. 

12. Show that the maximum and minimum values of the amplitude function 
for the simple FODO cell are given by 

Evaluate these for a quadrupole spacing of 100 m and phase advance per 
cell of 80". 

13. Suppose that a particle traveling along the design orbit experiences an 
angular deflection 8. Show that thereafter its motion is given by 

x = 8p;/2p1/2( s)sin +, 

where Po is the amplitude function at the point of deflection, and phase 
1,9 is measured relative to that point. Calculate the oscillation amplitude 
associated with a 100 prad deflection at a maximum /3 point in the 
lattice of the preceding problem. 

14. Given the Courant-Snyder parameters, or equivalently the J-matrix, at  
one point in the ring, they may readily be found at other points with the 
use of the appropriate transfer matrices. Suppose 1, is the matrix 
representing a known set of parameters, and we want to find J,. Let 
M(1,2) be the matrix propagating the motion from point 1 to point 2. 
Show that the J-matrices at the two points are related by 

J ,  = M(l,2)J1M-'(1,2) 
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Show that the parameter relations are 

15. 

16. 

17. 

18. 

19. 

where the mij are the matrix elements of M(1,2). We have used the 
relation between the elements of M(1,2) and the elements of the inverse 
in writing the above. 

Show that the phase advance from point 1 to point 2 through a section 
described by the transport matrix M(1,2) is given by 

m12 A$ = tan-' 

where the mii are the matrix elements of M(1,2) and PI and a1 are the 
values of the amplitude functions at point 1. 

For the simple thin lens FODO cell, verify that the phase advance as 
calculated by 

ds *=lp 
agrees with the result given by the trace of the matrix. Why is agreement 
assured in this case, while in general (for larger lattice segments) there 
may be ambiguities? 

In order to achieve high luminosity in a colliding beam accelerator, the 
amplitude function is made small at the point where the beams are 
brought into collision. The length of the detector occupying this straight 
section will be large compared to the value of p at the interaction point. 
Show that the phase advance through this straight section will be approx- 
imately 180". 

Show that J 2  = - I .  Show that n repetitions of 

M = I c o s p  + J s i n p  

give the result akin to de Moivre's theorem, 

M" = I c o s n p  + J s i n n p .  

The discussion in this chapter has been explicitly carried out in the 
context of stable motion, where amplitude functions and phase advances 
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are real numbers. Of course, the formalism works equally well for 
unstable motion. Consider the following case. Suppose one starts with a 
synchrotron with a one-turn matrix given by 

and adds a thin lens quadrupole of focal length f = 4p0. Evaluate the 
new amplitude function at this point and the new phase advance modulo 
2T. 

20. Suppose that a 10 GeV/c proton beam with normalized (39%) emittance 
of 2~ mm mrad is injected into a synchrotron having a half cell length of 
30m and a cell phase advance of 68". Estimate the boundaries of the 
beam excursions in displacement and angle. 

21. The synchrotron into which the beam of the preceding problem is to be 
injected offers a half aperture of 50 mm in the horizontal plane. Calcu- 
late the admittance. Normally it is necessary that the admittance be 
much larger than the beam emittance for reasonable performance. 

22. Suppose that there are many uncorrelated angular deflections distributed 
around a ring which average to zero and have an rms value Orms. 
(a) Show that the rms (over an ensemble of synchrotrons) orbit distortion 

at some point of observation where the amplitude function is Po is 

where p is the average of the amplitude function at the N kick 
locations. In proceding from the first to the second form of the result, 
note that a term of order unity compared with N is neglected; for 
many purposes, this is an excellent approximation. 

(b) Calculate the rms orbit distortion expected in a 20 TeV scale syn- 
chrotron, if the only source of the angular deviations is quadrupole 
alignment errors characterized by an rms value of 1 mm. For ampli- 
tude functions and focal lengths, use values characteristic of a thin 
lens FODO cell with a length of 180 m and a phase advance of 90". 

23. In Problem 22, only the rms orbit distortion was calculated. One would 
like to know the distribution of peak distortions, or, to put it more 
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24. 

25. 

26. 

27. 

28. 

precisely, to know the odds of the maximum distortion exceeding the rms 
by a given factor. This is an easy job for a small computer. Generate an 
ensemble of synchrotrons, each populated with a set of steering errors 
having unit standard deviation and following a Gaussian distribution. 
Find the maximum orbit deviation for each synchrotron in units of the 
rms and plot the integral distribution. You should find, for example, that 
the probability of the peak distortion exceeding the rms value by a factor 
of two is 60%. 

Orbits can be corrected and adjusted by using steering dipoles. One 
standard algorithm is based on so-called three-bumps. A local orbit 
distortion can be made by three steering dipoles. Let the three steering 
angles be 8,, e2,  and 8,. Show that if these angles are related according 
to 

' I2 sin ~ 1 , ~  
% =  -el(:) 

then the orbit distortion is localized between the first and third steering 
elements. 

If a single quadrupole is hooked up backwards, so its focusing character 
is the reverse of what it should be, is it likely that the betatron oscilla- 
tions will still be stable in both transverse planes? As usual, use a ring of 
simple FODO cells for this problem. 

In the same spirit as Problem 22, derive an expression for the rms tune 
shift arising from uncorrelated gradient errors. Apply your expression to 
the case of a 20 TeV scale ring in which the main quadrupoles exhibit an 
rms fractional error in their focal lengths of 0.1%. 

Suppose that a quadrupole of negligible length I and strength q = 
B'I / (Bp)  is placed in a ring at a point where the amplitude function has 
value PI. Assume that upstream of this point the amplitude function is 
unperturbed. Show that downstream of the quadrupole the fractional 
deviation in B is given by 

where P o ( s )  is the original amplitude function, and the original phase #o 
is measured from the location of the quadrupole. 

For sufficiently small quadrupole errors, the nonlinear term in the 
equation of the preceding problem can be neglected. Then the fractional 
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29. 

30. 

31. 

deviation in the amplitude function obeys rules identical to the orbit 
distortions which arise from steering errors. Show that the rms fractional 
change in p associated with quadrupole errors is, in this approximation, 

where the 4's are defined as in the preceding problem. 

Let the bending of a thin lens FODO cell be performed by pure dipole 
magnets providing a bend angle 8 with the bend center at the midpoint 
of each half cell. Show that the maximum and minimum values of the 
dispersion function for a ring made entirely of such cells are 

where L is the half-cell length. For typical proton ring designs, the 
product 8L tends to be about 1 meter. Since the phase advance per cell, 
p, also is apt to be selected from a narrow range, the dispersion is about 
the same regardless of the peak energy of the synchrotron. It will be 
interesting to see if this scaling perseveres in the future. 

Suppose that the basic repeat period of a synchrotron consists of n - 1 
FODO cells of the sort used in the preceding problem, followed by a 
single FODO cell without bending. Show that in the bending cells the 
total dispersion is the sum of that appropriate to the FODO cell alone 
and a free oscillation having initial values (at the beginning of the 
superperiod) 

( I  - hi-")( M - I )  (%I  = 2(1 - c o s n p )  ( LODO only) 

where M is the 2 x 2 matrix for propagation of a betatron oscillation 
through each cell. Note that the dispersion can now take on arbitrarily 
large positive or negative values. This is an example of a mismatched 
lattice function; the juxtaposition of cells with different intrinsic disper- 
sion functions can lead to a possible unacceptable total dispersion. 

Extend the phase-amplitude form of the transfer matrix to include 
momentum dispersion. The three additional elements needed are 

m13 = D 2  - m , , D ,  - " I z D ; ,  
mZ3 = -m2,D,  - mZ2D', + D ; ,  

m I 3  = 1 ,  

where the m's on the right hand side are elements of the 2 X 2 matrix as 
written down in Section 3.2 for transport of a betatron oscillation from 
point 1 to point 2. 
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32. To illustrate the principle of matching of lattice functions, here is one 
method of proceeding from a bend (nonzero dispersion) region to a 
straight section without setting up a dispersion wave. Coming from the 
arc, the beam first encounters a FODO cell in which the bending is 
reduced to a fraction 1 - x of the standard cell deflection and then a cell 
in which the bending fraction is x .  As before, all bend centers are at  the 
midpoint of the half cell. Prove that the condition for the dispersion 
function and its derivative to be unchanged in the arc and vanish at  the 
entry to the straight section is 

1 
x =  

2( 1 - cos p )  ' 

where p is the phase advance of each of the FODO cells making up the 
ring. It may be useful to use the matrix of the preceding problem, and 
decide what happens to rnI3 and m, as the bend strength is changed. 

33. For the simple FODO lattice synchrotron, verify that the transition 
gamma, y,, is about equal in magnitude to the tune. 

34. A steering error of strength 8 produces a new closed orbit in a syn- 
chrotron which may have a path length different from the ideal path 
length by an amount AC. Show that AC = 8D, where D is the value of 
the dispersion function at the location of the steering error. 

35. For the simple FODO lattice synchrotron, verify that the chromaticity is 
about equal in magnitude and opposite in sign to the tune if the only 
elements contributing to the chromaticity are the main quadrupoles. 

36. Assume that the bending magnets exhibit a systematic sextupole moment. 
The field can be written in the form 

B = Bo( l  + b z x 2 ) ,  

where b,  = 8 " / 2 B 0  is the sextupole coefficient. Show that the associated 
contribution to the chromaticity is 

with the sign depending on the degree of freedom. Under some circum- 
stances, AS can be large. At low fields, superconducting magnets can 
have signicant sextupole moments due to persistent currents. A possible 
value for 6 ,  is 3 m-'. Estimate the resulting chromaticity for a 20 TeV 
scale ring. 

37. Derive the expressions for chromaticity adjustment written down in the 
last section. 
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38. Consider a dogleg as shown in the diagram below. 
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Flgure for Problem 38. 

If the dispersion function at A is D = D‘ = 0, what is the value of 
the dispersion function at B? (Assume that 8 = d/L e 1.) 
At Fermilab, the 150 GeV Main Ring injector is located 25.5 in. 
above the Tevatron synchrotron. Beams are transferred between the 
two rings in a long straight section, free of quadrupoles. How much 
vertical dispersion is “generated” just by the transfer process? 
Since the design vertical dispersion function of the Tevatron is zero 
everywhere, there would be a mismatch of the dispersion function 
between the Main Ring and Tevatron if left uncorrected. Would you 
expect this mismatch to affect the emittance of the beam after 
injection? Why or why not? 



CHAPTER A 

Resonances 
and Transverse 
Nonlinear Motion 

Despite our attempt to concentrate on linear behavior in the last chapter, we 
found ourselves compelled at the end to introduce nonlinear magnetic fields 
to compensate chromatic aberration. In fact, as accelerators have grown in 
energy, cost, and performance demands, it has become necessary to devote 
more and more attention to the effects of nonlinear fields on the single 
particle dynamics of synchrotrons, both those necessitated by the design and 
those arising from magnet imperfections. 

In the first category are the present generation of synchrotron radiation 
sources. In these devices the emphasis on small emittance to produce high 
brightness beams results in very strong sextupole elements to compensate 
chromaticity. The attendant aberrations lead to a bound on the stable region 
in transverse phase space. The stable region is often called the dynamic 
aperture. 

In the second category are large hadron colliders. Here, one is playing cost 
against the provision of the design magnetic field. Again, the presence of 
nonlinearities will lead to a finite dynamic aperture, and the designer must 
assure that performance goals are met without crossing the border into 
overdesign. 

The introduction of a single nonlinear element can change dramatically 
the mappings in phase space, which in the last chapter were simple ellipses. 
The nonlinear equations of motion have the disadvantage that they cannot be 
solved in closed form. However, the iteration of the associated difference 
equations can demonstrate many of the essential features; all one needs is a 
home computer. For example, suppose there is a single thin sextupole 
installed in a synchrotron which has otherwise perfectly linear fields. For a 
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Figure 4.1. Phase space plot of padicles circulating in a synchrotron lattice that is 
linear except for a single thin sextupole field introduced at the point of observation. For 
the tune of the accelerator is 0.42 plus an integer. 

perfectly 
this plot, 

specific choice of parameters, the graphics output from a turn-by-turn itera- 
tion of the equations of motion is shown in Figure 4.1. 

In the purely linear case, particle trajectories in this phase space lie on 
circles; for sufficiently small amplitudes this is still the case, as seen in the 
figure. However, as one moves to larger amplitudes, the nonlinearity mani- 
fests itself and the trajectories increasingly deviate from circles. At still larger 
radius, we encounter a set of five islands, isolated regions of stability. At 
slightly larger amplitude the motion becomes irregular, or chaotic. Finally, at 
large enough initial amplitudes the motion is completely unstable. If there 
were a clearly defined separatrix, as there was in the case of longitudinal 
dynamics, the definition of the dynamic aperture would be clear. But already, 
in this simple numerical example, we see that the richer phase space 
dynamics revealed here makes a straightforward definition of dynamic aper- 
ture difficult. 

In this text we will not attempt to unravel all of the features of Figure 4.1; 
more extensive discussions may be found in the advanced references in the 
bibliography. Our purpose here will be to examine simple situations in which 
the equations of nonlinear motion are tractable. We will extend the discus- 
sion of resonances to include those of nonlinear origin, and interestingly 
enough these cases rather directly permit progress toward the solution of the 
equations of motion. 
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Acknowledging that the standard treatment of these matters is couched in 
the language of higher dynamics, we conclude with an introductory exposi- 
tion of this approach. 

4.1 TRANSVERSE RESONANCES 

In the last chapter, we encountered two instances of resonant behavior, both 
stated in terms of field imperfections. If there are steering errors, however 
small, an integer value of the tune will lead to an oscillation growing in 
amplitude linearly from turn to turn without bound. The “without bound” is 
of course an artifact of our approximations, but because of the limited 
aperture in which the particle motion must be accommodated, the approxi- 
mations are reasonable. In the second case, it was found that at a tune such 
that 2 v  = m where m is an integer, any quadrupole error will lead to 
amplitude growth. We did not prove it then, but the growth in this case can 
be faster than linear. In this section, we will attempt to generalize the 
discussion of resonances to include nonlinear field perturbations. 

4.1.1 Floquet Transformation 

We begin by completing the &ordinate transformation so that the resulting 
motion is indeed just that of a simple harmonic oscillator. Start from the 
solution to the equation of motion: 

x (  s) = Ap1/2( s)cos[ $( s) + 61. (4.1) 

If we define a “reduced phase,” 4, by 4 = +/v, then 4 is a variable that 
increases by 2a for each turn. Even though 4 is not a real polar angle 
measured from the center of a circle, it behaves like one. If now one defines 
a new dependent variable 5 according to 

then 

[( 4 )  = A cos( vf#J + S) (4.3) 

and the free betatron oscillation reduces to simple harmonic motion, with u 
oscillations for every advance of 4 by 27r. The equation of motion for 5 is 
just 
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The replacement of coordinates x ,  s by 5,4 is called a Floquet transfor- 
mation. A direct benefit of the Floquet transformation can be seen as 
follows. The equation of motion was developed for an accelerator without 
field errors. With field errors, one of the problems at the end of the chapter 
is to show that the right hand side of the above equation will no longer be 
zero; we will have instead 

where A B  represents all those fieIds not taken into account in setting up the 
design orbit. 

Therefore, in coordinates [,4, the full collection of mathematical methods 
for treating driven harmonic oscillations becomes available, and the notion of 
a resonance between some harmonic amplitude of the right hand driving 
term and the tune v is just the same as in the case of a simple oscillator. 

4.1.2 Multipole Expansion 

The next task is to choose a method in which to express the field error AB. 
For many purposes, it is convenient to use a multipole expansion to go 
beyond the at most linear dependence on x to which we have limited 
ourselves thus far. But rather than take up the general case (which is left to 
Chapter 5) ,  let us stay for the present in one degree of freedom and take 

A B  = B,(b,  + b,x + b2x2  + ), (4.6) 

where B, is a reference field strength and the b,, are the multipole coeffi- 
cients. In a bending magnet, for instance, B, would be the nominal bend 
field. For definiteness, we are taking the case of motion in the bending plane; 
A B is the variation in the vertical component of the field on the midplane, 
and, in “pole language” the b,, arise from normal multipole errors. That is to 
say, the field imperfections arise from pole distributions that do not have 
poles in the horizontal plane. 

So b, is the dipole error, b, is the quadrupole error term, b, the sextupole 
term, and so on. The b,, are of course functions of s. 

Some examples of how these errors arise might be useful. Suppose that all 
the bending magnets are intended to have a field of exactly 1 tesla, at a 
certain excitation current common to all the magnets. For a bending magnet 
such as that sketched in Figure 4.2, the field in the gap in the infinite 
permeability approximation is 

where NI is the number of ampere-turns, g is the gap height, and the field 
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Figure 4.2. Dipole bending magnet with gap height g and N turns of conductor, each 
carrying current 1. 

will be a constant within the coil window. The laminations of which the steel 
yoke are typically made are produced by stamping them out of steel sheets. 
Such factors as wear of the die used in the stamping, or the use of multiple 
dies for a large production run, will lead to a variation in the gap height. If g 
is designed to be exactly 5 cm, then a change of 0.0025 cm (approximately 
one-thousandth of an inch) will give b, = 5 X which is a significant 
field error. 

Such magnets are often assembled from two “top and bottom” half cores, 
as suggested by the horizontal lines at the midplane in the sketch. If the cores 
meet perfectly on one side, but are separated by a small gap h on the other, 
it is easy to show that the resulting quadrupole term will be 

h 
b ,  = - 

g w ’  

where w is the pole width. For h = 0.0025 cm in the same magnet, and 
w = 10 an, then b, = 0.5 x 10-4/cm, again a significant error. 

The most pernicious source of sextupole terms in both conventional and 
superconducting magnets is remanent magnetization, arising from finite 
remanence in ferromagnets and persistent currents in superconducting mag- 
nets. Rather than digress into a discussion of material properties, let us 
rather illustrate the appearance of sextupole terms in a simpler but equally 
common situation-that due to eddy currents in a conducting vacuum 
chamber. 

In Figure 4.3, we have added a vacuum chamber to a dipole magnet. If the 
magnetic field is changing with time, according to Faraday’s law there will be 
an emf induced in a loop characterized by positions fx from the chamber 
center as illustrated in the right hand portion of the figure. The electric field 
is 

E = B x ,  (4.9) 
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Figure 4.3. Dipole magnet with steel vacuum chamber. 

and if the material has conductivity a,  the current density is 

j = UE = UBX. (4.10) 

The total current within the area between x = 0 and x is then 

I = huBx2 ,  (4.11) 

where h is the thickness of the chamber, and the contributions of both top 
and bottom have been included. Therefore, the field difference between the 
center of the magnet and x is 

A l l  = poI/g = pohuBx2/g (4.12) 

which is a sextupole field, with moment 

(4.13) 

As an example, let's consider the Main Ring synchrotron at Fermilab. The 
vacuum chamber is stainless steel for which pow = 2 sec/m2. For h / g ,  take 
3, and for b / B  use lO/sec. Then b, = 3 m-2. Again, this is a significant 
field perturbation. To verify that the aforementioned field errors are indeed 
significant, the expressions for closed orbit distortions, tune shift, and chro- 
maticity derived in the last chapter can be employed, using the table of 
Fermilab Main Ring parameters found in the Appendices. 

1 

4.1.3 The Driven Oscillator and Rational Numbers 

We may now return to the equation of motion for a betatron oscillation as 
written after the Floquet transformation, Equation 4.5: 

(4.14) 
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Writing AB in terms of the multipole expansion above, we obtain 

(4.15) 

A term on the right-hand side with the same frequency as the natural 
frequency, v, of the oscillator would be cause for concern. The products of 
amplitude functions and multipole coefficients can be expressed as Fourier 
series in 4: 

(4.16) 

while the solution to the inhomogeneous equation of motion can be written 
as 

(4.17) 

Consider the first term; 60 represents the dipole field error. If the product 
p3I2bO has a nonvanishing k th  harmonic at k = v, a resonant condition will 
exist. We already know that integral values of the tune must be avoided. 

The next term contains the gradient errors, characterized by 6,. The k th 
harmonic of the factor P26,  can beat with the frequency u presented by 5 to 
produce a driving frequency k - v. The resonance condition k - v = v gives 
k = 2 u ;  i.e., the tune shouldn't be a half integer. Again, we already know 
that. (The beat frequency with the plus sign, k + v = v, is a special case; the 
zeroth harmonic of P26,  is a tune shifting term and represents a "renormal- 
ization" of the left hand side of the equation of motion rather than a 
resonance.) 

The third term represents the effect of sextupole moments. The factor l 2  
can exhibit a frequency 2v; when this is combined with the k th  harmonic of 
P5l2b2 ,  one can have the condition k - 2 v  = v, or k = 3v. That is, the tune 
should not be a third of an integer. The beat frequency k + 211 just leads 
again to the condition that the tune should not be an integer. 

In general, any tune of the form v = k/n can resonate with some 
multipole moment. The integer in the denominator is called the order of the 
resonance; for instance, sextupoles can produce third order resonances, 
octopoles can produce fourth order resonances, and so on. 

This argument can only suggest that problems can arise for tunes equal to 
some rational numbers. Both experience and more quantitative arguments 
indicate that low order resonances need to be avoided. How low is low 
depends on the application and resonance strength. 

A distinction is made between driving terms that arise from random field 
errors and those that arise from systematic imperfections common to all of 
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the magnets. The language used in the discussion above was in the spirit of 
the resonances having their origin in random field errors-construction 
tolerances result in each magnet being slightly different, and so all harmonics 
are represented in the resonance driving terms. The magnets may also 
possess systematic nonlinear multipoles; the overall symmetry of the ring will 
play a role in the presence or absence of particular harmonics. Suppose the 
overall lattice consists of P identical periods; the only harmonics arising from 
systematic field imperfections will be of the form Pk,  k = 1, 2, 3 , .  . . , and 
the resonant tunes will be P k / n .  The greater the symmetry of the ring, the 
easier it is to stay away from systematic resonances. For example, if a ring is 
made up of six identical superperiods and the bending magnets have a 
systematic sextupole field error, the systematic third order resonant tunes are 
the even integers. Highly symmetric synchrotrons are generally rather small. 
In very large accelerators, cost and operational considerations militate against 
the preservation of high symmetry. Therefore, corrector systems must under- 
take the role of compensation of unavoidable systematic field errors. 

Even though we've worked in only one degree of freedom, we should at  
least quote the result for the complete transverse case. The resonances are 
lines in the v,, v, plane of the form 

Mu, + Nv, = P ,  (4.18) 

where M, N, and P are integers all of the same sign (one of the pair M, N 
can be zero) for instability. Justification of this result will be provided in the 
next chapter. The sum of the absolute values of M and N is the order of the 
resonance, and the order can be related to a multipole term just as in the one 
degree of freedom case. If M and N are opposite in sign, the result is 
coupled but stable motion. Take the sextupole case again. There are four 
sum (hence, unstable) resonances: 

3v, = P ,  

2u, + v, = P ,  

v, + 2u, = P ,  

(4.19) 

(4.20) 

(4.21) 

3u, = P .  (4.22) 

The first and third are driven by the sextupole term in the field expansion 
used above. The second and fourth are driven by a sextupole field, but one 
rotated by 30" with respect to the first to form a skew sextupole. 

4.2 A THIRD-INTEGER RESONANCE 

Having introduced the notion of nonlinear resonances in the previous sec- 
tion, the point now is to try to turn the purely qualitative approach into 
something that can claim to be a quantitative treatment. Let's take the case 
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of a sextupole nonlinearity distributed in an arbitrary fashion around a 
circular accelerator. There are several approaches one may take to looking at 
the problem, including Fourier analysis, Hamiltonian perturbation theory, 
and computer simulation. For this discussion, we will treat the nonlinearity as 
a small perturbation of the linear motion. We will assume that the linear 
tune is very close to one-third of an integer, so that we may expect that the 
perturbation of the linear motion will be dominated by the sextupole field. 
On each turn, we add up the effects of the nonlinearities as though they were 
independent of each other, and take stock of the situation at one point on 
the ring after each turn. 

4.2.1 Equation of Motion 

We may write the linear oscillation as 

(4.23) 

where the amplitude function, Po, at the point of observation has been used 
explicitly so that the symbol a can denote a real amplitude at that point. The 
symbol for the phase has been switched to ,y so that $ can be reserved for 
the phase at the point of observation. 

For the other coordinate of phase space, we use 

p x  = p( s ) x '  + a( s ) x  = - a  - )*"sin x, (4.24) 

and the unperturbed motion at any point in the ring is just a circle (see 
Figure 4.4). (Note that p ,  is not the transverse kinematic momentum.) 

Assume a magnetic field A B(x, s), perpendicular to x and s, is introduced 
at s and extends over a length As. The sign of AB is positive if A i 3  is 

Figure 4.4. Phase space coordinates. 
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directed in the same sense as the main guide field. For sufficiently small As ,  
x does not change as the particle traverses As, but the slope does, accord- 
ing to 

and so 

(4.25) 

(4.26) 

As a result of the perturbation, the amplitude and phase have changed. 
From 

1/2 

A x =  (5)  ( A a c o s X - a s i n , y * A X )  = 0 ,  (4.27) 

APx= -(i) ( A a s i n , y + a c o s X * A , y )  = -P- (Bp) (4*28) 
ABAs 1/2 

one finds 

(4.29) 

(4.30) 

Now we add up these perturbations over a turn. Suppose that at  a given 
passage of our point of observation, the phase of the oscillation is +. Then on 
the succeeding turn, the unperturbed phase x would develop according to 

where 

(4.32) 

To obtain the first order equations of motion, we assume that the changes in 
amplitude and phase can be found by adding up the individual perturbations. 
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For the amplitude we immediately obtain from Equation 4.29 

1/2 

- da = L$( P ") AB( x ,  s)sin[ @ + vc$( s)] ds. (4.33) 
dn (BPI P o  

The change in phase at the observation point after passing through one turn 
is 27rv plus the accumulated phase change due to the sum of all the 
contributions typified by Equation 4.30: 

It is the difference between A$ and 27rv that is small in the spirit of our 
perturbation calculation. Therefore, the differential equation for phase ad- 
vance will be 

cos[  * + v4(  s)] ds. (4.35) 
d 

-(@ - 27rvn) = - 
dn 

4.2.2 Recognition of the Sextupole Resonance 

So far nothing has been said about the variety of the nonlinearity represented 
by A B ( x ,  s). Now we take the case of a sextupole'distribution: 

B"( s) 

2 
A B ( x , s )  = - X 2 .  (4.36) 

Insertion of this form of the field into the equation of motion for the 
amplitude as well as Equation 4.23 yields, after some manipulation of the 
trigonometric functions, 

~ ( s i n Q c o s v 4  + cos@sinu+ + sin3@cos3u+ + cos3@sin3v4)ds.  

(4.37) 

We now look for terms that could be additive from turn to turn, that is, 
terms that could represent unstable motion. If the tune were close to an 
integer, the first two terms could be candidates. But if the tune is not near an 
integer (and we assume that it is not), s in@ and cos@ will change rapidly 
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from turn to turn, and so the amplitude will not grow steadily. However, if 3u 
were an integer, sin 3$ and cos 3+ would have constant values from turn to 
turn, and then the amplitude could exhibit growth. So we ignore the first two 
terms and retain the second pair. 

Since we want to study the case where 3u  is not exactly an integer, but 
close, let 3u0 denote the integer of interest, with the tune difference, 
S = u - uo, small compared with unity. The equation of motion for the 
amplitude then can be written 

du 

dn 
_ -  - $u2(  A sin 3$ + B cos 3+) 

with 

(4.38) 

(4.39) 

(4.40) 

In defining A and B, we have used the proximity of u to vo so that A and B 
are true harmonic amplitudes. 

The equation of motion for + is found by the same procedure, but with 
one modification. As a result of the unperturbed motion alone, the phase 
advances by 27ru in one turn, and so + by itself hardly qualifies as a 
continuous variable. This circumstance was already recognized in writing the 
left hand side of Equation 4.35. Now observe that the factors related to + 
that enter the right hand sides of the equations, cos3+ and sin3+, are 
insensitive to the replacement of + by + - 27rvon. We introduce a new 
variable 4 = $ - 27ru0n, and obtain the equations of motion in terms of the 
new phase: 

du 
- = +a2( A sin 3$ + B C O S ~ I ~ ) ,  
dn 

(4.41) 

- +u( A cos 31j - B sin 34) + 2 7 8 .  ( 4.42) 

With the foregoing redefinition, $ is not only a variable continuous in n,  but 
the form of Equation 4.38 is preserved with the replacement of $ by 6. We 
have, in effect, made a transformation to rotating coordinates. 

d* 
dn 
- -  

4.2.3 First Integral and the Separatrix 

The equations of motion were developed in the phase-amplitude form 
because the characteristic of an unstable resonance is more readily identified 
there. The transformation back to (rotating) Cartesian coordinates f, f ix 
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follows from 

RESONANCES AND TRANSVERSE NONLINEAR MOTION 

d6, 6, da d 4  
- dn = - a ( dn) - i (  dn)' 

(4.43) 

( 4.44) 

and gives 

df 
dn 
- = fA(-2@,)  + a B ( f 2  -6;) + 2 ~ 6  *ix, (4.45) 

d i ,  - = +A(ji: - P) + i B (  -2@J - 2 T 6  f.  
dn 

For simplicity consider the case B = 0. A first integral of this system is 

(4 -46) 

( 9 -  ?)[ c2 , - $ ( f + - 8;8)2] = constant = k, (4.47) 

and different phase space trajectories are associated with different values of 
k. This first integral can be found by the usual mixture of technique and 
guesswork associated with solving differential equations. Or one might argue 
that the equations of motion in x' and 6, are some version of Hamilton's 
equations, and so there ought to be a function Z such that 

(4.48) 

(4.49) 

and the first integral can indeed by found by pursuing this course. 

are located at the points 
Notice that there are fixed points which satisfy d f / d n  = dB,/dn = 0 and 

8 ~ 6  
3 i, = o), 

and 

4TS 

""") (f = T,ix = *a A 

(4 S O )  

(4.51) 
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Flgure 4.5. Separatrix when near the third- 
integer resonance. The arrow indicate direction 
of flow of phase space trajectories. 

For these Z , f i x ,  the constant k is zero and the associated figure in phase 
space-the separatrix-is just three intersecting straight lines. Motion within 
the triangle is bounded; motion outside the triangle is unbounded in this 
approximation (see Figure 4.5). 

Along the vertical separatrix, the equation of motion becomes 

4% 4 n s  * - = $AB; - $A( 7)  , 
dn 

(4.52) 

which is easily integrated to yield Ex as a function of n. (See the problems at 
the end of the chapter.) Motion along or near the separatrix is important in 
resonant beam extraction as will be seen in the next subsection. 

Finally, we can define the width of a nonlinear resonance, or at least 
present one of several similar definitions. There is a qualitative difference 
between the linear resonance produced, for example, by gradient errors and 
a nonlinear resonance. In the former case, the entire beam is either stable or 
unstable. In the latter case, the motion may be stable or unstable, depending 
on the oscillation amplitude. A nonlinear resonance doesn’t produce a 
stopband-an essentially linear notion-but a range of tunes of the linear 
lattice throughout which varying fractions of the beam are unstable. 

Suppose the beam has emittance Q = rra2//3,,. If the tune is initially far 
from resonance and the resonance is approached sufficiently slowly, then it is 
reasonable to suppose (since the supposition can be easily checked by a 
simulation) that the phase space area will gradually deform from its originally 
circular boundary into the triangular shape characteristic of the resonance. 
When the tune difference is such that the stable area is equal to the beam 
emittance, one can say with some justification that 28 is a reasonable 
definition of the width of the resonance. For the case that we have been 
considering, the resonance width is given by 

(4.53) 

here the emittance e contains 39% of the particles. Obviously, there is some 
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arbitrariness in such a definition. In the process of injection into a ring, the 
sudden rather than the adiabatic approximation would be reasonable. 

4.2.4 Application to Resonant Extraction 

Much of the foregoing discussion emphasized undesirable consequences of 
nonlinearities. The controlled introduction of nonlinearities may be used to 
advantage, however, and one important instance is the process of resonant 
extraction. It is easy to take the particles in an accelerator out in one turn. 
Unfortunately, that approach to extraction does not necessarily satisfy the 
needs of the experimental program. Rather, it is usually the case that 
particles are to be dribbled out on a time scale of a millisecond to many 
seconds. So we resort to the resonant extraction process, the groundwork for 
which has been established in the previous subsection. 

In this process, the separatrix is made to gradually squeeze the phase 
space occupied by the beam. No matter how slowly this “squeeze” is carried 
out, motion near the unstable fixed points will fail to be adiabatic; for in the 
neighborhood of these points motion becomes arbitrarily slow in the static 
case. Particles depart the stable area at the fixed points and stream out along 
the outgoing arms of the separatrix. But the continuum in amplitudes of 
these outgoing particles leads to beam loss, since somewhere there has to be 
a device that is the start of the channel for departing particles. The partition, 
or septum, between “in” and “out” particles must be as thin as possible in 
order to obtain high extraction efficiency. At present, the thin septa are 
electrostatic. They are not strong enough to fling particles out of the ring, but 
they can establish enough of a gap between “in” and “out” particles so that a 
second, stronger magnetic septum can direct particles into an exit channel. 
The great virtue of the electrostatic septum is that the obstacle presented to 
the beam is very small, about 50 pm. For a proton accelerator with conven- 
tional magnets, it is already important that the losses off the primary 
extraction septum be minimized: the buildup of radioactivity in the ring is a 
major concern for operation and maintenance. For a proton accelerator using 
superconducting magnets, control of the septum loss is essential to avoid 
excessive energy deposition in the magnets with the attendant risk of super- 
conducting to normal transition; that is, the extraction process brings with it 
the danger of a quench. 

The third integer resonance can be used for slow extraction. The phase 
space at the first septum might look like the sketch in Figure 4.6(a), where 
the coordinates are the x and p x  in the unrotating frame. The septum is 
located a distance x, from the center of the aperture. The step size, A, is the 
growth in x in three turns. The orientation of the figure is determined by the 
resonance driving terms, the azimuthal harmonics of the sextupole distribu- 
tion. Only the outgoing arms of the separatrix are shown in this figure. The 
figure must be oriented in such a way that the septum kick transforms into a 
displacement at the second septum while preserving the distinction between 
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h 

Magnetic 
septum 

( b )  

Figure 4.6. Phase space separatrices at (a) the location of the first (electrostatic) septum, and 
(b) the location of the second (magnetic) septum. 

particles departing the aperture and those remaining in the accelerator. For 
instance, the phase space at the second septum might appear as shown in 
Figure 4.6(b). The 90" rotation between the two figures projects the kick of 
the first septum fully onto the second septum; the orientation of the first 
ensures that the extracted beam is well displaced from the circulating beam 
in the second. 

All that remains to be specified are the strength of the resonance driving 
terms-the integrals A and B above-and the tune difference, 6 v ,  from 
resonance. Since the ratio of A and B is already set by the orientation of the 
separatrices at one of the septa, only two quantities remain to be determined. 
There are two conditions to be satisfied. The step size A should span the 
septum aperture for efficiency, and the stable area should correspond to the 
emittance of the beam at the onset of extraction. The relationships between 
the step size and stable area on the one hand and the driving terms and tune 
difference on the other were exhibited in the last section. A bit of geometry 
needs to be added to that discussion, having to do with the projection of 
motion along the separatrix onto the x-axis. The steps are not hard to carry 
out, if the critical reader wants to pursue them. 

More in line with the focus of this discussion is the subject of extraction 
efficiency. As noted in the preceding paragraph, it was evident from the last 
section how to produce a slow spill beam. But what fraction of the particles 
strike the first septum? 

In order to estimate the extraction inefficiency, let us suppose that the 
extraction process proceeds so slowly that it may be considered a static 
process. Then, the particle density distribution along an outgoing separatrix 
or along the projection of the separatrix onto a coordinate axis varies 
inversely as the rate of change of position along that coordinate. To convince 
oneself of this, let F ( x , ) A x ,  be the number of particles in an interval A x ,  at 
x , .  After some time interval T has elapsed, the particles find themselves in 
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XI x2 

Figure 4.7. Porticle distribution function F(x) .  

Ax, at x2. The number of particles is the same, so 

F(x2)Ax2 = F(xl)AxI 

From 

x 2 + A x 2  dx 
I 

x2 dx 
= 

dr/dl = / , , , A x l  dx/dt 

it follows that 

dx 

or 

- A x 2  - A X 1  

( dx/dt) 1 ( dx/dt )* 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

where Figure 4.7 may be helpful in identifying the quantities. 
So Ax varies directly as dx/dt; therefore F(x) varies inversely as dx/dt. 

It will be more convenient to use the turn number, n, as the independent 
variable; that is, we take the spatial dependence of F to be of the form 

1 

dx/dn 
Fa-. (4.58) 

If a septum of thickness w in the x-coordinate is located at a distance x, 
from the central orbit, then the inefficiency e, defined as the fraction of 
particles that strike the first septum, is 

x , + w  dx 
= [L, dr/dn]/[[&] (4.59) 

(4.60) 
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The second form above acknowledges, in the denominator, that the particle 
density distribution cuts off at a distance x,  + A, with A being the step size, 
that is, the growth during x in the number of turns, N, between successive 
encounters with the septum at the proper phase for exit from the ring. In the 
third-integer case, N = 3. 

The septum thickness w is small compared with x, ,  and the integral in the 
numerator can be replaced by w / ( d x / d n )  evaluated at x,. The integral in 
the denominator is just N. So for the inefficiency we can use either of the 
following forms: 

1 W 
- _ -  . (4.61) 

W 1 
e =  

( d x / d n ) x j  j x ’ + A d x / (  d x / d n )  N ( d x / d n ) x ,  
x ,  

Note that the flatter the distribution F, the better the efficiency. This 
circumstance favors the choice of low order multipoles to generate the step 
size. 

Let us estimate the inefficiency for third-integer extraction in the limit of 
vanishing stable phase space; the algebra is simplified by going to this limit, 
but all the principles remain the same. The situation is illustrated in Figure 
4.8. Projected on the x-axis, the equation of motion for a particle traveling 
outward on the separatrix is 

dx 1 resonance driving term 
- = -  X 2 .  (4.62) 
dn 4 COS e 

The expression for the inefficiency immediately gives 

x,  + A 
e = w-. 

xsA 
(4.63) 

The expression in the numerator is related to the maximum displacement to 

x s  

Flgure 4.8. Step size across the septum. 
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be tolerated elsewhere in the ring, according to 

(4.64) 

where p, is the amplitude function at the septum, and Po is the maximum 
value of the amplitude function in the standard cells of the ring where the 
aperture limitations are to be found. The angle 0 has already been set by the 
arguments concerning the orientation of the separatrices at the two septa. 
For fixed x ,  + A, the mimimum in the inefficiency occurs for x ,  = A, and so 

4w 
x ,  + A 

e .  =- min (4.65) 

As a numerical example, let's take the superconducting synchrotron at 
Fermilab. The maximum oscillation amplitude in the arcs of the ring was 
fixed at 20 mm, after extensive simulation of particle motion in the fields 
provided by the superconducting main magnets. The lattice insertions for 
extraction devices were designed with p, a factor of '2.3 larger than the 
maximurn amplitude function in the standard cells. With 0 = 45" and a 
septum thickness of 0.1 mm, the minimum inefficiency is 1.9%. 

The accelerator in this example actually uses half-integer extraction; 
instead of sextupoles, the ring contains appropriate quadrupoles and oc- 
topoles. The distinction between the two approaches need not concern us 
here. The analogous calculation to that of the preceding paragraph leads to 
an inefficiency of 1.7%. It is interesting that inefficiency at  this level implies 
generation of secondaries in the septum with a flux almost two orders of 
magnitude higher than would be tolerated by the superconducting magnets 
located downstream, requiring additional protective measures to be taken. 

4.2.5 Comments on Correction Systems 

In Chapter 3, we mentioned two types of correction magnets-those to 
compensate steering errors or make steering adjustments, and those to adjust 
the tune. These are elements of the correction magnet system. More properly 
this collection of elements should be called the correction and adjustment 
system, since it actually performs both functions. 

Steering correction is conceptually simple. Tune correction brings with it 
the additional complexity of amplitude function perturbation, or equivalently, 
half-integer resonance excitation. Chromaticity compensation through the 
use of sextupole magnets can excite any of the sextupole driven resonances; 
or, if we wished to excite the third-integer resonance for slow extraction, we 
certainly would not wish to affect the chromaticity of .the accelerator. That is, 
correction systems should perform specific functions cleanly without the 
introduction of possibly undesirable side effects. 
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w- 
Figure 4.9. Two sextupoles of strengths S, and S, separated in phase by 90” on the 3v0 
harmonic, where uo is the third-integer resonance tune at which compensotion is to be 
performed. 

Since we have been discussing sextupole effects, let’s concentrate on this 
case. For definiteness, suppose that we wish to compensate the one-degree- 
of-freedom third-integer resonance arising from field imperfections related to 
nonvanishing b, in the bending magnets of a synchrotron. This description is 
completely equivalent to the generation of resonance driving terms for 
third-integer extraction. In general, there will be two driving terms A and B,  
as given in Equations 4.39 and 4.40, generated by the errors. So we need two 
“knobs” which can be adjusted to compensate these driving terms. Note that 
the driving terms A and B are 90” out of phase with each other on the 3u, 
harmonic. 

The simplest way of effecting this correction might appear to be the 
introduction of two correction sextupoles at locations of equal values of the 
amplitude function p,  differing in phase from one another by 90” on this 
harmonic; that is, the two correctors could be some odd multiple of 30” in 
betatron phase apart. We could represent these two sextupoles in a phasor 
diagram as shown in Figure 4.9, where the phasor amplitude is proportional 
to the strength of the sextupole, S = B”f/2(Bp). 

The summation of all the sextupole field errors around the ring also can 
be represented by a phasor in this diagram. By a suitable choice of strengths 
and polarities of the two correction sextupoles, their resultant phasor can be 
made to cancel the phasor due to the errors, and hence the resonance driving 
terms given by Equations 4.39 and 4.40 can be brought to zero. 

But unless we are so lucky that p l S , D ,  = -&SzD2,  where D is the 
dispersion function, then the chromaticity would be changed by the correc- 
tion. So, for pure resonance correction, we usually are led to a somewhat 
more complicated scheme. Suppose all of our harmonic compensation set are 
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Flgure 4.10. The v, - 195 resonance compensation circuit of the Tevatron contoins sets of 
eight sextupoles, each located at a standard focusing quadrupole location in the FOOO orc 
lattice, with the polarities shown. The sextupoles labeled S1 are powered together, as are the 
ones labeled S,. 

located at equal values of dispersion as well. Then a scheme in which each 
sextupole is paired with a sextupole of equal strength but opposite sign 180" 
out of phase on the 3v0 harmonic will produce the desired results. 

Let's carry this discussion to a more complicated case where the phase 
advance is not ideally suited to the introduction of sextupoles for resonance 
compensation. This is the circumstance, for instance, of the Tevatron. The 
phase advance per cell is 68", and the tune is somewhat above 19;. For the 
194 resonance, the harmonic of interest is k = 58. Because the Tevatron is 
basically twofold symmetric, placement of equal strength sextupoles diametri- 
cally opposite one another will guarantee that only even harmonic resonances 
will be driven (or compensated). 

The distribution of sextupoles to drive or compensate the ux = 194 reso- 
nance is shown in Figure 4.10. The amplitude function is the same at each 
sextupole, and the resulting phasor diagram is shown in Figure 4.11. 

Figure 4.1 1. Phasor diagram resulting from set of eight sextupoles used to corred ihe vX - 19; 
resonance in the Tevatron. 
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The two families of sextupoles produce resultants which are approxi- 
mately, though not exactly, 90” in phase apart on the 3u0 harmonic. Figure 
4.10 shows two neighboring families of four sextupoles each, and in the 
Tevatron this pattern in replicated three additional times. The necessity for 
32 sextupole magnets as opposed to, say, four is dictated by the need to 
produce a desired compensation strength while only limited space was 
available for an individual element. 

It is probably clear that there is not a unique design approach for 
correction and adjustment systems. The approach reflects both the needs of 
the accelerator and the predelictions of the designer. 

4.3 THE HAMllTONlAN FORMALISM 

Only the most basic methods of dynamics have been used thus far, because 
we feel that the physics at  work is most transparently illustrated in that way. 
But much of accelerator physics makes use of one form or another of higher 
dynamics. The Hamiltonian approach is the method most frequently encoun- 
tered in the literature.’ 

In this section, we review the Hamiltonian form of dynamics, and then 
recast much of the material of the earlier discussions in this language? No 
new physics is introduced, but the generality obtained may be helpful to the 
reader who wishes to pursue this approach further. 

4.3.1 Review of Hamiltonian Dynamics 

For a system with n degrees of freedom, there is a function H ( q ,  p, t )  called 
the Hamiltonian. The variables are n generalized coordinates, their n conju- 
gate momenta, and the time t .  For the present, we are suppressing the 
subscripts on the variables, but we will include them when clarity demands it. 
The 2n equations of motion-Hamilton’s equations-are then 

(4.66) 

The Hamiltonian approach focuses from the outset on motion in the 
2n-dimensional phase space of the dynamical variables p and q. At the 
beginning of our discussion, the variables will indeed resemble the momenta 
and coordinates of elementary mechanics. But that resemblance will fade as 

‘See, for example, R. D. Ruth, “Single-Particle Dynamics in Circular Accelerators,” and 
L. Michelotti, “Introduction to the Nonlinear Dynamics Arising from Magneic Multipoles.” 
Physics of Particle Accelerators (SLAC Summer School 1985, Fermilab Summer School 19841, 
AIP Conf. Proc. 153, 1987. 
*H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley Publishing Co., 1981. 
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we progress. In basic mechanics, we are all familiar with point transforma- 
tions in configuration space. That is, we introduce new coordinates Q related 
to the old positions q by n equations of the form Q = Q(q). In phase space, 
more general transformations among all 2 n  variables are possible and useful. 
All we require is that the form of Hamilton’s equations be preserved. 

Suppose we transform from variables p, 4 to variables P, Q, and that the 
new Hamiltonian is K ( P ,  Q, 1) .  Hamilton’s equations will be valid in both 
sets of coordinates, provided both satisfy the modified Hamilton’s principle: 

6/(  pid i  - H )  dt = 0, (4.67) 

a/(  p i e i  - K )  dt = 0, ( 4.68) 

where summation over the repeated indices is implied. The “modified” 
means that both positions and momenta are varied independently between 
the end points. The above will be satisfied if the integrands differ by only the 
total time derivative of some function F :  

dF 
( p , f j , - H )  = ( 4 Q i - K )  + -. (4.69) 

dt 

The transformations that maintain the validity of Hamilton’s equations are 
called canonical transformations, and F is called the generating function. 
Note that the modified Hamilton’s principle will remain valid also in the case 
that the integrands are in the ratio of some constant factor A: 

A( pigi - H )  = PiQi - K .  (4.70) 

This is also a canonical transformation, corresponding to a scale change of 
the variables. We will encounter instances of this type of transformation in 
the next section. 

The function F is in general a function of both the old and new variables 
as well as the time. We will restrict ourselves to functions that contain half of 
the old variables and half the new; these are useful for determining the 
explicit form of the transformation. The function F may then take on any of 
the following four forms: 
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Now, if we insert each of these into 

dF 
( p i 4 ;  - H )  = (PiQi  - K )  + - 

dt  ’ (4 -75) 

we obtain the relationships between old and new quantities listed below. 

(4.76) aF, 
aQ ’ 

p =  -- aF, 
a4 

a4 

p = - ,  

(4.77) aF2 Q = -  aF2 
ap ’ P = - ’  

(4 -78) aF3 
aQ ’ 

p =  -- aF3 
aP 

aF4 
aP 

4 =  - - 9  

(4.79) 3F4 
aP 

Q = - .  4 =  --’ 

In all four cases, 

aF; 
at  

K = H + -  (4.80) 

4.3.2 The Hamiltonian for Small Transverse Oscillations 

The relativistic Hamiltonian for a particle of charge e moving under the 
influence of+ an electromagnetic field characterized by vector and scalar 
potentials A and V is 

(4.81) 

where p’ is the momentum conjug3te to the Cartesian posgion coordinates of 
the particle. The magnetic field B and the electric field E are given by 

J = V X A :  (4.82) 

2 a2 
at 

E, = - v v -  -. (4.83) 

Recall that the canonical momentum j’ is related to the kinematic momen- 
tum ymv’ by 

-. 
y m Z =  5 -  eA.  ( 4.84) 
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In Chapter 3, we developed an equation of motion for small transverse 
deviations from the reference orbit. We want to follow the prescriptions of 
the Hamiltonian formalism and arrive at  the same point. First, perform a 
canonical transformation with generating function 

F = F 3 ( p , Q , t )  = p ’ *  ( p a  + x i  + y j ) .  (4.85) 

Then, following the rules of the preceding section, 

(4.86) 

(4.87) 

(4.88) 

Again, as in Chapter 3, we assume that the curvature is locally a constant to 
simplify the discussion. Note that ps  is not the tangential component of the 
conjugate momentum. In order to preserve the relationship between compo- 
nents of the momentum and components of the vector potential, we define a 
canonical vector potential according to 

(4.89) 

+ 
A, = A  - 2 ,  (4.90) 

-. 
A,, = A  * j .  (4.91) 

The generating function does not contain the time explicitly, so the new 
Hamiltonian, A?, is just the old Hamiltonian expressed in the new coordi- 
nates: 

I”’ 1 
( P ,  - eA, )2  + ( p x  - eA,)2  + ( p y  - e A y ) 2  + m2c2 

(1 + X / P )  
Rr = c 

+ eV (4.92) 

Now we want to change the independent variable from t to s. Consider 
x’ = d x / d s :  

dx d x / d t  a2?”/ap, 
(4.93) - = - = ~ 

ds ds /d t  a z / a p , ’  
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The last form may be transformed into a partial derivative at constant 2' 
using 

ax ax 
dPx + 

or 

Then for x f  we have 

( 4.94) 

(4.95) 

( 4.96) 

This has the form of a Hamilton's equation for x' with -ps playing the role 
of the Hamiltonian. If the same procedure is carried out for the entire set of 
Hamilton's equations, we find 

aH aH aH 

ax a Y  
p ; =  -- , z=- at p; = --, ( 4.98) 

Therefore, the new pairs of canonical variables are n, px; y, py,  and t ,  - X ,  
with the new Hamiltonian H = -ps. Solving for ps, we obtain for our new 
Hamil tonian 

- eA,. (4.99) 

To proceed we consider, as before, only the case where the electric field is 
zero and where the magnetic field may be described by 

for which we need only a single nonvanishing component of the vector 
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potential, A”. s  ̂ =A, .  Therefore, we may write 

2 

m’c’ - p: - p;) (1 + f ) - eA,. (4.101) 

For constant energy, 2% = E and thus 

.z* - m2c4 
C 2  

= P’, (4.102) 

which gives us 

Finally, we must consider the form of A,. From the definition of the vector 
potential and from Maxwell’s equations, we find 

(4.104) 

X B’ = s  ̂V ’A, = 0 (4.105) 

(4.106) 

or 

A ,  = - B ,  - ;B’(x2 - y 2 )  - ;B”(x3  - 3v2) - . (4.107) 

Thus, A ,  may be obtained from 

(4.108) 

Scaling the Hamiltonian and the conjugate momentum variable by a con- 
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stant, namely the design momentum pol 

(4.109) 

(4  .I 10) 

the final form of the Hamiltonian becomes 

eB, 1 eB' 
- X  + - - ( x 2  - y z ) ) ( l  + J) + . (4.111) 
Po 2 Po 

We may now apply Hamilton's equations to generate the equations of 
motion: 

aH 
X I =  - = p  X l  (4.112) 

apx 

which, for the ideal momentum particle ( p  = p o l ,  becomes 

eB' 
p; = X" = - (; 4- --)& 

which is the same as the result of Chapter 3. 

4.3.3 
In one 

(4.113) 

(4.114) 

Transformotions of the Hamiltonion 

degree of freedom, our small oscillation Hamiltonian is of the form 

X I 2  K ( s ) x 2  
H =  - + - + 

2 2 
. . .  (4.115) 

The first two terms resemble the Hamiltonian for a simple harmonic oscilla- 
tor, though with the typical variation of the spring constant with s. In the last 
section, we found that a phase-amplitude description of the motion was 
useful. In the Hamiltonian formalism, the corresponding quantities are called 
action-angle variables. We wish to identify them and carry out the appropri- 
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ate canonical transformation. The resulting Hamiltonian will still be a func- 
tion of s, and a further transformation will be employed to remove that 
dependence. At that point, the “unperturbed” Hamiltonian will be a con- 
stant of the motion. One could, of course, invert the order of these transfor- 
mations and arrive at the same point. 

The form of the first transformation is suggested by the solutions that we 
have already developed. Recall, for the linear motion, that 

x =.&cos(J, + S ) ,  (4.116) 

(4.1 17) px’  + a x  = -&@sin(* + 6 ) .  

The Hamiltonian H and the solution above suggest that the new unper- 
turbed Hamiltonian, H,, should be of the form 

H ,  = Ho(&) = constant. (4.118) 

So we are motivated to select J, as the coordinate and look for a conjugate 
variable, J ,  which is related to the amplitude. That is, 

x = d ( J ) f i c o s * ,  (4.119) 

(4.120) P X ’  + a x  = - & ( I ) @  sin +, 
where the arbitrary constant 6 has been absorbed into the definition of J,. 

We can easily express x’ in terms of x and $: 

x tan + a x  
x’ = - (4.121) 

P 

Therefore, we look for a generating function of the type F,(x ,  JI,  s), for which 

From the expression for x’ above, integration with respect to x gives 

(4.122) 

(4.123) 

where f(J,) is an arbitrary function which we may set equal to zero. Then, 

(4.124) 
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and from the expression for x in terms of d we see that 

M 2  
J =  - 

2 ’  

or 

d ( J )  = m. 
The new “unperturbed” Hamiltonian becomes just 

(4.125) 

(4.126) 

(4.127) 

Now we wish to remove the s-dependence. Let us choose a new depen- 
dent variable which advances linearly with s in the unperturbed problem 
(which $ does not). The quantity 

ds S 

c jp - 2 r v -  (4.128) 

represents the “flutter” of the phase with respect to the average phase 
advance. Here, C is the circumference of the accelerator. So we wish to 
define a new coordinate, 8,  such that 

ds S 
= e + “flutter” = e + - v R  . (4.129) 

This expression contains the old and new coordinate variables. Therefore, an 
F ,  transformation is not appropriate. Let’s try an F2. We want 

(4.130) 

I = J ,  (4.131) 

and 

Following the same reasoning as above, the generating function is 

S 
F 2 = I  

(4.132) 

(4.133) 
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and the new unperturbed Hamiltonian is then 

lJ 
H - - I .  (4.134) 

O - R  

4.3.4 The Third-Integer Resonance Revisited 

Having found an appropriate form for the unperturbed Hamiltonian H,, we 
may now treat the remaining terms of H as perturbations and thus investi- 
gate the effects of nonlinearities on the particle motion. Let us consider the 
next term in the expansion of the Hamiltonian, namely, that due to a 
sextupole field. We have 

= ;xr2 + ; K ( s ) x 2  + fS(s)x3 
= H ,  + f S ( S ) X 3 .  (4.135) 

The transformations thus far have yielded the following relations: 

x = cos x ,  (4.136) 

where 

(4.137) 

(4.138) 

So the new Hamiltonian is 

( S 1;). (4.139) 
= H, + 3 ~ ( ~ ) ( 2 p 1 ) ~ / ~ ~ 0 ~ ~  6 - v- + 

Now we are in a position to proceed in much the way that we did in the last 
section. The amplitude function and sextupole strength are periodic func- 
tions of s, so we may expand the factor containing them in a Fourier series: 

P3’2S( s) = c w, cos[ m+( s)] , 
rn 

1 
97R 

w, = - /P3/2S( s) cos( m4) h, 

(4.140) 

(4.141) 
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where the angular variable 4 is s / R ,  and for simplicity we write only the 
cosine terms. Then, also expanding the cosine-cubed term, the Hamiltonian 
becomes 

V 
H = -I + k(21)3/2 ~ W r n c o s m ~ ( c o s 3 ~  + 3 c o s x )  

m R 
V 

= - I  + & ( 2 1 ) ~ / *  c ~ ~ [ ~ ~ ~ ( 3 ~  + m 4 )  + C O S ( ~ ~  - 3x1 
m R 

+ 3 COS( x + ~ 4 )  + 3 COS( md, - x)] . (4.142) 

From the equation for the rate of change of the action, 

dI aH 
_ =  -- 
ds ae 

= & ( 2 1 ) ~ / ~  C ~ , [ - 3 s i n ( 3 ~  + m4) + 3sin(m4 - 3x1 

- 3 sin( x + m4) + 3 sin( m 4  - x)], 
rn 

(4.143) 

we see that if there is an integer m such that 3x = m 4 ,  then the condition 
for a resonance is satisfied. To examine the phase space near resonance, we 
go to rotating coordinates as we did in the more elementary treatment. Now, 
of course, this requires yet another canonical transformation. We take 

F, = I , ( @  - F), (4.144) 

where v o  = m/3 is the resonant tune. This transformation leaves the initial 
action I and the final action I, the same, so we will suppress the subscript. 
The new coordinate, 8, is 

S 
el = e - vo-  

R 
( 4.145) 

with the new Hamiltonian given by 

" 
P 

S 
R 

H = --I + f ( 2 1 ) 3 / 2 W r n ~ ~ ~  rn4 - 38, + 3 6 4  - 3/--) .  (4.146) 

As before, S = v - vo. 
In these coordinates, Hamilton's equations give 
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At the fixed points, the derivatives above are each equal to zero. The first 
tells us that the argument of the cosine function in the Hamiltonian must be 
equal to an integer times T ,  From the second, the distance to the fixed points 
is given by 

2 

I =  (2).  (4.149) 

To the degree that I can be related to the amplitude d of the unperturbed 
motion according to the relationship used above, the amplitude of the fixed 
point is given by 

88 
d = - .  

w m  
(4.150) 

This is the same as the result in the last section, taking into account the 
different definitions of amplitudes and Fourier coefficients. 

PROBLEMS 

1. Derive the inhomogeneous equation of motion after the Floquet trans- 
formation has been applied (Equation 4.5). 

2. For a picture frame dipole magnet where the cores meet perfectly on one 
side but are separated by a small gap h on the other, show that the 
quadrupole term generated is given by 

where g is the nominal gap height and w is the pole width. 

3. Consider a unit square in the tune diagram (i.e. w y  vs. uH) with corners 
at (n, n), (n + 1, n), (n, n + l), (n + 1, n + 1). Draw the lines represent- 
ing all sum resonances through fourth order. 

4. Using Equations 4.48 and 4.49, find the first integral to the equation of 
motion as given in the text. 

5. Integrate the equation of motion (Equation 4.52) along the vertical 
separatrix for the resonance considered in the text. Verify that the 
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number of turns, n, to progress from y o  to y is 

I 
J 

-Yo  + i 3  

-Yo - i 3  

- y  - 43 

- y  + i 3  

1 J 4T6 4 7 6  

( 4 7 s  4Trs 

. = - I "  

2 6 ; .  - 

6. Assume that a single thin sextupole is placed in a ring. The point of 
observation is chosen to be at the midpoint of the sextupole. Its strength 
is such that the harmonic driving term A is 

For positive 6, the separatrices will be oriented as sketched in the text 
above. Take 6 = 0.006. Using the result of the preceding problem, find 
the position after 3 turns of a particle that starts from y o  = 10 mm. 

7. The single sextupole case would appear to be a long way from the spirit 

8. 

9. 

of the derivation upon which the analytical results are based. Using a 
computer, carry out a turn by turn calculation for the same particle as 
that in the example above. That is, start at the midpoint of the sextupole 
and give the particle a deflection appropriate to half of the sextupole. 
Propagate around the ring with a linear matrix, then deliver another 
half-sextupole kick. Compare with the result of the preceding problem. 
How do you know if you are even on the separatrix? 

The length scale and sextupole strength in Problem 6 are useful in 
relating the dynamics to realistic values in accelerators. But for calcula- 
tional purposes, it is easier to cast the mappings in dimensionless form. 
Note that the driving term A of Problem 6 has the dimensions of inverse 
length. Using 1/A as the unit of length, introduce new variables with x 
and p x  scaled accordingly. State the mapping of the preceding problem 
in these new variables. Note that the only remaining parameter is the 
tune, and so phase space plots developed in these variables are charac- 
teristic of the tune only. Modify the program that you wrote for the 
preceding problem accordingly, and repeat the calculations. Compare the 
behavior near resonance (6 = 0.006) with that far from resonance ( 8  = 

0.09). 

Investigate the deformation of phase space from a circle as a single 
sextupole is turned on by an extension of the turn by turn calculation 
carried out in Problem 8. As the phase space occupied by the beam 
exceeds the stable region provided by the ring, observe that particles 
depart along or near the separatrices in the near resonance situation of 
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10. 

11. 

the static case provided the rate of variation of the sextupole strength is 
sufficiently slow. This is a multiparticle problem, and you will have to 
decide how the initial phase space is to be populated. 

The field of an octopole magnet varies as the cube of the horizontal or 
vertical displacement from its center, so one might expect an average 
octopole moment to produce a fourth-power term in the “potential” for 
betatron oscillations. The oscillation frequency would then depend on 
the oscillation amplitude. Carry out the same steps as used in the 
derivation of the amplitude and phase equations but with octopole fields 
rather than sextupole fields. Assume that the tune is far from resonance, 
so that any harmonic driving terms are unimportant. Show that the 
equations of motion are 

du 

dn 
0, - =  

- &*D 
d* 
dn 
_ -  

with 

The tune change with amplitude is then 

1 3  
2~ 8 

Av( U )  = - -h2. 

Although the stopband width arising from quadrupole errors is a prob- 
lem connected with the linear motion, we didn’t calculate the width in 
Chapter 3. It is relatively easy to do at this point, as another example of 
the method used for treating nonlinear motion. Repeat the steps of the 
sextupole case, but with quadrupole terms instead. For simplicity, assume 
that the only nonvanishing integral is 

B‘ cos 2v04 ds. Q = -#- P o  P 
(BPI P o  

Show that the equations of motion in x and px are 

dx _ -  1 

dn - -TQP, + 2 ~ s  * p X ,  
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where S is now the difference in tune from the half integer. Show that 
the motion is unstable for all particles over the tune range of the 
unperturbed ring given by 

1 
27r 

AV = -1QI. 

12. 

This is the stopband width. 

The results of Problem 10 and Problem 11 may be combined to illustrate 
another approach to slow extraction-the so-called half-integer method. 
Suppose the unperturbed tune is just below one-half of an integer. In the 
presence of an average octopole moment, some large amplitude particles 
may find themselves in the half-integer stopband if the appropriate 
quadrupole harmonic is present. Show that, in lowest order of perturba- 
tion theory, the separatrices in this case consist of two intersecting 
circles. 



CHAPTER 

Tra nsve rse 
Coupled Motion 

In this chapter we generalize the discussion of transverse oscillations to two 
degrees of freedom. From a design point of view it would be convenient if the 
two transverse motions were independent. But in a real accelerator, such is 
not the case. A horizontal betatron oscillation will be deflected into the 
vertical degree of freedom if the particle encounters a horizontal magnetic 
field transverse to its direction of motion. Suppose in our otherwise perfectly 
constructed accelerator a quadrupole magnet has been rotated through a 
small angle 4, clockwise looking along the beam direction, so that the poles 
are no longer inclined at angles of 45”, but rather at angles 45” f 4. Then the 
transverse components of the magnetic field that the particle encounters 
will be 

By = B‘( x cos 2 4  + y sin 2 4 ) ,  

B, = B‘(ycos24 - x s i n 2 4 ) ,  
(5.1) 

where B’ is the gradient of the quadrupole. (See Problem 1 at the end of the 
chapter.) Then a particle which starts out with an oscillation in the horizontal 
plane will see a vertical deflection when it passes through this field. Similarly, 
a vertical oscillation will receive a horizontal deflection. This is an example of 
linear coupling, in that the equations of the coupled motion remain linear in 
x and y. An example of nonlinear coupling is that due to a normal sextupole 
field: 

B, = B”Q, 

An Introduction to the Physics of High Energy Accelerators 
D. A. EDWARDS, M. J. SYPHERS 

Copyright 0 2004 WII.EY-VCtI Vrrlag GinbH & Co. KGIA 
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Figure 5.1. A system of two masses and three springs. 

Here, a pure horizontal oscillation will remain so, while an oscillation which 
begins solely in the vertical will couple into the horizontal degree of freedom. 

In the following two sections we examine linear and nonlinear coupling, 
respectively. Though we do not attempt an exhaustive treatment of either, we 
hope to expose the essential physics of the topic. 

5.1 LINEAR COUPLING 

As an introduction to coupled motion we will review the familiar case of a 
pair of coupled simple harmonic oscillators. Then we extend the perturbation 
formalism developed in the previous chapter to the problem of coupling 
induced by rotated quadrupole fields. We conclude with remarks on the 
4 X 4 matrix formulation and treatment. 

5.1.1 Coupled Harmonic Oscillators 

Suppose we have a spring system such as is shown in Figure 5.1. The 
equations of motion are 

mii + ( k ,  + k ) x  - ky = 0, 

my + ( k 2  + k)y - kr = 0, 

where k,, k,, and k are the restoring forces per unit displacement for 
springs 1 and 2 and for the coupling spring, respectively. If we let 0: = 
( k ,  + k ) / m ,  0; = (k, + k ) / m ,  and 4, = k / m ,  then the equations of mo- 
tion become 

i + 0 : x  - q 2 y  = 0 ,  

y + O ; y  - 42x = 0 .  

Following the standard procedure of identifying normal mode frequencies, 
we look for particular solutions of the form 



146 TRANSVERSE COUPLED MOTION 

0 1  

Figure 5.2. Eigenfrequencies of system of two coupled harmonic oscillators. 

Substituting these solutions into the equations of motion, we find 

and thus 

Solving for w2 we find 

(5 .9)  

(5.10) 

(5.11) 

(5.12) 

Though there seem to be four frequencies, they occur in positive and 
negative pairs; we use the positive solutions below. A plot of the two 
frequencies as functions of w1 (keeping w 2  constant) is shown in Figure 5.2. 
The figure illustrates that for w 1  much less than w 2 ,  the eigenfrequency 
associated with mass 1 is 0-; for w ,  much greater than w 2 ,  the associated 
eigenfrequency is w +. When the unperturbed frequencies are near each 
other, one can no longer associate one frequency with each mass. Rather, the 
motion is composed of a superposition of the two eigenfrequencies. 

Figure 5.2 also illustrates a minimum separation of the two eigenfrequen- 
cies when w1 is near w 2 .  For the special case where w 1  = w 2  = w o  
(i.e., where k, = k2 = kJ, 

w = d m -  
= &z, i( k, + 2 k ) / m .  (5.13) 
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Notice that one of the frequencies is that of the unperturbed motion. This 
is the frequency for the mode in which the two masses oscillate in phase with 
each other and thus the coupling spring exerts no force. 

The two frequencies of the system cannot be the same. Even if the 
frequencies of the two uncoupled oscillators were identical, the degeneracy 
would be broken by the introduction of coupling. The smallest frequency 
separation (Aw) can be found by writing the two eigenfrequencies as 

Thus 

w: = w; + 42, 

0: = w; - 42. 

2 w: - 0 5  = ( w + +  w - ) ( w + -  w - )  = 29 , 

and for w + =  w - =  w,,, the minimum angular frequency difference is 

Aw = q2/w, .  

(5.14) 

(5.15) 

(5.16) 

(5.17) 

The more detailed treatments of the remaining subsections examine other 
facets of the coupled oscillator problem with particular application to particle 
motion in magnetic fields. But the practical essentials are contained in the 
foregoing simple discussion. Coupling moves the frequencies about-moves 
the betatron oscillation tunes, in the case of an accelerator-and so can 
defeat the precise tune control needed to avoid resonances in devices such as 
colliders. At an even more elementary level, coupling is an irritant in 
diagnosing beam behavior, for the eigenfrequencies and eigenmodes are no 
longer associated with the degrees of freedom specified in the design. 

5.1.2 Perturbation Treatment of a Single Skew Quadrupole 

In high energy accelerators, there are two sources of linear coupling insofar 
as single particle motion is concerned: rotated (or skew) quadrupole fields 
arising from alignment errors, and occasionally, solenoidal fields associated 
with high energy physics experiments. Here we concentrate on the first, 
though the techniques readily admit of generalization. 

We apply the method of variation of parameters used in Chapter 4 to the 
motion in the presence of a single skew quadrupole. In the introduction to 
this chapter, we wrote down the field of a quadrupole which had rotated 
about its axis through an angle 4 from its normal orientation. For small 4, 
the changes in x’ and y’ for a particle traversing this rotated quadrupole, in 
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- 4  1 - 2 4 4  0 - 
- 0 0 1 

the thin lens approximation, are 

X I  

O y '  

(5.18) 

M, = 

(5.19) 

- q 1 0 0  
0 0 1 0 '  

where x and y are the transverse betatron oscillation displacements at entry 
to the quadrupole, and q is the inverse focal length of the thin lens 
quadrupole. In matrix form, these equations become 

(5.20) 

The matrix above can be factored into the product of the matrix of a normal 
quadrupole and the matrix of a pure skew quadrupole (that is, one which has 
its poles rotated by 45") of strength 24q:  

M = M,,M, = M,M,,, (5.21) 

where 

(5.22) 

1 0 0 0  
1 - 2 4 q  0 

(5.23) 

- 2 4 4  0 

Thus we see that the rotated quadrupole can be treated as a pure skew 
element perturbing the basic lattice. 

As in Chapter 4, we look at the long term effect of a single perturbing 
element, in this case a skew quadrupole, in a synchrotron. We will find that if 
the sum of the unperturbed tunes is an integer, we have an unstable 
resonance; if the difference is an integer, we have stable but coupled motion, 
and we will obtain an expression for the minimum tune separation in the 
latter case, analogous to the corresponding expression obtained for the 
classical coupled oscillator derived above. 
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Let's describe the horizontal and vertical motion at the location of the 
pertubation by 

(5.24) 

p ,  = a , x  + P , X '  (5.25) 

= - a G s i n + x ,  

y = b E c o s  1,4~, 

(5.26) 

(5.27) 

p y  = a Y y  + P Y y '  = -b - sin$,. i ;: (5.28) 

In this form, a and b are the amplitudes of the motion as measured at a 
common value of the amplitude function Po. Again, in the thin element 
approximation we obtain Ax = Ay = 0 in passing through the skew 
quadrupole and 

Aa 
A$, = - cot $,, 

a 
Ab 
b 

A$, = - cot $,. 

(5.29) 

(5.30) 

Substituting Ax' and Ay' due to the skew quadrupole, we obtain 

Aa = k m b  sin 4, cos $,, 

Ab = k m a  sin I,4y cos $,, 

(5.31) 

(5.32) 

b 

a 
a 

A*, = km- ~ s * , c 0 s * , ~  (5.33) 

A$y = k m  ; cos #x cos #, (5.34) 

where k = 2 4 q  for our particular case of a rotated quadrupole. 

Looking at the first, 
We may use trigonometric identities to rewrite the difference equations. 
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we see that there are two possibilities for secular change, namely, if the 
difference between the horizontal and vertical tunes is near an integer or if 
their sum is near an integer. Consider the difference equations for the 
amplitudes. The situation of the preceding sentence leads to the following 
relationship for fractional change in the two amplitudes: 

Aa hb 

b U 
_ -  - f-, (5.36) 

where the upper sign goes with the case where the sum is near an integer, 
and the lower sign for the other case. An invariant of the motion follows 
from integration of the above: 

u2 + b2 = Constant, vx - vy = integer; (5.37) 

u2 - b2 = constant, vx + vy = integer. (5.38) 

For the first case, the difference resonance, the sum of the squares of the 
amplitudes is constant and therefore the motion is bounded. In contrast, for 
the sum resonance the amplitudes lie on hyperbolae in a-b space, and hence 
the amplitudes may become arbitrarily large. 

We will now concentrate on the particular case of the difference reso- 
nance. We must again transform our difference equations into differential 
equations. As earlier, the amplitude equations can be readily converted. 
However, the change in the phase advance per turn is not small, and so a 
more suitable angular variable must be introduced. 

Suppose the tunes vx and vy are a distance 6 away from the line 
vx - vy = rn in tune space as indicated in Figure 5.3. Then we may define 
new variables x x  = +hx - 2 d v o  + m), xY = +hy - 27rvo, and the new differ- 

Figure 5.3. Operating point near a difference resonance. 
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ential equations we wish to solve are 

da 
- = &bsin(xx - x y ) ,  
dn 
db 
- = -;Kasin(x, - x y ) ,  
dn 

dxx b 
- - I  
dn a 
d x ,  1 a 
dn 

- 3 K -  cos( Xx - X,) + P a s ,  

- -  - ‘ K g  COS(Xx - X,) - Pas, 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

where K = k\lp,py = 24q\lp,py. These equations are more easily solved in 
Cartesian coordinates. Because we have transformed to a new angular 
coordinate, we define new rectangular coordinates, which we still refer to as 
x and y to keep the nomenclature simple. Since 

a!x x da dxx 

Px da d x ,  dPx 

_ -  - -- + P X Z ’  dn a dn 

dn a dn dn 
- - X - ,  __ - -- 

(5.43) 

(5.44) 

and similarly for dy/dn and dp,/dn, we may generate the equations of 
motion in the new coordinates. Expanding the trigonometric functions 

cos( xx - x , )  = cos xX cos xy + sin xx sin xy (5.45) 

= ( f)(  g) + (?)( T),  (5.46) 

sin( xx - x,) = sin xX cos x y  - sin xy cos xx (5.47) 

e (+)(i) - (?)(I), (5.48) 

the equations of motion become 
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The various bracketed expressions hint that it would be useful to intro- 
duce complex variables of the form 

u = x  + i p x ,  

v = y + ipy ,  

in terms of which the above equations can be reduced to 

du K 

dn 2 
_ -  - - i - v  - i r f i a u ,  

dv K 

dn 2 
_ -  - - i -u  + i n f i a o .  

(5 .53 )  

(5 .54)  

(5 .55)  

(5.56) 

We are now at the point where we can solve two coupled equations, as we 
did in Section 5.1.1, for the eigenfrequencies. By using the trial solutions 

we find 

K 
2TV = - - w  - T m  2 

K 
W(2TV) = - - + T m w .  

2 

Solving for w yields 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

and substitution into Equation 5.59 gives the two eigentunes in the rotating 
coordinate system: 

u *= f - 4 ( 4 T 6 f i ) 2  1 + 4K2 
8T 

So for the tune difference we have 

(5 .62)  

AU u+- u-= 4262 + ( 4 2 7 4  . (5.63) 

If we are exactly on resonance, with ux + m = u,, = y o ,  we see that the 
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minimum tune difference is 

(5 -64) 

This is the same separation of the fractional parts of the tunes that would be 
observed after we transformed out of the rotating coordinate system. In fact, 
a standard procedure for measuring the coupling strength in a synchrotron is 
to attempt to make the fractional parts of the horizontal and vertical tunes 
identical, generating a curve similar to that in Figure 5.2. 

In Chapter 4, we carried out the third-integer resonance calculation for 
the general case of a distribution of arbitrarily many elements. Here, we 
leave the many element case to the exercises at the end of the chapter. The 
main feature added by the many element case is analogous to that of the 
earlier treatment. Resonances are driven by particular azimuthal harmonics 
of the perturbations; in the case of the linear difference resonance, there are 
two such driving terms. Thus, two corrector sets are the minimum needed to 
compensate a nearby linear coupling resonance. 

5.1.3 Matrix Treatment of a Single Skew Quadrupole 

It is instructive to approach the same problem of the previous subsection 
using matrix algebra. In the perturbative treatment we can obtain complete 
analytical expressions describing the motion of the particle, but the solution 
is of necessity approximate. In particular, the eigenvalues are not exact. By 
recasting the problem in matrix language, we can find the exact eigenvalues 
at the expense of giving up the elementary closed form solutions for the 
motion. 

As suggested in Equation 5.24, the 4 x 4 matrix for a thin skew quadrupole 
can be written in the form 

1 0  0 0  
0 1 - k O  (5.65) 

- k  0 

where k is the skew quadrupole strength. Suppose our unperturbed matrix 
for one turn through the synchrotron is 

a b O O  

(5.66) 

O O g h  

where A and B are 2 X 2 matrices. Then the matrix for the perturbed 
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accelerator at the point just after the skew quadrupole will be 

/ a  b 0 o \  
A 0  

\ - a k  -bk g h I 
(5.67) 

We find the eigenvalues by the usual method, i.e., det(M - A I )  = 0. We finc 

A + - - T r A  (5.68) 

Solving for A + 1 / A ,  

1 T r A  + T r B  d ( T r A  - T r B ) 2  + 4bfk2 
A 

. (5.69) 
2 f 2 

A + - =  

As in Chapter 3, we set A = eip, where p may be complex. Then, 

2cos p = cos p, + cos py f ~ ( C O S  p, - cos p y )  + k2P,py  sin p, sin p y  . 
(5.70) 

2 

Here, we have written the elements of the matrices A and B in terms of the 
unperturbed Courant-Snyder parameters p, and Py at the location of the 
skew quadrupole, and the unperturbed phase advances p, and p y .  We have, 
as promised, arrived at the exact expression for the eigenfrequencies. The 
result reduces to that of the previous subsection in the appropriate limit. For 
example, let us obtain the expression for the minimum tune separation, i.e., 
when cos p, = cos p y a  Setting 

(5.71) 

(5.72) 

where Av is small, then 

2cos p + - 2 cos p - = 27r Av sin po = I k I\/a.py sin po,  (5.73) 

or 

(5.74) Ikl  
A v =  -m9 2T 

which is the identical result displayed in Equation 5.64. 
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A numerical example is in order. Remember that k = 244, where 4 
is the rotation angle of a quadrupole with inverse focal length q. For a 
typical FODO lattice, qm= 2 at a quadrupole location. Suppose 4 = 

lo-’ (10 mrad). Then Au 5: 0.006. If there were a large number N of such 
perturbations, one would expect Au to scale like m. For a Tevatron scale 
synchrotron, N = 200 and f i A v  = 0.1-much too large to assure low order 
resonance avoidance. So the typical tolerance on 4 is at the level. 

5.1.4 Matrix Formalism of Linear Coupling 

In our treatment of transverse motion in one degree of freedom, the 2 x 2 
matrices describing the motion had three independent parameters because 
the matrix propagating motion from one point to another had unit determi- 
nant. The 4 x 4 matrices for two-degree of freedom coupled motion also 
have unit determinants, which itself assures that not all 16 matrix elements 
are independent. But there is an even more restrictive condition that is in 
fact the proper generalization of the one-degree of freedom result. We will 
find that there are six relationships among the 16 matrix elements. 

Let’s go back to one degree of freedom and write Hamilton’s equations in 
matrix form, which we can do for a linear system. Equation 4.115, A? = 
p: /2  + K,x2/2, can be written in matrix form as 

A?= ? ( x  1 
p x ) ( 2  o x  l ) ( p x )  = (5.75) 

where x” is the transpose of 2. Since x‘ = d&c/dpx and p: = - d A ? / d x ,  
then we may write the equations of motion as 

/f’= ( -ix i)z= ( -1 0 o ) (  1 K, y ) x ’ = S H $ .  (5.76) 

Now, suppose and are two independent solutiofls this differen- 
tial equation. The bilinear form p x l x 2  - x1px2 = X I S X l ,  called the 
Wronskian, is a well-known invariant. To see this, we evaluate its derivative: 

(5.77) 

(5.78) 

= X i H  T S T S 2 1  + X:SSHYl (5.79) 

= XTHZ1 - X.HYl (5.80) 

= 0, (5.81) 

where we have made use of the conditions H T  = H, S r  S = I, and S2 = -I. 
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- 1  0 
0 1  

- 1  0 

This result is not limited to one degree of freedom. The Hamiltonian 
matrix is in general symmetric. The bilinear form, 

Y (5.83) 

P X l X 2  - X 1 P x 2  +P,lY, - Y , P , z  + . * .  (5.82) 

I 

extends the Wronskian form to n degrees of freedom and is an invariant. The 
generalization of the matrix S to n degrees of freedom is . 

and the proof is formally identical to the one degree of freedom case. 
From this invariant we may derive a condition on the matrices {escribing 

the evolution of the motion. For suppose M propagates the vector X between 
two points in the accelerator s1 and s2 .  Then, 

and so 

X.( S2)SX1( s2) = X.( S l ) M ~ S M X 1 (  sl). 

But 

(5.85) 

(5.86) 

(5.87) 

which gives us the so-called symplectic condition which M must satisfy: 

M ~ S M  = s. (5.88) 

Here, the symplectic condition has been derived for a linear Hamiltonian 
system. This is a special case of a general result that can be stated as follows: 
The Jacobian matrix of a canonical transformation is symplectic.' So even if 
we were considering nonlinear motion in a Hamiltonian system, the matrix 
describing motion in the neighborhood of a particular trajectory would be 
symplectic. 

The symplectic condition gives n(2n - 1) independent relationships among 
the 2n X 2n elements of an n-degree of freedom matrix. For our case, 
n = 2; thus there are six relationships among the matrix elements. To see 

'See, for example, L. A. Pars, A Treatise on Analytical Dynamics, Wiley, New York, 1965, p. 491. 
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this, we write the 4 x 4 matrix in the form 

M = ( $  ;), (5.89) 

where the elements of M as written above are themselves 2 x 2 matrices. 
Setting MTSM equal to S, we find the four matrix relationships 

ATSA + FTSF = S, 

ATSE + FTSB = 0, 

ETSA + BTSF = 0, 

E ~ S E  + B ~ S B  = s .  

(5.90) 

(5.91) 

(5.92) 

(5.93) 

If one writes out the first and last equations one finds they are equivalent to 

det A + det F = 1 ,  

det E + det B = 1, 

(5.94) 

(5.95) 

and so the apparent eight relationships implied by these two matrix equations 
in fact reduce to only two. The second and third matrix equations are in fact 
the same: one is just the transpose of the other. So from these, we have four 
additional relationships for a total of six. One could extend the Courant- 
Snyder approach to express the matrix M in terms of 16 - 6 = 10 inde- 
pendent parameters.’ Rather, we content ourselves with some general 
conclusions. 

For the remainder of this discussion M will denote the single-turn matrix. 
For each eigenvalue of this symplectic matrix, its rec9rocal is also an 
eigenvalu:. We can demonstrate this by letting A ,  and X, be an eigenpair 
and h k ,  X, be one of the remaining eigenpairs. Then, 

(5.96) 

where the equality of the first and third expressions reflects the invariant of 
Equation 5.82. So the second and third expressions tell us that 

( A , A ,  - 1)( y[S?,) = 0. (5.97) 

But Y[SY, cannot vanish for all pos$ble+remaining c_hoices of T k ,  becau2e 
the eigznvectors form a basis. Since XFSX, is zero, SX, is orthogonal to X,. 
But SX, can be expanded in terms of the eigenvectors, and so that expansion 

2D. A. Edwards, and L. C. Teng, “Parametrization of Linear Coupled Motion in Periodic 
Systems,” IEEE Trans. Nucl. Sci. NS-20, No. 3 (1973). 
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(C) 

Flguro 5.4. Location of eigenvolues for two-dimensional linear oscillations. (a) Both modes 
stable. (b) One mode stable, one mode unstable. (c) Both modes unstable in absence of 
coupling. (d) Instability induced by coupling. From Courant and Snyder (see Bibliography) with 
permission. 

must contain at least 2ne ,Of the others. Therefore, there is at least one 
eigenvector for which X l S X ,  is not zero, and for that k, A,  = l / A l .  Hence 
the conclusion that eigenvalues occur in reciprocal pairs. 

We already know that if one eigenvalue is complex then its conjugate is 
also an eigenvalue, because the coefficients of the eigenvalue equation are 
real. Therefore, the eigenvalues will occur in one of the four configurations 
shown in Figure 5.4. 

Our goal now is to obtain the general solution to the eigenvalue equation. 
Note that if A is an eigenvalue, then not only is 1 /A also an eigenvalue of M 
but also of M-'. Therefore, it suffices to solve for the quantity A = A + 1 / A ,  
which is an eigenvalue of M + M-l. It helps to define the symplectic 
conjugate 

A= -SATS. (5.98) 

If A is a 2 X 2 matrix, then 

(5.99) 
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If A is nonsingular, then we recognize that x= A - ’  det A. With this 
definition, the symplectic conjugate of our 4 X 4 matrix M is 

(5.100) 

Since for our case det M = 1, we have = M -  * and so we want to find 
the eigenvalues A of 

M + M - 1  = M + M =  (5.101) 

Using A + = (Tr A ) I ,  the characteristic equation is 

( T r A  - A ) I  
F + E  ( T r B - A ) I  

(5.102) 

which reduces to 

IA2 - ( T r A  + TrB) IA + (TrA)(TrB)I - ( F  + B ) ( E  + F )  = 0. 
(5.103) 

But 

( F  + E ) ( E  + F )  = I d e t ( E  + F) (5.104) 

and so 

A’ - (Tr A + Tr  B ) A  + (Tr A)(Tr B) - det( + F )  = 0. (5.105) 

This gives us the eigenfrequencies 

TrA + T r B  
2 

d(Tr A - Tr B ) 2  + 4det( ,!? + F) 
2 

. (5.106) f 2 cos 2 T U  = 

In general, Tr A and Tr B should not be confused with 2 cos px  and 2 cos p,,; 
their values will actually vary when computed for various points in the lattice. 
The interplay among the elements of the matrices A ,  B, E, and F are such 
that, of course, the eigenvalues we have found are independent of the point 
at which the matrices are computed. 
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5.2 NONLINEAR COUPLING 

The main point of this section is to extend the treatment of Chapter 4 to 
identify the resonance lines in the v,,vy tune plane. The discussion of the 
3vx = integer resonance showed that there are trajectories extending to 
infinity in the phase plane; here, we show this for two-degree-of-freedom 
resonances in general. 

But first, as an aid in finding the path toward the general result, we look at 
a particular coupling resonance in some detail in the next subsection. 

5.2.1 Two-Degree-of-Freedom Sum Resonance Due to Distribution 
of Sextupoles 

In Chapter 4, it was shown how a sextupole field can excite a resonance of 
the form 3v, = P, where P is an integer. It was mentioned that tune values 
which obey relationships of the form 211, + vy = P ,  v, + 2vy = P, and 311, = 
P are also to be avoided. Here we will examine one such case, vx + 2vy = P, 
in detail for a distribution of sextupole fields around the accelerator. 

The normal sextupole field 

B" 
y 2  B = - (  x 2  - Y2), (5.107) 

B, = B"xy (5.108) 

can excite the sum resonance vx + 2vy = P as will be confirmed below. We 
wish to examine the effect of the resonance on a neighboring line in the 
vx ,  uy diagram characterized by 

v, + 211, = P + 3s. (5.109) 

As we have done before, we let the x and y displacements at some 
particular point of observation in the lattice be written as 

(5.110) 

(5.1 11) 

where p, and p, are the amplitude functions at the point of observation, 4, 
and +y the phases, and Po is some convenient normalization factor. If, at the 
observation point, p ,  = B y ,  then it would be natural to take Po equal to p ,  
and p,. Since it is not generally the case that the amplitude functions are the 
same at the position chosen, the value used for Po is arbitrary-actually, it is 
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only introduced so that the amplitudes a and b will have the dimensions of 
length. 

On the turn around the ring following passage of the observation point 
with amplitudes a and b, and phases $x and $ y ,  we write 

where tpI and +y are the “reduced” phases (tp = $/v) which run from 0 to 
27r in one turn. For a turn, the contributions to the change of amplitude and 
phase due to the sextupoles are accumulated in the approximation that the 
amplitudes remain constant and the phases develop as in the linear motion. 

For passage through an element of length A s  in a sextupole, we have 

A x = A y  = 0, 

B” 
b y ‘ =  - 

( B p )  As* 

(5.114) 

(5.1 15) 

(5.1 16) 

The changes in amplitude and phase are related to those ..I displacement and 
slope by 

A U  = -(PIPa)1’2sinqx A Y ,  (5.1 17) 

A a  cos ‘Px A$ =-- 
I a s inqx  ’ (5.1 18) 

with corresponding expressions in the y-plane. Inserting A x ’  from above, we 
have 

(5.119) 

The first term in the brackets will be ignored, since it is involved only in the 
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one-dimensional x-plane resonances. So we have 

Aa = --[-) B P o  b2 sin qX cos2 9, As. (5.120) 
2(BP) PiY2 

If the trigonometric functions are expanded and only terms relating to the 
2v, + vy resonance are retained, we have 

Integrating around the accelerator, we have for the change in x-amplitude 
per turn 

da b2  
- dn = - - [ A  4 sin($x + 24,) + BCOS($~ + 2$,)], (5.122) 

where 

Proceeding in the same way for A$,, the change in $, due to the 
sextupoles is, for one turn, 

1 b2 
4 a  

A + , =  - - - [ A  cos((cl, + 2 $ y )  - B sin($, + 2$,)]. (5.125) 

This expression for A@ may be proohionally turned into a differential 
equation for the phase advance per turn by the addition of a term reflecting 
the phase change in the absence of sextupoles. 

1 b2 

dn 4 a  
- - - - [ A  ms($, + 2$,) - B sin($, + 2$,)] + 2 ~ 6 , .  (5.126) 

d @ X  - -  

Not only is the added term 2 ~ 8 ,  not small (being = 120” per turn), but also 
8, is not uniquely defined insofar as distance from the resonance in question 
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is concerned. Hence the term “provisional”; when results are finally ob- 
tained, the arbitrariness concerning 6, (and similarly 6,) must be resolved. 

The differential equations for the y-motion are obtained by the same 
procedure. Before summarizing the results, note that $, and $, only appear 
in the combination $, + 2$y in da/dn and d$,/dn; such is the case for the 
y-mot ion, 

We define 

e = 4, + 2+,. (5.127) 

Also, assume that only the A-terms are present. This may be the case as the 
result of symmetry, or the point of observation can be displaced until it is so. 
Then the differential equations are 

da b2 

dn 4 
_ -  - - -A sin 8, 

db 

dn 
_ -  - - i ( 2 a b ) A  sin 8, 

- dfl = -+ + ;)Acos, + 6 7 6 .  
dn 4 

(5.128) 

( 5.129) 

(5.130) 

The equation for de/dn results from the addition of the equations for 
d$,/dn and 2d1+%~/dn. Whereas in the latter, 6, and 6, were not uniquely 
defined, in the equation for d e / d n ,  6 has a well-defined meaning, and for an 
operating point v,, vy close to the resonance, 67r6 is small. 

Division of the first equation by the second and integrating yields a 
constant of the motion 

c = 2aZ - b2 .  (5.131) 

For fixed c, the amplitudes a and b can become arbitrarily large. Thus there 
are trajectories which extend to infinity, Eliminating 6 in favor of a and c 
from the first and third equations and integrating yields a second constant of 
the motion: 

k = -A cos e a3  + cos 6 a + 2 ~ 6  - 3a2.  (5.132) 

The remainder of the discussion consists in the interpretation of these two 
constants of the motion. 

For the following discussion, we express a and b in terms of a unit length 
2 7 6 / A .  The invariants, in these units, are 

c = 2a2 - b2,  

k = - cos8a3  + 3a2 + i c c o s e a .  

(5.133) 

(5.134) 
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I a 

Figure 5.5. Constant of motion k vs. amplitude o for the particular case where c = 2. Here a 
has been normalized to 27r6 / A .  

To see how the limits of stability may be inferred from these relations, 
consider the particular case c = 2. Then, 

k = c o s e ( a - a 3 )  + 3 a 2 .  (5.135) 

The possible values of a (for this c )  can be found by plotting k vs. a for 
cos 8 = f 1. The result is shown in Figure 5.5. For c = 2, a must be > 1; 
otherwise b would be imaginary. The motion is stable if 3 5 k < 6.1. This 
will be the case regardless of initial phase, 8, for all a such that 1 5 a < 
= 1.31. If 1.31 s a 5 2.15, the motion will be stable for some initial phases, 
unstable for others. If a 2 2.15, the motion will be unstable regardless of the 
initial phase. 

The value of a (call it a,) for which dk/da  = 0 on the cos 8 = 1 curve can 
be found from 

dk C 

da 2 
_ -  - - 3 ~ ’  + 6a + - = 0, 

c 1/2 
a , = l * ( l + ; )  I 

(5.136) 

(5.137) 
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For positive c, the solution is single valued. Since we must also have 2a2 2 c, 
it follows that for c 2 18 ( a  2 3) no motion will be stable. For c < 18, any 
a 2 a ,  will be unstable. By replacing c with 2a2 - b2 in the expression for 
a, ,  a stability boundary in the a,  b diagram is obtained: 

( 6  2n2 - b2 I,’,? a - l = f  1 +  (5.138) 

or 

4a2 - 12a + b2 = 0. (5.139) 

This expression defines a boundary outside of which all a and b are unstable, 
provided a 2 1. For a 5 1 a different boundary condition takes over, as 
discussed later. For the moment, we stay with a 2 1. 

For a s a,,  and given c, some motions will be stable and others unstable, 
depending on the initial 8. However, all a less than a value a, will be stable, 
where a,  is defined by the condition that it lies on the cos 8 = - 1 line in 
Figure 5.5 with the same value of k as a,.  In the c = 2 example, a, = 1.31. 
That is, 

a: + 3a; - $ca2 = -a: + 3 4  + +a,. (5.140) 

Expressing a ,  in terms of c, solving for a,, and eliminating c in favor of b 
yields the line in the a ,  b plane beneath which all motion is stable: 

J Z b = 3 - a .  (5.141) 

For a s 1, arbitrarily small a amplitudes can be unstable. Here, the stability 
boundary, beyond which all amplitudes in the a,  b plane will be unstable is 
given by 

f i b = 3 + a .  (5.142) 

The regions of instability, partial stability, and complete stability are plotted 
in Figure 5.6. 

It is interesting that one can go this far in analyzing a two-degree-of- 
freedom nonlinear resonance, and clearly we could pursue the discussion of 
this example considerably further. For our purposes a less detailed treatment 
is more suitable, and so we turn to the general discussion of the next 
subsection. 
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I Unstable 

b 

1 2 3 
a 

Figure 5.6. Stability regions in o, b plane for vx + 2vv - N  resonance. Here o and b are 
expressed in units of 2 r 6  / A .  

5.2.2 Multipoles and Resonance Lines 

In the opening section of Chapter 4 we stated without proof that all tune 
relationships of the form Mu, + Nu,, = P could lead to resonant behavior 
due to the multipole content of real magnetic fields. We are now in a position 
to prove this statement. 

Let us start by developing a form for the general multipole expansion for 
the transverse field components in a bending magnet. We know that the 
solutions to Laplace's equation V2q5, = 0, where 4, is the magnetic scalar 
potential, have, in polar coordinates, the form 

S k r k  sin k e ,  

C k r k  cos k e ,  

(5.143) 

(5.144) 

where sk and c k  are constants. We can obtain the coefficients by working out 
a few particular cases. Here, we will take just the single example of a 
sextupole field, i.e., k = 3. Then, for the sine term, 

(5.145) 

(5.146) 
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Conforming to the notation used in Chapter 4, Equation 4.6, we identify s3 
with the normal sextupole coefficient b, according to s3 = B,b,/3. 

The cosine term yields another contribution to the field: 

- 3 4 x 2  - y2). '4, B , =  - - 
ax 

(5.147) 

(5.148) 

Note that B, contains a term proportional to x z ;  that is, in the y = 0 plane, 
the field points toward a pole located in that plane. This is the hallmark of a 
skew multipole. By analogy with the normal multipole coefficients b,, we 
define skew coefficients, in this case the skew sextupole coefficient a 2 ,  
according to c3 = B o a 2 / 3 .  

So, in general, our magnetic scalar potential may be written in the form 

r n + l  cos(n + I)fl , (5.149) r n + l  sin(n + I)fl + - 
+ r n . = B , c  [ n+l n + l  I an bn 

which can be recast in rectangular coordinates as 

Re(x + iy)""], (5.150) 
an 

Im(x + iy)"+' + - 
n + l  

bn 
4rn = ~0 c [ n+l 

where Im(z) and Re(z) are the imaginary and real parts of the complex 
variable z. It is now straightforward to compute By and 8,: 

By = - '4m = B , z [ b , , R e ( x  +iy)" - a , , I m ( x + i y ) ' ] ,  (5.151) 

B, = - = B, c [ b,, Im( x + iy ) + a, Re( x + iy ) "1 . (5.152) 

' Y  n 

'4m 
ax n 

These results may be written in compact form: 

ABy + i ABx = B o c ( b n  + ia , ) (x  + iy)". (5.153) 
n 

Here, we have placed A's in front of the B's to emphasize that we are 
concerned with field differences from the main bend field. 

As suggested by our earlier treatments, identification of a resonance 
consists of picking out terms from the equations of motion which allow 
secular growth. So in writing down expressions for the rate of change of the 
transverse amplitudes a and b we have to identify the same term in both 
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relations if we are talking about a two-degree-of-freedom resonance. Since 
the general expressions are 

da A B,l 
dn 

db A Bxl 
- = - sin+, - 
dn (BPI 

(5 .154)  

( 5 . 1 5 5 )  

due o a single field error ( A  B,, A B y )  over a length 1, then the erms we are 
looking for are those in which sin += AB, and sin +,, AB, have the same 
harmonic content. Take for example a resonance excited by a multipole field 
of order m. We look for a term in Au which has powers ~ " ' - ~ y ~ ;  because 
sinrl, multiplies this term, it will drive a resonance which satisfies the 
relation ( m  - k + l)v, f kv, = integer. The corresponding term in Ab must 
contain x " ' - ~ + '  y k - l  , since it is multiplied by sin+,. Hence, the ratio of 
these two terms will be 

where we have made use of the binomial expansion 

m! 
= k ! ( m  - k ) !  

(5.156) 

(5.157) 

(5.158) 

The choice of the sign of the expression depends upon whether we are 
considering a sum or difference resonance. Then 

m - k + l b  
k a 

- 
da 
db 
_ -  

9 - *  
or, integrating, we find 

a' b2 
m - k + l  k 

T - = constant. 

(5.159) 

(5.160) 

The positive sign goes with the difference resonance, and the negative sign 
with the sum resonance. This is the relationship we wished to obtain. 
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Figure 5.7. Resonance lines in a unit square of the tune plane for third integer and below. 

So indeed tune relationships of the form Mu, + Nv, = P can lead to 
resonant behavior, and in particular, when M and N have the same sign, the 
motion may be unbounded, It is conventional to plot resonance lines in the 
tune plane. In Figure 5.7 we plot all resonance lines where M and N can 
each take on the values 0, f 1, f 2, and f 3 and I M I + IN I s 3 in a unit 
square in the tune plane. That is, this shows all the resonance lines up to the 

Fiaure 5.8. Resonance lines in the tune plane for ninth integer and below. 
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thirds. As we include more resonances, the tune plane rapidly becomes 
cluttered. Figure 5.8, which includes resonance lines up to and including 
ninths, rather resembles an oriental carpet. Actually, Figure 5.8 is a more 
realistic approximation to the resonance lines that are to be avoided in a 
hadron collider. 

1. Derive Equation 5.1 for the magnetic field of a rotated quadrupole. 

2. Derive the 4 x 4  matrix for motion through a solenoid magnet. The 
matrix can be represented as the product of three matrices: one for the 
body and two representing the ends. 

3. Imagine a synchrotron made up of FODO cells in which all of the 
quadrupoles are rotated by 45” to become skew quadrupoles in the bend 
plane. Discuss the linear dynamics of this synchrotron. 

4. Find the eigenvectors corresponding to the eigenfrequencies of the 
coupled simple harmonic oscillator problem described by Equations 5.5 
and 5.6. 

5. Reduce Equations 5.49-5.52 to Equations 5.55 and 5.56. 

6. Consider the coupled simple harmonic oscillator problem in the text. 
Suppose k, = k, = k, and k = O.lk,. If x = x, ,  x‘ = y = y’ = 0 are the 
initial conditions, plot the ensuing motion and exhibit the beat pattern in 
both degrees of freedom. 

7. Verify that Equation 5.106 gives Equation 5.70 when applied to the case 
of a single skew quadrupole in an otherwise uncoupled synchrotron. 

8. Consider a large synchrotron. Suppose two skew quadrupoles of equal 
and opposite strength are inserted at two locations where p, = By = Po 
and where A+bx = =   IT between them. Show that the transverse 
motion in between the two skew quadrupoles is “locally” coupled, but 
that motion outside the pair is “globally” decoupled; to do so, compute 
the one-turn matrices for points just within and just outside the pair of 
skew quadrupoles and compare. Compute the eigenvalues of both matri- 
ces and verify that they are equal. 

9. Show that the symplectic condition gives n(2n - 1) independent rela- 
tionships among the 2n x 2n  elements of an n-degree-of-freedom 
matrix. 

10. Complete the discussion of Section 5.1.2 by generalizing the treatment to 
the coupling generated by- a distribution of skeilr quadrupoles in a 
synchrotron operating near a specific v, - vy = rn difference resonance. 
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Show that two families of skew quadrupole correctors are necessary to 
compensate the resonance driving terms. 

11. A skew quadrupole field in the presence of nonzero horizontal dispersion 
will generate dispersion in the vertical degree of freedom. Show that the 
rms spurious vertical dispersion in a large synchrotron due to random 
skew quadrupole fields with rms value qrms would be 

where the averages are taken over the N sources of skew quadrupole 
fields. Estimate the vertical dispersion for a 20-TeV-scale synchrotron 
made up of 400 FODO cells with 90 m lens spacing and 89" cell phase 
advance if the sources are due to random rotational misalignments of the 
main quadrupoles with +,,, = 1 mrad. 

12. With the aid of a graphics terminal, generate plots of the vertical 
amplitude b vs. the horizontal amplitude a of a particle circulating a 
synchrotron with a single sextupole present. For various choices of 
horizontal and vertical tunes and initial conditions, verify that the cou- 
pled motion is stable near a difference resonance but can become 
unstable near a sum resonance. 



CHAPTER h 

Intensity 
Dependent Effects 

Thus far, we have considered only the motion of a single particle, or of a 
beam of noninteracting particles, in the presence of external forces. Many of 
the interesting phenomena in accelerator physics involve the dynamic inter- 
play between the beam and its surroundings through the electromagnetic 
fields initiated by the beam. Frequently-in fact, usually-the consequences 
are not benign, and there is a catalog of beam instabilities analogous to the 
more familiar instabilities of hydrodynamics. 

In this chapter we introduce such effects for which the intensity of the 
beam is important. We begin with a discussion of space charge and its effects 
on betatron oscillation tunes. This will lead us to the introduction of coherent 
instabilities, in particular the so-called negative mass instability. The particu- 
lar field used to motivate the treatment of the negative mass instability will 
be the longitudinal space charge field of the beam. Discussion of a general 
field is made possible through the introduction of impedance. 

Having introduced impedance, we digress briefly with a section on the 
fields trailing a charge-the wake fields-and their relation with impedance. 
We return to the main theme, with macroparticle models of coherent 
instabilities that provide a simpler model for such effects as beam breakup in 
linacs and the head-tail effect. 

A thorough treatment of coherent instabilities requires that we follow the 
evolution of the particle distribution function. We derive the Vlasov equa- 
tion, obtain the dispersion relation for longitudinal stability of a coasting 
beam, and apply the result to the negative mass instability of a beam with 
momentum spread. We conclude with a brief general heuristic account of 
Landau damping. 
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6.1 SPACE CHARGE 

Throughout most of this chapter we treat the particles constituting the beam 
as a continuum described by a space charge density distribution p(f‘).  That is, 
we ignore any statistical effects due to the fact that the beam is actually 
composed of many individual particles, and examine the motion of a single 
test particle under the influence of the surrounding “space charge.” We 
should note in passing that the bulk of the present intense activity in this field 
lies in the low energy, high current regime where space charge forces are 
pervasive design considerations. For the domain of high energy accelerators 
it is usually possible to treat space charge effects as perturbations to the 
single particle motion, but their inclusion in the design process remains 
essential. 

We will investigate transverse and longitudinal space charge effects sepa- 
rately. In the first case we will mainly look at examples of tune shift, 
essentially static field effects. Secondly, we will examine an example of a 
coherent instability brought on, in its simplest form, by longitudinal space 
charge fields. 

6.1.1 The Transverse Space Charge Force 

Here we begin by studying the static effects of space charge forces in 
unneutralized beams. We start this discussion by writing down the fields in 
some simple cases. First, consider a uniform cylindrical beam. If there are N 
particles per unit length in a beam of radius a,  then, outside the beam, that 
is, for r > a ,  the electric and magnetic fields are 

eNu 
2ne0rc2 ’ 

B =  

where u is the speed of the particles. Because the Coulomb repulsion is in 
the opposite direction to the magnetic attraction, the net outward force is 

e2N 
2 n e , r y 2  ’ 

F =  

where y is the Lorentz factor. On the other hand, inside the beam, that is, 



174 = 

for r < a,  the fields are 

eN 
E = -  r ,  2 m o a 2  

B =  2 2r9 
eNv 

2 m 0 a  c 

from which 
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e2N 
F =  27rrroa 2 y z r *  

Note that if the beams were partially neutralized, the space charge force 
could be much larger. Within the beam, the linear dependence of the force 
on the transverse position is reminiscent of a defocusing lens. 
As another example, we next consider the case of a beam which is 

Gaussian in both transverse coordinates with standard deviations ax - a,, = 
a; we still assume the density is independent of the longitudinal coordinate. 
In this case, the fields may be written as 

and the force is given by 

Obviously, for r large compared with cr, the force varies inversely with r 
as one would expect. On the other hand, the force at values of r small 
compared with u is 

e2N 
F =  r 

h € o y  '0  
(6.10) 

and so varies linearly with transverse displacement. This suggests that parti- 
cles with small oscillation amplitudes will experience a force similar to the 
focusing forces of beam optics considered earlier, while particles with larger 
amplitudes will see less of this effect. 
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Field distributions can be written down for more complicated beam 
profiles, but the subsequent treatment becomes more complex, whereas the 
above simple cases will illustrate the physics. 

6.1.2 Equation of Motion in the Presence of Space Charge 

Our previous development of the equation of motion permits the inclusion of 
the space charge force: 

1 

Ymu 
x” + K ( s ) x  = - X (space charge force). (6.11) 

Putting in the space charge force for a uniformly charged round beam, we 
have 

x = 0, 
2 3 2  I ( u / c )  2roN Y a 1 x” + K ( s )  - 

where ro is the classical radius of the particle, 

e2 

4m,mc2  
ro = 

(6.12) 

(6.13) 

(For the proton, ro = 1.53 X 10-’* m, and for the electron, ro = 2.82 X 
m.) So, in a circular accelerator, the reduction in focusing strength will 

lead to a shift in the betatron oscillation tune. At low energies, however, the 
space charge force can vitiate, or indeed overcome, the external focusing 
force. As an example of the latter circumstance, we consider a focusing 
system with constant K. For low energy, where y + 1, the focusing force is 
exactly balanced by the space charge force when 

2r,N 
= K  

( U / C  ) a2 

or, in terms of the beam current I = eNu, 

(6.14) 

(6.15) 

where T is the kinetic energy of the particle and the focusing force has been 
expressed in terms of the gradient B’ of the external magnetic field. 
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For example, suppose we have a proton beam of 1 cm radius propagating 
through a field gradient of 1 T/m. Then, from the above, the ratio of the 
beam current to the kinetic energy must be below 1 A/MeV to ensure 
focusing. 

6.1.3 Incoherent Tune Shifi 

Now let us look in more detail at the tune shift in a circular accelerator. 
From our discussion in Chapter 3, the change in the betatron oscillation tune 
due to a distribution of gradient errors is 

For our case, A K is 

(6.17) 

where use has been made of the form of the Lorentz force due to a magnetic 
field to replace A B  in our formula with the gradient of a force in general. 
So, for a round Gaussian beam, and for small displacement compared 
with u, 

(6.18) 

where R is the average radius of the accelerator, and we have used eN = 
r r u * ( ~ u / c ) / p  as our definition of normalized emittance. The tune is de- 
creased due to the defocusing character of the space charge force. 
As a numerical example, consider an unbunched beam entering the 

Fermilab booster synchrotron. Here R = 75 m, the injection kinetic energy is 
200 MeV, the normalized emittance of the beam at entry is T mm mrad, and 
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the number of particles per meter is 6 X lo9. The tune shift for a particle 
undergoing infinitesimal transverse oscillations at the center of the beam is 
then 0.4. It is no wonder that emittance dilution and particle loss occur under 
these circumstances. The remarkable thing is that tune shifts of a significant 
fraction of unity can be sustained within the beam. The cures for beam loss 
and emittance dilution due to space charge are a higher injection energy and 
a smaller ring. 

The tune shifts for particles having larger oscillation amplitudes are 
smaller than those for particles at the center of the beam. Thus the beam 
particles span a range of tunes, with the outer particles scarcely displaced 
from the single particle case. 

Frequently, the tune is measured by observing a coherent motion of the 
beam centroid. The tune so measured is not necessarily any of the values 
within the span of the preceding paragraph. The tune shift that we calculated 
above is often called an incoherent tune shift for this reason. 

6.1.4 The Beam-Beam Tune Shift 

A similar incoherent tune shift occurs in a colliding beam accelerator. Each 
time the beams cross each other, the particles in one beam feel the electric 
and magnetic forces due to the particles in the other beam. Consider the case 
of two intersecting beams of particles with like charges. Because the velocity 
of the “test particle” in one beam is in the opposite direction of the velocity 
of the oncoming beam, the electric and magnetic forces do not cancel as in 
the previous section, but rather add, creating a net defocusing force. For 
particles undergoing infinitesimal betatron oscillations in a highly relativistic 
Gaussian beam, the net force would be 

and the tune shift experienced by the particle would be 

(6.19) 

(6.20) 

In this case, the force is felt only over the time that the two bunches are 
colliding. Only half of the integral over the presumed symmetric distribution 
is necessary, because the two beams are traveling in opposite directions. As 
soon as the “test particle” has traveled half the bunch length, the oncoming 
bunch has gone past. In terms of the total number of particles in a bunch, n, 
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the beam-beam tune shift per collision is then 

nr0 A l l = - .  
4 E N  

(6.21) 

In contrast to the somewhat larger space charge tune shift found in the 
previous section for a lower energy synchrotron, the beam-beam tune shift is 
typically rather small. For example, consider the shift for the Tevatron 
collider. Here, the typical numbers are n = 6 X lo'', eN = 37r mm mr. For 
one crossing, Av = 0.0025. Up to this writing, the collider has operated with 
six bunches of protons and six bunches of antiprotons. This generates 12 
interactions per revolution, which implies a possible tune shift of 0.03. The 
shift is positive due to the opposite charges involved. Unlike the case of the 
Booster synchrotron, where the injected beam remains in the presence of the 
space charge force for only a few milliseconds, the particles in the collider 
are stored for many hours. In view of the long-term sensitivity to resonances, 
one would expect that the allowed region in the tune diagram occupied by 
the beam particles would be quite limited. This is indeed the case. 

6.1.5 Image Charge and Image Current Effects 

So far we have ignored the interaction of the beam with its surroundings. 
Typically, a beam travels within a beam pipe made of some conducting 
material. So, in general, the electric field distribution will be influenced by 
the conducting boundary. Also, within a magnet, the magnetic field distribu- 
tion will be shaped in part by the presence of magnetic materials. We take up 
the problem of static effects due to electric fields. 

The method of images is well suited to problems of this type. Take, for 
example, the electric field distribution of a line charge near a perfectly 
conducting plane. The field lines are perpendicular to the plane everywhere, 
and the resulting distribution is the same as if the conducting plane were 
replaced by a second line distribution of opposite charge equidistant from the 
boundary, as shown in Figure 6.1. Therefore, the force on the line charge due 
to the conducting plane is the same as the force calculated due to the image. 

Figure 6.1. A charge near a conducting 
plane and its image. 
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Figure 6.2. Line charge of density A located within a rectangular beam pipe, approximated by 
two perfectly conducting parallel plates, and the associated images. 

Of course, in a real accelerator, the beam chamber is closed. One common 
geometry is a chamber with rectangular cross section, where one side of the 
rectangle is much larger than the other. We can approximate this geometry 
by two parallel planes. As one would expect, in this case there are an infinite 
number of images. Suppose that we have a line charge with line density A at 
a distance y from the center of the chamber as shown in Figure 6.2. Then at 
some field point y’, the field due to the images alone is 

hi E =  x- 
i 2.rre0ri 

(6.22) 

- 1 + 1 - 1 + ...I =-[ A 1 

1 =-[ A 2 ( Y  + Y ’ )  

2 ~ ~ 0  

2T60 4d2 - ( y  + y’)’ 1 6 d t y  cyY’)y.)i 36d2 - ( y  + y’)’ + . - . 

2d - y - y’ 2d + y + y’ 4d - y + y’ 4d + y - y’  

2(Y + Y ’ )  + 

1 Y - Y ‘  Y + Y ’  Y - Y ’  +-+-  + -+  . . .  A 

4 9 16 

A 1 1  

4 9  

A r 2  IT’ 

4 n r O d 2 (  6 12 ) =--- - y + - y ‘  

(6.23) 

where we have assumed that y and y’ are much less than d. 
Note that the field gradient, dE/dy‘, is independent of position y’  and 

independent of the charge distribution. Thus the tune shift experienced by each 
particle in the beam is the same. This can be called a coherent tune shift, in 
contrast to the incoherent tune shift treated above. 
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Figure 6.3. Line charge of density A located within a round beam pipe, and the associated 
image. 

Another simple and common geometry is that of a cylindrical beam pipe. In 
contrast to the parallel plate case, if a line charge is located at the center of the 
beam pipe, there will be no image field. But if the line charge is displaced a 
distance y from the center, an image line charge will appear at a distance R 2 / y  
from the origin as shown in Figure 6.3. 

Now at the field point y’ the field gradient due to the image charge will be 

(6.24) 

where we assume y and y‘ are small compared with R. So the particles of a small 
beam will experience a coherent tune shift if there are, for example, orbit 
distortions or other regions in which the beam strays from the center of the 
vacuum chamber. 

In the above, we have used electrostatic images as examples. Magnetic images 
can be treated in much the same way. For vacuum chambers composed of good 
conductors, the electric image is the simpler because the electric field lines 
terminate on the chamber walls and the charges that are treated in the image 
method flow rapidly to preserve this boundary condition. Magnetic field lines, 
however, penetrate the chamber wall, and the treatment of the magnetic images 
must include not only the external magnetic environment, but also time constants 
associated with field penetration through conducting materials. 

6.2 THE NEGATIVE MASS INSTABILITY 

Up to now we have assumed a charge density which is independent of the 
longitudinal coordinate. The symmetry of this situation implies that there is 
no longitudinal space charge force. The first coherent instability we will 
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examine, the negative mass instability, is driven by longitudinal space charge 
forces that may arise as soon as this limitation is removed. 

The origin of this instability can be seen as follows. Suppose two particles 
in a synchrotron are traveling close together, one behind the other. Ignore 
for the present any fields due to their environment. The two charges will 
repel each other. The charge in front will gain energy and the charge behind 
will lose energy. Above transition, the orbit period of the first charge will 
increase, and that of the second will decrease. So the charges will move 
closer together in the longitudinal coordinate. The circumstance that a 
repulsive force leads to the particles approaching each other accounts for the 
name “negative mass.” 

We will discuss this phenomenon in two stages. First, we will calculate the 
space charge force for an unbunched beam and, as a development of the 
argument in the preceding paragraph, indicate how a perturbation in 
the charge density can grow above transition. Second, we will present a 
quantitative treatment for a beam without momentum spread traveling in a 
synchrotron with a general longitudinal impedance.’ 

6.2.1 The longitudinal Space Charge Field 

Let’s suppose that the beam has a linear charge density A that uniformly 
populates a cylinder of radius a. Then, provided that the derivative of A with 
respect to the longitudinal coordinate s is sufficiently small, the fields from 
Gauss’s and Ampere’s laws are 

, r 2 a ;  (6.25) 
A 1  PoAU 1 

E, = -- , B + = - -  
27q, r 2~ r 

(6.26) 

We now find the electric field along the beam axis, as indicated in Figure 6.4. 
Using Faraday’s law 

(6.27) 

‘Adapted from A. Hofmann, “Single-Beam Collective Phenomena-Longitudinal,” Theoretical 
Aspects of rhe Behauiour of Ream in Accelerators and Storage Rings (Proc. First Course of the 
International School of Particle Accelerators of the “Ettore Majorana” Centre for Scientific 
Culture, Erice, 1976), CERN 77-13, 1977. 
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Figure 6.4. Beam passing through cylindric01 beam pipe; the charge density may depend 
upon the longitudinal coordinate. 

the left hand side is 

where A' = ah/&. The right hand side of Equation 6.27 is 

(6.28) 

(6.29) 

with A = d A / a t .  Note that the rate of change of A with time, as observed at a 
particular location in the ring, is opposite in sign to the rate of change of A 
with respect to S; that is, 

(6.30) 

where u* is the phase velocity of the wave in the charge density. The right 
hand side of Equation 6.27 becomes 

As[ &( 1 + 21n --)(;)*I, b v  
(6.31) 

where we assume u* u. 
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L ) 8  

Figure 6.5. Perturbation in the line charge density A as a function of s. 

Putting the two sides together, we get 

In the case of a perfectly conducting wall, E ,  will vanish. In this case, we 
have the pure space charge field 

(6.33) 

Now suppose there is a small disturbance in the charge density as that 
sketched in Figure 6.5. In the regions where A' > 0 the space charge field will 
be negative. For A' < 0, the field is positive. So, below the transition energy, 
particles in the regions where A' < 0 will speed up and increase their 
revolution frequency. They will move toward the trough in the wave. Simi- 
larly, particles in the regions where A' > 0 will slow down and again fill in the 
trough. The disturbance is damped. But above transition, the reverse will be 
the case, and the disturbance will grow. 

6.2.2 Perturbation of the Line Density 

We now proceed with a standard instability treatment. We assume that there 
is a small perturbation superimposed upon the static charge distribution and 
look for the circumstance under which this perturbation will grow. 

Suppose the line density is perturbed according to 

A( 0 , r )  = A, + A,e'(n'-ne), (6.34) 

where 0 < 0 < 27r is an angular coordinate describing the azimuthal location 
along the unbunched beam (0 = s/R). The mode number is denoted by n, 
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and a general perturbation could be described by a superposition of such 
modes. The angular frequency of the mode is R; observing the disturbance at 
one location on the perimeter of the ring, one would see the beam vibrate at 
frequency R, while the wave propagates at angular frequency w = n/n. 
From the continuity equation, 

aP * - + V . j = O ,  
at 

A must satisfy 

ah a 
at ae - + - ( A @ )  = 0 ,  

( 6.35) 

(6.36) 

where w is the angular frequency of the distribution. If we write w as 

w ( e ,  r )  = o0 + wlei(Rf-no), (6.37) 

then the continuity equation yields 

(6.38) 

where second order terms have been neglected. The local beam current 
I (0 ,  t )  may be written as 

from which we identify 

R 
I ,  = -RA,.  

n I0 = RwOA,,, (6.40) 

We now consider an individual particle in the distribution. The rate of 
change of the particle's angular frequency is 

( $), = + ;( f),. (6.41) 

The angular velocity of the particle is, to first order, (dO/dr ), = wo. Also, we 
learned in Chapter 2 that the revolution frequency of a particle is a function 
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only of the particle’s energy. That is, 

( 6.42) 
dw Two dE - -  

( u / c ) ’ E  x’ 
But the rate of change of the particle’s energy may also be expressed in terms 
of an impedance to the flow of the charges in the longitudinal direction. With 
this concept of a longitudinal impedance, Zll, the rate of change of the 
particle’s energy may be written as 

dE 

dt 
_ -  - - e( energy loss per unit charge/turn) (no. of turns/sec) 

Therefore, the angular frequency must satisfy 

(6.43) 

Substituting the original expression for w into the above equation, we get 

which reduces to 

( 6.45) 

(6.46) 

where we have made use of the fact that RaA,  = RnwoAo = nlo. 
We see immediately that if the longitudinal impedance is pure imaginary 

(Zll = iZi), then below transition ( q  < 0) the oscillations are stable if Zi < 0 
(i.e., if Zll is capacitive). However, above transition the capacitive impedance 
will lead to instability. To conclude this section, we need only show that the 
space charge impedance is capacitive. Using Equation 6.33 for the space 
charge field E,, we see that the energy loss per unit charge through one 
revolution is 
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so that the longitudinal impedance is given by 

2TRn 
(6.48) 

2 r R  go A‘ 
=- go A’ 

‘11 = 4rre0y2 IIei(nt-ne) 4.rre0y2 RnAlei(nt-ne) * 

But 

so that the impedance becomes 

( 6.49) 

(6.50) 

which is indeed capacitive and hence leads to instability above transition. 

6.3 WAKE FIELDS AND IMPEDANCE 

In the preceding section we discussed an instability which arises from the 
longitudinal space charge force generated by a round beam of infinite extent 
as it travels through a cylindrical beam pipe of constant radius. One would 
like to be able to describe coherent instabilities which may arise from more 
general beam distributions which may be traveling through more complex 
geometries. In a more common situation, for example one in which the beam 
is bunched, it is possible that particles in the tail end of the bunch feel forces 
which are generated by particles in the head of the bunch interacting with 
the environment. As was suggested by the introduction of a longitudinal 
impedance in the previous section, the leading particles will lose some 
amount of energy; the resulting electromagnetic fields, wake fields, can linger 
in the vacuum chamber to interact with the trailing particles. 

The exact form of these high frequency wake fields and their response 
times depend heavily on the geometry of the problem as well as the materials 
in the vicinity of the beam. The fields are found, of course, by solving 
Maxwell’s equations with the appropriate boundary conditions. Much of the 
work nowadays is done with the aid of a variety of computer codes, but for 
the most part, we will stay with analytical methods and simple situations. Our 
goal in this section is to introduce the formal definitions of wake functions 
and impedance. This will allow us to discuss some examples of common beam 
instabilities found in high energy linacs and synchrotrons using this by now 
standard language. Most of this section and the next has been adapted from 
Chao.’ 

*A. W. Chao, “Coherent Instabilities of a Relativistic Bunched Beam,” Physics of High Energy 
Particle Accelerators (SLAC Summer School 1982), AIP Conference Proceedings No. 105, 1983. 
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6.3.1 

To begin with, recall how one obtains the electromagnetic field of a charged 
particle moving in a vacuum. Though this result will be of limited use in the 
present context, it is a basic starting point, 

The fields in the rest frame of the particle are just given by Coulomb’s law. 
In the laboratory, the fields are related to those in the rest frame (with the 
prime) according to 

Field of a Relativistic Charge in Vacuum 

(6.51) 

(6.52) 

(6.53) 

where “ I I ”  refers to the direction of motion of the particle, and “ I ” means 
radially outward for the electric field, and looping the particle trajectory for 
the magnetic field. Other field components vanish. 

The coordinates in the rest and laboratory frames are related according to 
x’ = y x  and y‘ = y. So if our field point in the laboratory is characterized by 
r and +, the distance from the charge in the rest frame will be 

Using the coordinate and field transformation equations gives 

(6.54) 

(6.55) 

(6.56) 

Therefore, in the laboratory the field is pointing directly away from the 
charge, just as it is in the rest frame. The electric field in vector notation is 
thus 

As u approaches c, the field lines become concentrated perpendicular to the 
direction of motion, within an angular region of order l/y. In the limit of 
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highly relativistic motion, the fields are confined within a plane perpendicular 
to the direction of motion. Now that we know this result, the fields may be 
obtained directly from’ Gauss’s and Ampere’s laws: 

4 
27reor 

4 
2 7 r ~ p  

E , =  - 6( z - c t ) ,  

Bo = - 6(z - c t ) .  

(6.58) 

(6.59) 

In principle, provided one knows where all the charges are, take fields can 
be obtained by integrating the expressions above over the charge distribution. 
One case where this can be done is the space charge field of a beam traveling 
along the axis of a perfectly conducting vacuum chamber. This problem was 
solved in the discussion of the negative mass instability by using Gauss’s and 
Faraday’s laws. Again, the radius of the beam is a and the radius of the 
vacuum chamber is 6 .  If the charge per unit length in the beam is A ,  then a 
surface charge - A  is located on the inner surface of the vacuum chamber. 
We can find the total field by summing over the contributions of rings of 
charge as shown in Figure 6.6. The inner ring is a charge element of the 
beam, and the outer is its counterpart on the beam pipe. The amount of 
charge in radial range dy and in the longitudinal range dz is 

27rydydz 2A 

pa2 a 
d 2 q  = A( Z)  = T y d y d z .  (6.60) 

If the linear charge density A is independent of z, then an integration over z 
will yield zero for the contribution to the field. So assume that the linear 
charge density has a first derivative with respect to z. The relevant charge 
density is then 

(6.61) 

The contribution to the z-component of the electric field from the two rings 

. . .  ...... 6 
..... , I . .  

Figure 6.6. Calculation of space charge field by integrating over all the charges. 
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of charge is then 

Integration over z followed by integration over y yields the same result as we 
obtained in the last section by a different argument: 

A’[1 + 2ln(b/a)]  
E, = - 

47T€0y2 
(6.63) 

But generally one doesn’t know where all the charges are; it then becomes 
necessary to solve the boundary value problem. The natural next step is to 
endow the beam pipe with a finite conductivity. 

6.3.2 Woke Field for a Resistive Wall 

There are two simple geometries that present themselves-a cylindrical 
beam pipe, and a rectangular chamber that is so wide that we may approxi- 
mate it by two parallel plates. Let us take the former case, and immediately 
write down Maxwell’s equations in cylindrical coordinates: 

1 d(rE,)  1 dE, aE, p - - + - - + - = -  
r dr r at? az e O ’  

1 a(rB,)  1 all, 1 aE, 
r ar r at? - P O L  + ~ a t ~  (6.67) 

1 d(rB,)  1 aB, dB, 
r ar r at? dz 

+ -- + - = 0, -- 

1 dE, dE, 

aE, aE, 

- - - - = - -  
r ae az at  ’ 

az ar at ’ 
- -- 

( 6.68) 

(6.69) 

(6.70) 

(6.71) 
1 d(rE,)  1 aE, dB2 
r ar r a0 at 

= - -  
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For the case of a particle propagating down the axis of the cylindrical beam 
pipe, the charge and current densities are 

4 
27rr 

p = - 6 ( z  - c t ) S ( r ) ,  

9c 
21rr 

j ,  = -6( t - c t ) S (  r ) .  

(6.72) 

(6.73) 

From the symmetry of the situation and our knowledge of the fields of the 
charge moving in a vacuum, we expect a solution with B, = 0, B, = 0, and 
EB = 0. If we express the remaining field components in terms of their 
Fourier transforms according to 

f( r ,  z ,  1 )  = eik(z-C')fdk,  ( 6.74) 
-m 

where f is one of the field components, then within the beam pipe, transfor- 
mation of Maxwell's equations yields 

aE, 1 - - 4 
- + - E ,  + ikE, = -cS(r), 
d r  r 2 r r e o  

- 1 -  
Be = - E r ,  

C 

aB, 
ikEr - - = ikcB,. ar 

(6.75) 

(6.76) 

( 6.77) 

Only the transforms of the first, second, and seventh of the equations are 
shown. Four give no new information beyond that already conveyed by the 
symmetry argument, and the fourth equation is redundant. 

Combination of the second and third of the set of three equations gives 
2, = A,  where A is a constant. Then, with this result, the solution of the first 
equation is 

- 
$ikAr. 

4 
2 m O r  

E , = - -  (6.78) 

Note that if A = 0, the result of Section 6.3.1 emerges. In order to find A in 
the present case, we have to determine the fields wi+thin tJe conducting wall 
and apply the boundary conditions. That is, we let j = aE in the material of 
the beam pipe, and we require E, and Be to be continuous at the interface. 
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Again, we use the first, second, and seventh of Maxwell’s equations. 
Application of the Fourier transformation yields 

1 a(&)  
r ar 

+ ikE, = 0, -- 

aB, 
ar 

ikEr - - = ikcB,, 

from which we obtain for Ez the equation 

(6.79) 

( 6.80) 

(6.81) 

(6.82) 

We anticipate that the fields do not penetrate far into the walls of the 
vacuum chamber. So in the two places that r appears in the equation above, 
we set r = 6, where 6 is the radius of the beam pipe. Then, the solution of 
the equation for 8, is of the form 

Matching the fields at r = 6 gives A’ = ika/E,c.  In order that the fields in 
the material of the beam pipe remain finite for large r, the imaginary part of 
A must be negative. Therefore, we can write 

(6.84) 

Note that the skin depth is 6, = 1/Im A. To solve for A, we need to use the 
boundary condition on Be. 

Differentiating the second of our three Fourier transformed equations 
with respect to r and combining with the first gives an equation for B, in 
terms of E z .  Given our solution above for E,, integration yields 

- ( A  :) i h ( r - b )  
B e = - -  - + -  A e  

c k  
(6.85) 
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Then, matching the solutions at r = b gives for A 

= ---pJ* 2 m 0 b  iikb - - - - (6.86) 

In order to proceed further analytically, let us make two approximations. 
First, assume that 1A1 * b-'. This is equivalent to saying that the pipe radius 
is large compared with the skin depth-generally a good approximation. 
Second, assume that lkbl a Ih/kl. This high frequency cutoff implies that we 
look at fields no closer than 

(6.87) 

For typical parameters, this condition restricts us from looking closer than 
about 0.1 mm behind the charge responsible for the field. 

Now, A reduces to 

(6.88) 

and we can perform the inverse Fourier transforms to find the  field^.^ The 
results are 

(6.89) 

1 
B, = - E r .  

c 

In the above, H ( s )  is the Heaviside function, 

H ( s )  = 1 if s > 0, 

= o  i f S < O ,  

(6.91) 

(6.92) 

and so the solutions satisfy the requirements of causality. The fact that 
E, > 0 in Equation 6.89 means that the field is in the accelerating direction. 

%ee, for example, M. J.  Lighthill, Infrodudion lo Fourier Analysis and Genernlised Functions, 
Cambridge, 1958, Table 1. 
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Apparently, E, will change sign for sufficiently small I z - ct I, otherwise a net 
acceleration would take place. To demonstrate this, we consider the limit in 
which lkbl * lA/kl. Then 

(6.92) 

For k,, because there are two terms, it is necessary to choose the range of 
interest for r .  Let’s look at the field at  the surface of the beam pipe. Then in 
order to find kr, one has to use the complete expression for A because the 
large terms cancel in the numerator. What remains is 

Again making use of a table of Fourier transforms, the fields are 

1 
B # =  - E r ,  

C 

(6.94) 

(6.95) 

(6.96) 

( 6.97) 

and one sees that, indeed, E, changes sign close to the charge. An illustra- 
tion of the fields is shown in Figure 6.7. Observe that the charges on the wall 
lag behind the particle, in contrast to the case for a perfectly conducting wall. 
At the wall, Poynting’s vector is directed into the material, indicating that the 
particle loses energy by virtue of the finite conductivity of the beam pipe. 

The solutions obtained thus far hold only for a beam traveling down the 
axis of a pipe of finite conductivity. One way of endowing the beam with an 
elementary shape is to use a charge distributed over a thin ring of radius a 
according to cos me. That is, the charge density representing a multipole of 
order m > 0 is 

S (  z - ct )S(  r - a)cos me, Qm 
p = . r r a m f ’  

where Q, is the multipole coefficient. Note 

Q, = / p r ”  cos me r d r d e  d z .  

(6.98) 

(6.99) 
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Figure 6.7. Wake fields generated by a relativistic charge traveling down the axis of a beam 
pipe with finite conductivity. (a) f, and 8, as functions of z / ( 2 ~ ) ' / ~ 6 ,  where ,y = coc / cr6. 
(b) Wake electric field lines. The field line density to the left of the dashed line has been 
magnified by a factor of 40. (Courtesy K. Bane and A. Chao.) 
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For m = 0, the appropriate expression is 

(20 
p = -a( z - c f ) a (  r - a ) ,  

2 n a  
(6.100) 

and hence Q, = q. 
With this charge and associated current as sources, Maxwell’s equations 

can be solved in a fashion analogous to that used for the centered charge 
above. Here, we will just reproduce the results from Chao within the beam 
pipe but not too close to the charge: 

1 
E ,  = Cmrm cos me 

lZ - C t ~ 3 / 2 ’  
(6.101) 

1 1 
E, =. -1C - r m - ’  cos me ( r 2  + 6 ’ )  (6.102) 

“ m + l  l z  - 4 5 / 2 ’  

1 1 
E,  = - aCm- 3 r m - l  sin me ( r 2  - b 2 )  (6.103) 

m + l  Iz - ct15/’ ’ 

where 

1 
3/2 

B, = - C m r m  sin me 
Iz - ctl 

1 
B, = - E ,  - 2Cmmrm-’sin me 

If - c t ) 1 / 2  ’ 
1 

(6.104) 

(6.105) 

(6.106) 

(6.107) 

As in the preceding case, the fields vanish in front of the particle. 
A couple of comments are appropriate. The radius of the ring, a,  doesn’t 

appear in these results, so for a given multipole order, the wake field is 
insensitive to the details of the charge distribution. For a test particle trailing 
the source of the wake, there will now be transverse deflecting fields at r = 0. 
And the transverse magnetic field has a long Iz - ctl-’” tail that will 
dominate at large distances. 

6.3.3 Wake Functions 

Instabilities develop sufficiently slowly, generally speaking, so that it is not 
necessary to examine the fields at each point along the trajectory; rather it is 
sufficient to average the fields along the trajectory. This average will depend 
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Figure 6.8. Wake fields set up by a source at longitudinal position z and time t ,  and at I +dz, 
t +dt .  The repeat period of the hardware is L. A test particle trailing the source by a constant 
distance s will see the wake field "flutter" about an average value. 

only on the separation between the source and test charges. It is, of course, 
the forces that we are interested in, and the equations for these forces 
undergo a surprising simplification as a result of this averaging. 

To see this, consider a wake field which is set up by a charge distribution 
traveling through a structure of finite conductivity. The structure repeats 
itself after a length L as indicated in Figure 6.8. The wake field will have 
essentially the characteristics shown in Figure 6.7, but will have perturbations 
due to variations in the pipe structure. A test particle located a distance s 
behind the wake source will see an average value of the field, with time 
varying fluctuations. Since the fluctuations will be very fast compared to the 
growth rate of typical instabilities, we consider only the force on the particle 
due to the average fields, which will depend only upon the distance of 
separation 

s = c t - z  ( 6.108) 

rather than on z and t independently. The average field components are 
thus functions of r ,  8, and s; the time derivatives in Maxwell's equations for 
the average fields can be eliminated by noting that 

- -  af - -c-,  af 
at az 

(6.109) 

where f stands for any field component, averaged over the repeat period. 
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i 
Then, for example, the r-component of V X E‘ = - B  becomes 

which, in terms of the forces, is 

(6.1 10) 

(6.111) 

We remind the reader that in these equations we are talking about the 
average fields and average forces. In an equivalent fashion, we can show that 

(6.1 12) 

(6.113) 

aB, aFO 1 aF, 
ar az r at? ’ 

ec- = _. = -- 

ec aB, aF, aF, 
r ae az dr 

- - - = - = -  

The solutions which satisfy these equations may be written as 

F, = eQ,mr”-’ cos me Wm(s), (6.114) 

FB = -eQmmrm-’ sin me Wm( s) ,  (6.1 15) 

F, = - e Q m r m c o s m 6 W ~ ( s ) ,  (6.116) 

(6.117) ecB, = Qmrm sin m e  W , ( s ) ,  

where W is a function satisfying causality and W’ is the derivative of W with 
respect to s. 

The W’s are called wake functions. Often, W and W’ are called the 
transverse and longitudinal wake functions respectively, because of their role 
in the solutions above. These functions provide the building blocks for the 
description of the forces in the time domain. Wake functions can be com- 
puted for various beam distributions and hardware geometries, and from 
them the forces on beam particles can be readily calculated. What is more 
easily obtained in the laboratory setting is the impedance presented to the 
beam as it passes through certain devices, through the measurement of 
voltage drops and currents. We have already used the impedance language in 
our discussion of the negative mass instability. There is a direct relationship 
between impedance and wake functions, which we present next. 

6.3.4 Impedance 

In the frequency domain, the counterpart to the wake function is the 
impedance. Just as there are transverse and longitudinal wake functions, 
there are also transverse and longitudinal impedances. In order to identify 
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the impedance, it is natural to use a beam which is a &function in frequency. 
So, for instance, let the beam current be described by the real part of 

(6.118) 

where the subscript 0 implies that we are only talking about an m = 0 
situation at present. From Equation 6.116 we can identify the longitudinal 
component of the electric field in terms of the wake functions W,j due to a 
single point charge. Then adding up the contributions from all the charges 
preceding the test charge, the longitudinal electric field is 

E,(z,t) = - j & ( z , t  - c 

dq 
= - / z d t  W,j(s') 

= -p0(z,r - S' -)W;(s')-, h' 
c c 

(6.119) 

where s' is the distance from the source point to the field point. Using the 
above expression for I,, the field may be rewritten as 

(6.120) 

A particle traversing some length L of the structure will then experience an 
energy loss due to the voltage drop E, L. It is reasonable to equate this drop 
to the product of the current and an impedance. According to the above, we 
have 

and hence may make the identification 

(6.122) 

The quantity Z/ is called the longitudinal impedance and is just the Fourier 
transform of the wake field. An analogous expression may be written for the 
m # 0 rnultipole moments, where W, is replaced by W,. 

If we treat the transverse force in an equivalent fashion, we are led to the 
definition of a transverse impedance. Proceeding as above, the transverse 
force components may be written 

F, = ieQ,mrm-* cos mOZ,I ( w ) ,  

F, = -ieQ,mrm-l sin mt?Z,l ( w ) ,  

(6.123) 

(6.124) 
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with the transverse impedance defined as 

(6.125) 

The factor of i has been included to reflect the fact that the transverse force 
tends to be 90" out of phase with the beam current; it is just a convention. 
While Zj has units of ohms, 2: (the lowest order transverse impedance) has 
units of ohms per meter. 

For given m, there is a relationship between the longitudinal and trans- 
verse impedances. We go back to the expressions for the force components in 
terms of the wake functions that were written down in the preceding section. 
By combining the transverse components, we have 

a +  
as 

Q, F, = - F ,  , ( 6.126) 

which is referred to as the Panofsky-Wenzel theorem. In the frequency 
domain, this becomes 

w 

C 
Z!( w )  = -2; ( w ) .  (6.127) 

Though we will not calculate wake functions or impedances in the remain- 
der of this chapter, the language we have developed will be used, in a 
qualitative fashion, to continue our introductory treatment of coherent 
instabilities. 

6.4 MACROPARTICLE MODELS OF COHERENT INSTABILITIES 

Interestingly enough, some insights can be gained into the physics at work in 
a number of collective instabilities by a very simple model: the entire bunch is 
replaced by two macroparticles. The leading macroparticle contains half 
of the particles of the bunch and creates the wake field that is experienced by 
the members of the second macroparticle. We will apply this technique to 
two frequently encountered instabilities in linacs and synchrotrons. 

6.4.1 Beam Breakup in Linacs 

The first instability we will study using the macroparticle model is that of 
beam breakup in a linear accelerator. Here, the beam is represented as two 
macroparticles, each containing N / 2  particles, separated by a distance s, as 
depicted in Figure 6.9. In an electron linac, this distance will not change with 
time. The second macroparticle sees the transverse wake field of the first 
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Figun 6.9. Two macroparticles, separated by a distance s, eoch contoining half the particles 
of the bunch. 

macroparticle which is undergoing betatron oscillations; the resulting force 
will drive the trailing particle's transverse oscillations. 

To see this, consider the form of the transverse force due to a wake field 
of order m = 1 as presented earlier: 

Here, motion has been restricted to one degree of freedom, and 

Q ,  - l p r  cos erdrde dz 

Ne 
= / -p( x - x , ) S (  y ) S (  z - c t )xdrdydz  

Ne 
= -xl, 

2 

(6.128) 

(6.129) 

where x1 is the transverse coordinate for the leading macroparticle. If the 
leading macroparticle is executing betatron oscillations according to 

x1 = i cos up', (6.130) 

then the equation of motion of the second macroparticle becomes 

Ne2W, 
R, + o ; x 2  = - X1 

2mY 

Nez W, 
=- .f cos opt. 

2mY 
(6.131) 

This is the equation of a driven oscillator, where the tail of the beam is 
driven exactly on resonance by the head of the beam. The solution to the 
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above differential equation is 

Ne2W,  
X 2 ( f )  =E,cosw,r +El---- t sin wpt . (6.132) 

4 w p y  

We see that on top of the free betatron oscillation, the amplitude of the 
motion grows linearly with time. If the two macroparticles had similar 
amplitudes initially, then at the end of the linac of length L ,  the amplitude of 
the oscillation in the tail will be a factor of 

N e 2 W l L  

4 w a m y c  
(6.133) 

larger than its initial value; thus intense beams can become quite distorted by 
the time they exit the linac. 

6.4.2 The Strong Head-Tail Instability 

The strong head-tail instability is basically the same as the beam breakup 
experienced by linac beams, but in this case the particles are undergoing 
synchrotron oscillations within a circular accelerator. If the synchrotron 
oscillations have a high enough frequency, the effect is to stabilize the beam 
against breakup. Above a certain intensity threshold, however, the beam can 
become unstable. 

We begin by again considering a bunch to be composed of two macroparti- 
cles. During the first half synchrotron period, particle 1 leads particle 2 and 
thus particle 2 feels the effect of the wake generated by particle 1. During the 
second half of the synchrotron period, the roles are reversed. The equations 
of motion are thus 

I f, + @ ; X I  = 0 

x.’, + O p X 2  2 = ~ N e 2 W l x , /  0 < t < T , / 2 ,  
(6.134) 

2mY 

f, + @ ; X I  = - Ne2w1x2\  2 W  T,/2 < t < T,. 

J x , + o ; x 2 =  0 

(6.135) 

It is assumed here that the wake function is a constant within the beam, but 
zero outside the beam. 

Since we have learned how to analyze the stability of a system using 2 X 2 
matrices, it is desirable to apply that method to the present problem. To do 
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so, we notice that the solution to the unperturbed equation of motion, 

x0 

UP 

x = xo cos opt + - sin opt, (6.136) 

x = xo cos opt - xowp sin opt, (6.137) 

may be written in compact form as the phasor 

i 

% 
X ' ( t )  = x + -i = x'(o)e-'"e'. 

Thus, for 0 < t < TJ2, we have the solutions 

X I  = P I  cos opt, 

Ne Wl 
x2  = f2 cos opt + ~ f , t  sin opt, 

4opmy 

(6.138) 

(6.139) 

( 6.140) 

which can be written in phasor form as 

Ne2W, 
i 2 ( r )  = f2(0)e-'"a' + i- X' 0) re -'"a' (6.141) 

4 w p Y  

if we note that the synchrotron period T, l /op.  We may then write the 
solution for propagation through the first half synchrotron period in matrix 
form as 

where 

(6.142) 

(6.143) 

For the second half of the synchrotron period, the two particles simply 
reverse roles. Particle 1 sees the wake field created by particle 2, and particle 
2 undergoes a free betatron oscillation. Thus, the solution for Ts/2  < t < 7'' 
will be 

(6.144) 
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and therefore, the motion for one complete synchrotron period is given by 

(6.145) 

The motion over many synchrotron periods will be stable only if the absolute 
value of the trace of the matrix above is less than 2. That is, for stability, we 
must have 

(6.146) 

The above criterion tells us that for low intensity beams, the motion is stable. 
Once the intensity reaches a certain threshold, instability arises. One of the 
stabilizing factors is the synchrotron period. If the synchrotron period is 
small, the head and tail of the bunch switch roles more frequently and the 
growth found in the linac case is stabilized. The beam breakup in a linac is 
just the special case where the synchrotron period is infinite. 

6.4.3 The Head-Tail Instability 

In the above treatment of two macroparticles undergoing synchrotron oscilla- 
tions, an important feature has been omitted, namely, the variation of 
betatron oscillation frequency with momentum. We will find that inclusion 
of this phenomenon places a strict criterion on the chromaticity of the 
accelerator. 

As before, we will study the motion of two macroparticles each of charge 
N e / 2 .  The betatron frequency of each macroparticle now depends upon its 
momentum deviation 6 = Ap/po: 

w @ )  = 2 . r r V ) f ( S )  

= 2 a v 0 f 0  + 2.rrf05'6 - 2Trfovoq6 

= W B  + wo5'6. (6.147) 

We wish to use the longitudinal coordinate s as the independent variable. 
If we define A t  as the time interval between arrival of a particle and the 
arrival of the synchronous particle, then the synchrotron oscillations of the 
two macroparticles can be described by 

A t ,  = A?sin(w,s/c), ( 6.148) 

A t 2  = -Afsin(w,s/c), ( 6.149) 

where w, is the synchrotron frequency. The accumulated betatron phase as a 
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function of s is given by 

Therefore, we may write the solutions for free betatron oscillations as 

xI(s) = 2, exp ( --I '[ - ups - -Ar A sin - ".'I), (6.151) 
C 17 C 

".']). C (6.152) 

For 0 < I < T,/2, particle 1 will obey the above equation, but particle 2 will 
have its equation of motion modified: 

d 2x2 t w o  A?ws 
c2- + ["@ + 

ds 17 

Ne2W, 

2mY 

1 

x2 = - xl, (6.153) 

where the quantity in brackets is the rate of change of the angular vari- 
able 4. 

If we assume that x 2  is of the form given by the free oscillation, but that 
the amplitude f2  is allowed to change slowly with time, we may investigate 
the growth of the amplitude over time and look for conditions for stability. 
The first term in the equation above becomes 

2 d { a2 ( [ u p s  SWO A us' ] ) )  
c - -exp - i  - +  -Atsin- 

ds ds C 77 C 

c c 

C 
(6.154) 

assuming w, e up and assuming &,/v Ai small. Substituting this back into 
the equation of motion and re-enforcing our approximations provides us with 
a relationship between the slowly varying amplitudes, namely 

c 
dr^, iNe2W, 
a!s 4mywpc 
- -  I (6.155) 
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Already having assumed too/qAi to be small, we expand the right hand 
side of the above and integrate to obtain 

C 

iNe W ,  
4mywpc 

i ,  = i 2 ( 0 )  + 

Thus, we may obtain a set of equations relating the amplitudes of oscillations 
over the first half of the synchrotron period: 

P.( E) = i , ( O )  + 

= i 2 ( 0 )  + i 

= i , ( O )  + i q l i l .  (6.157) 

As before, this may be written in matrix form, the matrix for one complete 
synchrotron period may be obtained, and a stability criterion may be found 
by obtaining the eigenvalues of the 2 X 2 matrix. If the eigenvalues are 

= e**P, * 
then for low intensity beams ((qll 4: l), 2cos p 5: 2 - q:, 
imaginary part of q ,  will then give the fractional growth 
period. The growth rate in terms of time is thus given by 

Ne2W, too A i  .- 

(6.158) 

or p = q, .  The 
per synchrotron 

(6.159) 

We see that as long as the chromaticity is not equal to zero, we have 
growth in one of the two eigenmodes, while motion in the other eigenmode 
will be damped. Stability can be guaranteed only for 6 = 0. The more 
complete analysis4 using the Vlasov equation shows that the two-particle 
model overestimates the growth rate of the "-" mode. Thus, most syn- 
chrotron storage rings are operated with slightly positive chromaticities above 
transition. 

6.5 EVOLUTION OF THE DlSTRl6UTlON FUNCTION 

The simplified models of the previous section are often inadequate to 
describe some of the finer details of beam instabilities. For instance, descrip- 
tions of beam behavior for higher mode numbers are impossible to describe 

4Chao, op. cit. 
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with a two-particle model. One could increase the number of macroparticles, 
but the analysis quickly becomes complicated. Though computer tracking 
codes may help, it is possible to do the bookkeeping on more than a few 
thousand particles, whereas real beams will contain 10'' particles per bunch 
or more. To proceed, one turns to a description of the beam in terms of a 
continuous particle density function. The basic relationship that this function 
must satisfy is known as the Vlasov equation. 

6.5.1 The Vlasov Equation 

Consider a small region of phase space, as shown in Figure 6.10. Let the 
number of particles in this region, n,  be given in terms of a particle density 
function $: 

n = +( x , p , t ) A x A p .  (6.160) 

Each particle in the phase space is moving according to the equations of 
motion of the system. After an infinitesimal time interval A f ,  the number of 
particles present in the region becomes 

n( t + A t )  = n(  t )  + flow in - flow out. (6.161) 

Consider, for a moment, only the flow in the x-direction. The number of 
particles entering the box from the left is 

whereas the number exiting the box on the right is 

@( x + A x ,  p ,  t ) A p i ( x  ,+ A x ,  p ,  t ) A t .  (6.163) 

I Figure 6.10. Infinitesimal area of phase 
space. 
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Therefore, the rate of change of particles in the region is given by 

a* 
ax 

- -( X , P ,  t ) A x A p X  

a* 
ax 

= - -( X ,  p ,  t ) A x A p X ,  (6.164) 

or 

a* 
At ax 

A X A P  = - -( X ,  p ,  t ) A x  A p X ,  (6.165) 
* ( t  + A t )  - + ( t )  

from which 

a* a* - +f- = 0.  
at ax 

( 6.166) 

Performing the same argument for both x and p yields the Vlasov equation: 

a* a* a* - + i- + p -  = 0. 
at a x  ap  

(6.167) 

6.5.2 The Dispersion Relation 

The solution to the Vlasov equation contains more information than we may 
be interested in knowing. Usually we just want to know if a situation is stable 
or unstable and, if unstable, what the growth rate of a perturbation would be. 
This determination can be expressed as a relationship between the unper- 
turbed distribution and the perturbing forces. Expressions of this general 
type are called dispersion relations because they were first found in the 
analysis of the dispersive properties of optical materials; the name, of course, 
does not have this significance here. 

We will use the Vlasov equation to develop a dispersion relation for 
particle beams with momentum spread. If 8 = s / R  is the longitudinal coordi- 
nate and 6 = A p / p  is the conjugate momentum variable, then the Vlasov 
equation is 

a+ .a+ .a+ - + e- + 6- = 0, 
at ae as (6.168) 



208 - 

where 

INTENSITY DEPENDENT EFFECTS 

(6.169) 

(6.170) 

with Equation 6.43 being used in the last step. 

beam), then we may write + as 
If the unperturbed particle distribution is independent of 8 (unbunched 

So, to first order, 

But 

a a 
as am 

-woq - , - =  

so that 

(6.172) 

(6.173) 

( 6.174) 

If we now integrate both sides over o and then multiply by eu/R = eoo, we 
obtain 

do = -eo iq  + , (6)d6  = -0~71,  1 

so that we have the dispersion relation 

( 6.176) 
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6.5.3 Application to the Negative Mass Instability 

Let’s use the above dispersion relation to investigate the negative mass 
instability. First, we examine the case of an unbunched beam with no 
momentum spread as considered earlier. In this case, the phase space density 
is represented by a Dirac &function 

( 6.177) 

where N is the total number of particles in the distribution. Written in terms 
of the angular frequency, 

We then obtain 

which, when substituted into the dispersion relation, gives us 

(6.178) 

(6.179) 

(6.180) 

or 

2 ( f l - n w )  = 

which is the same result obtained previously. 
To go one step further, we look at a more realistic beam, one in which 

there is a distribution in momentum space. As an example, consider an 
unbunched beam with a Gaussian distribution in momentum. The density 
function is of the form 

(6.182) 
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where a = (A~/P)* , , , ~ .  In terms of the angular frequency, 

(6.183) 

The dispersion integral becomes 

where 

(6.185) 

R - nw,  A i l  

T w o a n  q w o a n  
(6.186) =- u, = 

Then the dispersion relation becomes 

where 

(6.187) 

(6.188) 

and we have identified ewON/2.rr as the current I,. 
We have seen that for a beam with zero momentum spread, a capacitive 

impedance GI, = iZi, 2; < 0) leads to instability above transition. We now 
use the above dispersion relation to look for a condition that will assure 
stability to a beam with a Gaussian momentum distribution. 
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Consider the case where A i l  has a negative imaginary part, corresponding 
to an unstable solution. The dispersion integral can be found after noting 
that 

- iimeiC”.Ob d a  (6.189) 
1 

u - uo 
-= 

if uo has a negative imaginary part. Then 

+ m  
du d a  ue - (u2- Ziua -a2)/Ze-a2 / 2  = -  

(6.190) 

Notice that I J O )  = 1. Therefore, for Im uo < 0, IZD(uJ < 1. So, from the 
dispersion relation, if in addition 

(6.191) 

then the dispersion relation cannot be satisfied, implying that there will not 
be any unstable solutions. That is, 

is a sufficient condition for stability. 
The general requirement 

(6.192) 

(6.193) 

for stability, where .F is a form factor of order unity which depends upon the 
particle distribution used, is known as the Keil-Schnell criterion.’ 

’E. Keil and W. Schnell, CERN Report CERN/ISR-TH-RF/69-48, 1969. 
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Finally, it is interesting to note that the integral ID(uo> can be written in 
closed form as’ 

where the plus sign is used for Im uo < 0, the negative sign for Im uo > 0. 
The function D- , (x )  is a parabolic cylinder function and is described in 
Abramowitz and Stegun.’ 

4.6 LANDAU DAMPING 

In the last section, we saw that there was a threshold for instability of a 
nondissipative system-nondissipative because in the example of space charge 
forces only, the impedance is reactive. For sufficiently small values of the 
impedance the system is stable. Buried within the mathematics of the 
dispersion relation is a stabilizing mechanism, which is called Landau damp- 
ing. In this section we describe ,its origin. 

Let’s go back to the driven harmonic oscillator: 

x + w i x  = Csinwr.  (6.195) 

Consider first the situation on resonance, where w = wo. For a particle 
starting from rest, the solution to the above differential equation is 

C C 
x z -  sinwor - - t cos wot. (6.196) 

2 0 ;  2w0 

Clearly, the envelope of the oscillation grows without bound. Off resonance, 

1 w 
x =  (sin wr - 00 sin w0r 

w; - w2 

61. S. Gradshteyn, and 1. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 
New York, 1980, p. 337, formula 3.462. 
’M. Abramowitz and 1. A. Stcgun, Handbook of Mathematical Functions, Dover, New York, 
1970, p. 710. In this reference, the function D - J x )  is denoted by U(1.5, x ) .  
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' au Figuro 6.1 1. Solution to the driven oscillator 
equation for various relative frequency diffir- 
ences (o - w o )  / oo. 

(00 

where Sw = w - w,. If Sw is small compared with w,, the two solutions are 
identical for t small. That is, the particle does not know initially whether or 
not it is on resonance. But at t = 1/80 the solutions become distinct. The 
behavior is illustrated in Figure 6.11. 

The circumstance that the fraction of the particles participating in secular 
growth diminishes with time suggests that the constant amplitude force does 
not produce an instability in the sense that we are looking for here. In 
contrast, let us consider a force that increases exponentially with time. Since 
we are looking for exponentially growing solutions it is reasonable to consider 
forces which grow exponentially as well. Suppose the equation of motion is of 
the form 

For w = w,, the particular solution may be written as 

(6.199) 

for large 7. The off-resonance case ( w  # w,) has the particular solution 

A 

w z  - w i  + 2iw0/7 
X = =  eiwOt e .  I / T  (6.200) 

The amplitude of this solution, for w = wO, is 

A 
2w0Sw + 2iw0/7 

(6.201) 
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where So = w - wo. If we consider an ensemble of particles with frequen- 
cies distributed about wo,  then those particles within a frequency range 
6 w  = 2/r will participate in the growth. 

In the case of a coherent instability, the driving force is not external but is 
due to the deviation of the beam itself. We can extend the harmonic 
oscillator example above to contain such a driving force. For instance, 
assume that the force is proportional to the average displacement. Each 
member of the ensemble obeys an equation of the form 

i + w z x  = c ( x ) .  ( 6.202) 

Suppose A w  characterizes the frequency width of the distribution. At some 
time, the fraction of the particles participating in the growth will be 2/Aw r .  
Since these particles all will be at roughly the same displacement, ( x )  - 
(2/Aor)x. All of these particles have essentially the same frequency, wo. 
Thus, for one of these particles, the equation of motion is 

x +  0 ; - -  c ) x  = 0. ( A w r  
(6.203) 

If the particle’s amplitude is to undergo resonant growth, the frequency w ,  
given by 

must have a negative imaginary part. That is, 

( 6.204) 

L 
I m w =  Im w i -  - C { A w r  

C Imc 
= I m w o l - -  = - -  < 0. (6.205) ( ( A U O ~ T ) )  A w w o r  

So for Imc > 0, the oscillation amplitude grows like 

exp [ E] (6.206) 

But the argument of the exponential is just t / r ,  and so for the onset of 
instability one must have 

Im c = woAw.  (6.207) 
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Notice that the larger the frequency spread Au, the larger the force 
coefficient must become in order to produce instability. In the preceding 
section, we found that the negative mass instability would be stabilized by 
sufficient momentum spread. Since particles of different momenta have 
different revolution frequencies, the conclusions of this section and of the 
preceding one are related. For sufficiently large frequency spread the feed- 
back mechanism that is the potential source of instability is not strong 
enough to produce exponential growth. The stabilizing mechanism is called 
Landau damping. 

PROBLEMS 

1. For the round Gaussian beam, sketch as a function of r the space charge 
force and its derivative with respect to r .  Calculate the values of r /a  for 
which F and dF/dr are maximum. 

2. The dependence of tune on amplitude for the round Gaussian beam can 
be calculated analytically. In this problem, ignore the details of alternat- 
ing gradient focusing and assume that a betatron oscillation in the 
absence of space charge is x = a cos $, where $ just advances linearly 
with azimuth, 4 = v8, 0 < 8 < 27~.  
(a) Including space charge, show that the equation of motion is 

d 2u Av 1 
- + u = 4--(1 - e U 2 I 2 ) ,  
drL2 v u  

where u =./a and A v  is the magnitude of the incoherent space 
charge tune shift as calculated in the text. 

(b) Next, assume that the solution of the equation of motion will be of 
the form 

u = u, cos [ #) + - 6(;o) *I,  
where 6 is the quantity that we are looking for. Use the method of 
phase averaging to extract this “DC” quantity. Substitute the trial 
solution into the equation of motion and average over #). Show that 
the amplitude dependence of tune is given by 

where I, is the modified Bessel function of order zero. 
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3. Compare the results of the phase averaging method in the preceding 
problem with the amplitude dependence of tune obtained by numerical 
integration of the equation of motion. 

4. In the Fermilab booster, suppose that the injected beam is very rapidly 
neutralized; that is, there is quickly only a current and no charge density. 
Using the parameters in Section 6.1.3, calculate the tune shift for this 
completely neutralized beam. 

5. In a proton-antiproton collider, the beam-beam tune shift parameter Av 
that was calculated in the text will be positive. So particles with small 
betatron oscillation amplitudes will have higher tunes than those with 
larger amplitudes, and the largest amplitude particles will have the tune 
prescribed by the accelerator lattice, v. By choice of Av and v, one can 
arrange that a low order resonance will be encountered at an intermedi- 
ate amplitude. With the aid of a graphics terminal, develop the turn by 
turn mapping in one-degree-of-freedom phase space, and demonstrate 
the chain of four resonance islands that appear when a quarter integer 
resonance is within the beam. Note that the resonance does not lead to 
beam loss; for realistic parameters, no trajectories go to large amplitude. 

6. Rewrite the expression for the luminosity of a collider found in Chapter 
1 in terms of the normalized emittance (39%), and then eliminate the 
emittance in favor of the beam-beam tune shift parameter, A vbb.  For the 
Tevatron operating at 1 TeV, with 5 X 10" particles per bunch in each 
of six proton and six antiproton bunches, the tune shift parameter is near 
the upper limit of AVbb = 0.007. Calculate the luminosity under these 
conditions if the value of the amplitude function at the interaction point 
is /3* = 0.5 m. (The radius of the collider is 1 km.) 

7. In electron-positron colliders, at low beam current I the luminosity 
varies as 1'; then there is a discontinuity in slope beyond which the 
luminosity varies as I. Account for this behavior, under the assumption 
that the beam-beam effect is a limitation. 

8. In colliders designed to have a short bunch spacing, it is desired that the 
beams be brought into collision with a crossing angle a so as to minimize 
the number of head-on beam-beam collisions. The intent is that the 
beam-beam tune shift will be kept in bounds. However, the bunches will 
still act upon each other at a distance, and so we have to keep the 
so-called long range beam-beam tune shift in mind. Suppose that the 
crossing angle is such that the two Gaussian bunches of equal total 
charge pass each other a distance d apart, where d B u. 
(a) Compute the force on a particle in one bunch due to the other 

bunch. Show that there is a dipole term and a quadrupole term. 
(b) Let AvHo denote the beam-beam tune shift due to a single head-on 

collision between two bunches at  the interaction point. Show that the 
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the long-range tune shift is 

(c) The head-on beam-beam force is defocusing in both degrees of 
freedom for like sign beams; what about the long range force? 

(d) Suppose that the two beams collide at the interaction point, where 
the amplitude function has its minimum value p*. Suppose that p* is 
much smaller than the distance to the point at which long range 
passages take place. Show that 

where 

and is the phase space area enclosing some 39% of the beam in one 
transverse degree of freedom. 

(e) If the bunch spacing is S,, show that the total long range beam-beam 
tune shift across the region of length L is 

(f) Calculate AvHo and AuLR for a 20 TeV collider with /3* = 0.5 m, a 
crossing angle, a = 0.075 mrad, and SB = 5 m, N = lo'', L = 180 m. 

(g) Estimate the steering error caused by the dipole component of the 
long range force for the parameters above. 

9. It was stated in the text that if a line charge is displaced a distance y 
from the center of a beam pipe of radius R ,  an image charge equal in 
magnitude but opposite in sign will appear at a distance R 2 / y .  Prove that 
such is the case. 

10. Estimate the coherent tune shift experienced by the particles in a bunch 
of 2 x 10" protons traveling in a wide rectangular conducting vacuum 
chamber of height 5 cm. Assume that the bunch is 1 meter in length, the 
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kinetic energy is 8 GeV, the average value of the amplitude function is 50 
meters, and the orbit radius is 1000 meters. These parameters corre- 
spond to the Fermilab Main Ring at injection. 

11. In the resistive wake, close to the charge, obtain the next order term by 
taking 

4 
i m o k b 2  

A =  

Compare with the figures in the text. 

12. For the resistive wake, find the wake functions W, and W& 

13. By Fourier transformation of W& find the longitudinal impedance Z,,  for 

14. Estimate the longitudinal impedance presented to the beam passing 
through a bellows. One can proceed 5s follows. Calculate the flux 
“trapped” in the shaded area as though B were given by the Biot-Savart 
Law. If we call this flux a, then Faraday’s law can be used to calculate 
the back emf on the beam. Show that the contribution of the bellows to 
Z / n  is 

the resistive wake. 

where Z, is the impedance of free space. 

Figure 6-A. 
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15. 

16. 

17. 

18. 

19. 

20. 

Verify that in the "+" mode of the head-tail instability the two 
macroparticles are moving in phase, while in the "-" mode they are 
180" out of phase. 

Consider the Fermilab Main Ring at its maximum energy of 150 GeV. 
Assume Z , , / n  = 10 a. Suppose that 2 x 1013 protons are circulating in 
lo00 bunches, and that the peak instantaneous current I, is 10 times the 
average current. The smallest the mode number can be is thus - lo4. 
Calculate the growth rate of the negative mass instability in this circum- 
stance. What frequency would be detected for this motion? (For this 
reason the negative mass instability for a bunched beam is usually called 
the microwave instability.) 

Find the intensity threshold N for the strong head-tail instability in the 
Tevatron at injection. Take W, = 4 X 10'' F-' m-', T, = 12 msec, v = 
19.4, and a revolution frequency of 47.7 kHz. Is this result realistic? 

Show that Equation 6.202 leads to  the dispersion relation 

where p ( w )  is the distribution function of oscillator frequencies normal- 
ized to unity. 

Show that the dispersion integral in Problem 18 becomes 

for Ri sufficiently small, that is, at threshold. 

Apply the threshold condition of the preceding problem to a triangular 
frequency distribution. Let p ( w )  be centered at w,, with width 2 Ao at 
the base, and Aw < w,. At the apex of the triangle, p(wo) = l / A w .  
(a) If Re R = wo,  show that the threshold for instability is 

2w0 Aw 
c = i-. 

7r 

(b) If Re = wo + Aw, show that Im c can be vanishingly small and the 

(c) Sketch the region of stability in Im c (y-axis) versus Re c coordinates. 

21. The discussion connected with Equations 6.202 through 6.207 may be 
more persuasive if carried out in terms of energy. That is, compare the 

collective motion will still be unstable. 
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power required to produce amplitude growth with the power that the 
feedback mechanism is able to deliver. As before, take Re fl = oo, and 
make the same assumptions concerning the fraction of the oscillators 
participating in the coherent motion. Remember that because energy 
involves the square of displacement or velocity, you must take the real 
part of displacement or velocity before squaring. Show that the threshold 
value for Imc found by this method is essentially the same as that 
obtained by the argument in the text. 

22. Imagine a distribution of particles of the form 

where S = A p / p .  Use the dispersion relation given by Equation 6.176 to 
find the locus of points in Re Z , ,  , Im Z , ,  space at the threshold of 
instability. 

23. The extraction kinetic energy of the Fermilab booster is 8 GeV. Suppose 
2 X 10l2 particles at that energy are circulating in an orbit whose 
frequency is 6 X lo5 Hz. Suppose the bunching factor is 10. The beam 
size is roughly one-tenth the aperture at this energy. Calculate the 
momentum spread necessary to stabilize the microwave instability if it 
originates only from space charge. For this accelerator, y, = 5.4. Com- 
ment on the stability threshold near transition. 



CHAPTER 7 

Emittance 
Preservation 

In our main examples of accelerator applications in Chapter 1-the luminos- 
ity of a collider and the brightness of a synchrotron light source-we 
commented on the importance of producing and maintaining small beam 
size. The beam quality aspect of small beam size is small emittance. While it 
was demonstrated in Chapter 3 that the properly normalized emittances are 
adiabatic invariants, there are, unfortunately, a variety of processes which 
will lead to emittance growth. 

Examples of this sort include the various scattering and diffusion processes 
afflicting a beam. The scattering of beam particles by interactions with the 
residual gas in the vacuum chamber will lead to emittance growth and beam 
loss. Scattering among the particles of a single beam can lead to growth of 
the beam dimensions in all three degrees of freedom; this intrubearn scatter- 
ing can limit the luminosity lifetime of a hadron-hadron collider. Random 
noise in the radiofrequency acceleration system or in the magnet power 
system can lead to emittance dilution in the various degrees of freedom. 
Quantum fluctuations in the synchrotron radiation process excite transverse 
and longitudinal oscillations in electron rings. Another important source of 
emittance growth is errors in the transfer of a beam from one accelerator to 
another. 

There is a distinct difference between electron accelerators and proton 
accelerators insofar as emittance preservation is concerned. As will be seen 
in Chapter 8, the radiation produced by an accelerated charge and the 
replenishment of the energy by the RF accelerating system causes the 
emittances of the beam in a synchrotron to vary with time. With appropriate 
choices of parameters, the system will damp oscillations in all three degrees 
of freedom. In electron synchrotrons, where radiation plays a dominant role, 
the emittances of the beam are virtually predetermined; while mechanisms 
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for emittance growth are present, with quantized emission of energy being 
the dominant source, the damping of the oscillations will force the beam size 
to an equilibrium value. Proton synchrotrons are less forgiving, however. 
Since the radiation effects are many orders of magnitude smaller than in 
electron synchrotrons, other emittance growth mechanisms in proton syn- 
chrotrons can be of more serious concern for these devices. In this chapter 
we will hence concentrate on emittance preservation within hadron circular 
accelerators and beam transfers between such rings. The emittances of 
electron beams in circular accelerators will be discussed in Chapter 8. 

We will discuss various emittance growth processes as applied to the 
transverse degrees of freedom. The longitudinal ernittance of a bunched 
beam can also grow via many of the same processes; in fact, the longitudinal 
emittances of many modern proton synchrotrons are often increased inten- 
tionally, to provide Landau damping for instance. For cases where preserva- 
tion of the longitudinal emittance is of interest, many of the same types of 
arguments as we will go through for transverse processes can also be applied. 
Some of these situations are presented in the problems at the end of the 
chapter. 

Many of the sources of emittance dilution can be grouped into two 
important categories. The first contains mechanisms which cause single 
abrupt changes in the particle phase space distribution, resulting in a larger 
than desired phase space area demanded by the beam. The most common 
examples of such processes include steering and gradient errors encountered 
during the transfer of beams into a synchrotron. The second category 
contains mechanisms which “continuously” afflict the particles’ oscillation 
amplitudes. In the following two sections we discuss two examples for each 
category. Other examples are left to the problems. 

Though the effects mentioned thus far lead to emittance growth, methods 
have been developed to reduce beam emittances in all three degrees of 
freedom. Emittance reduction techniques were instrumental in the develop- 
ment of accumulator rings for antiprotons. The last section of this chapter is 
devoted to basic descriptions of stochastic beam cooling methods as they 
have been applied to hadron storage rings. 

7.1 INJECTION MISMATCH 

Modern high energy accelerator facilities employ a series of accelerators of 
various intermediate energies. In the design of beam transport systems 
between accelerators, the primary concern is to match the amplitude func- 
tions, dispersion functions, and of course the ideal beam trajectory coming 
from the first synchrotron to those of the second synchrotron. If a proper 
match is not provided, an increase in the transverse emittance will result. 

As an example, consider a distribution of particles all of the ideal energy 
entering a synchrotron with the centroid of the distribution offset from the 
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(b)  

Figure 7.1. A particle distribution enters an accelerator with its centroid displaced from the 
ideal orbit. Due to nonlinearities in the transverse restoring forces, the betatron oscillation 
frequency depends upon oscillation amplitude. Over time, the motion decoheres and the 
distribution filaments. The result is an increased particle beam emittance. 
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x 

(d) 

Figure 7.1. (Continued). 

ideal orbit, as illustrated in Figure 7.l(a). If the sync,.rotron containec, only 
ideal linear transverse restoring forces, the particles would undergo coherent 
betatron oscillations and the emittance of the beam itself would remain 
constant; however, the total phase space area which the beam explored 
would have effectively increased [Figure 7.l(b)]. In a more realistic accelera- 
tor, the magnetic fields will in general have nonlinear components, and thus 
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(e) 

Figure 7.1. (Continued). 

the oscillation frequency will depend upon the oscillation amplitude; the 
particle motion will eventually decohere and the beam distribution will 
filament, as shown in Figure 7.l(c) and (d). Finally, after enough time has 
elapsed, the phase space distribution might look like that in Figure 7.l(e), 
where cylindrical symmetry has been reestablished, but the emittance of the 
beam has increased. 

For ease of computation we will assume in what follows that a particle’s 
oscillation amplitude will remain invariant after injection into the syn- 
chrotron. Its tune may depend upon the amplitude, but whether the injected 
distribution continues to oscillate coherently or whether nonlinear fields 
cause the motion to decohere, the time average distribution of the particles 
will be the same provided the average is taken over a sufficiently long period. 

Given a particle with an initial coordinate in phase space, the resulting 
time average distribution in the transverse coordinate may be obtained for 
that particle. Using this result, an expression for the final distribution of 
many particles, given their initial distribution, may be found. With this 
distribution function, the area in phase space which contains a certain 
fraction of the particles may be computed, as well as the rms beam size. 
Initial distributions generated by various forms of mismatch may then be 
inserted into these expressions to yield resulting time average distributions 
and emittance dilution factors. 

We consider first the time average distribution of a single particle. If the 
transverse motion in one degree of freedom is observed at a particular 
longitudinal location s in the synchrotron, then the trajectory in x ,  px  phase 
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space, where px = a x  + p x ' ,  is 

where a is the amplitude of the particle motion at point s. The Courant- 
Snyder parameters a and p are evaluated at s. 

Suppose a particle enters the accelerator and upon its first passage 
through point s the particle has phase space coordinates ( x o ,  pxo) .  Upon 
subsequent revolutions about the machine, the particle will reappear at point 
s with phase space coordinates (x,px) which lie on a circle of radius 
a = ( x i  + p:o)1/2. The exact location on the circle after each revolution will 
depend upon the phase advance of the betatron oscillation for one complete 
revolution, which may in fact be dependent upon amplitude. Over a long 
period of time, the probability of finding the particle at a specific transverse 
displacement x may be computed. If x and px are parametrized by 

x = a cos ot, 

px = -asin of, 

then the phase space distribution of the particle will be given by 

g,(x,px, t )dxdpx = 6 ( x  -acosot)S(p,  +asinwt)dxdp,  (7.4) 

where S(u) is the Dirac &function. Integrating over px yields 

g2( X ,  t )  dx 6( x - u cos ot )  d x .  (7.5) 

To find the time average distribution in x ,  we may integrate g,(x, t )  over a 
cycle of period T = 27r/w. In fact, due to the symmetry of the problem, 
integration over half a period is sufficient, which yields 

2 

7 0  
n,( x )  dx = dx -\"'6( x - a cos of)  dt 

2 0  du 
= d x - /  S ( x - u )  (7.7) 

7 - a  a,[ 1 - (u/a)*]1~2 ' 

or 

Given the initial condition in transverse phase space ( x o ,  pxo), over a long 
period of time the probability of finding the particle between x and x + dx 
is n,(x)dx. 
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Now given an initial distribution of particles n o ( x ,  p , )  dxdp, within the 
synchrotron at location s, then the resulting time average distribution of the 
particles may be found. Switching to polar coordinates, the number of 
particles which are located within a circle of radius a is given by 

and the number of particles between two circles of radii a and a + da is 

(7.10) 

Thus, the contribution of a particular ring of radius a and thickness da to the 
resulting time average distribution in x is 

1 dxda 
nu( X )  dx  = - f n n o (  a ,  8)dO. (7.11) 

n. Jm 
Upon adding up all contributions due to all pertinent rings (i.e., a 2 1x11, the 
resulting time average distribution in x will be 

Using this equation, the resulting time average distribution of particles in one 
degree of freedom may be computed given the initial distribution of particles 
delivered by the beamline. A perfect match of the beamline to the syn- 
chrotron would produce a resulting time average distribution of n(x)dx  = 

The variance of the time average distribution can be obtained by integrat- 
ing / x 2 n ( x )  dx.  An easier way of arriving at the average value of x 2  is to 
consider the symmetry of the distribution. The particle’s trajectory in phase 
space is a circle, given by x 2  + p: = a2.  Averaging over time, we see that 
( x z )  + ( p : )  = a’, where the angle brackets denote time averages. But 
because the phase space trajectory is circular, ( x 2 >  = ( p : )  and thus 

/ n , ( x ,  P , )  4%. 

( x ’ )  = a 2 / 2 .  (7.13) 

Hence, while the average position of the particle is x = 0, its rms position 
will be u 5 x,,, = a / @ .  

With these general results for the time average distribution of a single 
particle we can now address questions about mismatches of beams of parti- 
cles upon entering a synchrotron. 
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I 

Figure 7.2. A particle distribution enters an 
accelerator with its centroid displaced by an 
amount A x  from the ideal orbit. A particle 
whose amplitude would have been p, had the 
central trajectory been matched, now oscillates 
with an amplitude a. 

X 

7.1.1 Steering Errors 

Consider the effect of a steering error such as might occur at injection. The 
situation is illustrated in Figure 7.2. The origin of coordinates is on the 
design trajectory of the accelerator, but the beam enters with its centroid 
offset by an amount Ax in position and an amount Ax’ in slope. With 
respect to the centroid, the position of a particle may be characterized by the 
polar coordinates p, 4. However, upon entrance into the accelerator, the 
particle will undergo a betatron oscillation with amplitude a about the design 
orbit. The x ,  p x  axes may be rotated through an angle 0 given by 

Apx p A x ’ + a A x  
A x  Ax t an@ = - - - 9 (7.14) 

so that the problem is equivalent to one in which the incoming distribution is 
displaced only in position by an amount 

Axeq d A x 2  + ( p  Ax’ + a  AX)^. (7.15) 

From now on, Ax will be used to represent Ax,. 
Let us assume that the incoming distribution is Gaussian with the form 

(7.16) 

and compute the final time average distribution due to a position mismatch, 
n x ( x )  dx. Switching to polar coordinates, 

- [ a z + A x 2 - 2 a  A x  cos 8] /2o ,2  

n , ( x )  dx = &/im/02n d e d u ,  (7.17) 
2T g o  1x1 6-777 
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Figure 7.3. Particle distribution resulting from steering error at injection. 

or, reducing the expression to a single integral, 

where I&z)  is the modified Bessel function of order zero.' Numerical 
integration of this expression yields the curves shown in Figure 7.3. If the 
injected beam is displaced by more than about twice the standard deviation 
of the initial particle distribution, the resulting time average distribution 
exhibits a double hump. 

The variance of the resulting particle distribution can be found using 
Equation 7.13. A single particle with initial coordinates corresponding to an 
amplitude a will provide a contribution of a 2 / 2  to the variance of the 
resulting time average distribution in x .  From Figure 7.2 we see that 

a2  = p2 + A x 2  - 2p  A x  cos 4. (7.19) 

An initial distribution having a variance a; and which has rotational symme- 
try about the point ( A x ,  0) can be written in the form 

'See, for example, M. Abramowitz, and I. A. Stegun, Handbook of Mathemafical Funcfiom, 
Dover, New York, 1970, p. 374. 
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The variance of the time average distribution can thus be computed as 

(7.21) 

P 2  A x 2  A x  
= \ y n o d Z  + - 2 - - \ p z f ( p ) d p / c o s i d +  2 7  (7.22) 

where d B  is a differential element of phase space area. While the third term 
is zero, the first term is just 

P2 
/ - n o d C  = a;, 2 

(7.23) 

which is the variance of the incoming distribution-that is, the variance the 
final distribution would have had if there were no mismatch. Thus, the 
variance of the resulting distribution is simply 

a2 = a: + f A x 2 .  (7.24) 

While the distribution functions plotted in Figure 7.3 assume an initial 
Gaussian distribution, the expression for the variance in Equation 7.24 is 
completely general for any initial distribution with cylindrical symmetry in 
x, p x  phase space. 

In Chapter 3 we derived an expression for the emittance of a beam 
distribution which is Gaussian in the transverse coordinate. If the incoming 
distribution were Gaussian, the resulting time average distribution due to an 
injection position mismatch would not be. However, provided that the mis- 
match is not too large, the area in phase space which will contain the beam is 
larger than the incoming emittance by the ratio 

(7.25) 

Choosing one of the many definitions of the normalized emittance, such as 
c,, = . r ra2(yu/c) / /3 ,  we see that a steering error at injection will generate an 
increase in the beam emittance by an amount 

n(yu/c) A a 2  ~ ( y u / c )  A x 2  + ( P A X ’  + ( Y A x ) ’  
(7.26) - A c ,  = - 

P 2 P 
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where /3 and a are the Courant-Snyder parameters at the location of the 
observed trajectory errors and here the expression includes both errors in 
position and slope. It is interesting to note that this result is independent of 
the incoming beam size. 

A mismatch of the dispersion function which is delivered to a synchrotron 
from a beamline can be handled analogously, since this is simply a mismatch 
of the trajectories of off-momentum particles. For a particle of momentum 
p + A p ,  where p is the ideal momentum, the equilibrium orbit lies on the 
phase space point ( x ,  p , )  = (D A p / p , ( P D ’  + a D )  A p / p ) ,  where D is the 
dispersion function. A mismatch of the incoming dispersion function to that 
of the accelerator will result in a steering error A x  = A D A p / p  and Ax’ = 
AD’ A p / p ,  which will result in an increased transverse emittance. 

Without going through the same steps as before, we state the results for 
the time average distribution function due to a mismatch of the dispersion 
function. Let D be the dispersion function of the accelerator at the observa- 
tion point, and A De be the deviation of that value delivered by the beamline: 

ADe E [ A D 2 +  ( P A D ’  + a A D ) 2 ] 1 ’ 2 .  (7.27) 

Then 

Here 6 = ( A p / p ) / u p ,  where up is the rms value of the relative momentum 
deviation; and we are assuming once again Gaussian distributions both in the 
initial transverse beam dimension and in momentum. 

Note that for A 0, = 0, the distribution function n, becomes 

1 
n,( x )  dx = d7- e-x2/2(ui+Dzu~p2) d x ,  (7.29) 

2 4 0  + D  u ) 

which is a Gaussian distribution with variance + D’up’. From Equation 
3.138 we know that the variance of the beam distribution at a location in a 
beamline or synchrotron where the dispersion function is nonzero is given by 
u2 = a; + D2up’, where a, contains the transverse emittance. The result of a 
dispersion function mismatch is to increase the transverse emittance and 
hence increase a,. To see this effect, we examine the resulting time average 
distribution with D set to zero; the total variance of the distribution which 
one would actually observe would be D’ap’ plus the variance of n,(D = 0). 
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Figure 7.4. Particle distribution resulting from mismatch of dispersion fundion at injection. 
curves ore drawn for o point where the dispersion function of the synchrotron is zero. 

The 

Figure 7.4 shows the distribution n,(D = 0) for several values of the 
dispersion mismatch. The severity of the emittance dilution depends upon 
both ADe and up, as it must. If all of the particles were of the exact same 
momentum, the beam size would not increase no matter how large a value 
for A D, was obtained. Likewise, any small deviation from the ideal disper- 
sion function significantly affects the emittance of a beam which has a large 
enough momentum spread. 

The variance of the distribution n,(D = 0) is given by 

(7.30) 

and likewise the change in the normalized emittance, under the same 
assumptions of sufficiently small mismatch, is 

T ( r ~ / c )   AD^ + ( P A D  + c y ~ ~ ) z  
a;. (7.31) 

2 P 
A€,, = 

7.1.2 Focusing Errors 

The treatment for an amplitude function mismatch can be carried out in a 
similar fashion. To begin with, we must differentiate between the amplitude 
function which is being delivered by the beamline and the periodic amplitude 
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(a ) ( b )  

Figure 7.5. A phase space trajectory which is circular as viewed in terms of the beamline lattice 
functions (a) will in general appear elliptical when viewed in terms of the ring lattice func- 
tions (b). 

function of the synchrotron. Suppose P and a are the Courant-Snyder 
parameters as delivered by the beamline to a particular point in an accelera- 
tor, and Po, a ,  are the periodic lattice functions of the ring at that point. A 
particle with trajectory (x, x’) can be viewed in the (x,  Px’  + a x )  (x, p , )  
phase space corresponding to the beamline functions, or in the ( x , P o x ‘  + 
sox) = ( x ,  p x o )  phase space corresponding to the lattice functions of the 
ring. If the phase space motion lies on a circle in the beamline view, then it 
will lie on an ellipse in the ring view, as indicated in Figure 7.5. 

The equation of the ellipse can be obtained by noting that 

or 

P P 
P O  

px = -Pxo + ( a  - 

(7.32) 

(7.33) 

= P r p x O  + Aar x .  (7.34) 

If the equation of the circle in the beamline view is 

x 2  + p :  = PA2, (7.35) 

where A’ is the Courant-Snyder invariant, then the equation of the ellipse in 
the ring system will be 

(1 + A a f ) x Z  + 2P, A a ,  xp,, + Pfp:o = PAz. (7.36) 
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It will be useful to rotate the coordinate axes so that they correspond to 
the major and minor axes of the ellipse. This amounts to rotating through an 
angle 0 so that the cross term in the equation of the ellipse is eliminated. 
The angle is given by 

2Pr A a r  
t a n 2 0  = 

1 + Aaf  - P,' ' (7.37) 

and the resulting equation in the rotated coordinates x ,  = x cos 0 + pr sin 0, 
pxe = - x  sin 0 + pr cos 0 will be 

+[ (1 + Aaf + p,') + {(l + Aa: - P:)2 + 4(P, Aar)']*: 

(1 + A a f  + p,') - d( 1 + Aaf - P,')' + 4( P, A U , ) ~ ]  p:e 

= PA'. (7.38) 

But the expression under the radical can be simplified: 

2 
(1 + A a f  - pf)2 + 4(P, Aa,)' = (1 + Aa: + pf) - 4P,'. (7.39) 

We also note that 

1 l + a 2  1+a; + p- - 2 a a o  
PO 

where 

F +( Por + Pro - 2aa0). 

Using Equations 7.39 and 7.40, Equation 7.38 becomes 

( 7.40) 

(7.41) 

(7.42) 
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which is the standard form of the equation of an ellipse in terms of its major 
and minor axes. 

Finally, we recognize that 

1 
= F + d G  

F - @ - Z  

and so the equation of the ellipse is of the form 

1 
b,x: + -pZ = poA2, 

br 

( 7.43) 

(7.44) 

where 

b , - F +  d F 2 -  1 .  (7.45) 

Note that for the special case where (Y = a0 = 0 and p # Po, then 6 = 0, 
F = [ @ / P o )  + (P0/P)1 /2 ,  and b, = P / P o  = (Po  + @ ) / P o  = 1 + AP/Po.  
That is, 6, - 1 = AP/P0 represents the “amplitude” of a “beta function” 
mismatch. 

We can now proceed to look at the time average distribution which results 
from an initial distribution created by an amplitude function mismatch. If the 
incoming distribution is a Gaussian with cylindrical symmetry when viewed in 
terms of the beamline lattice functions, then in the phase space correspond- 
ing to the ring lattice functions, the distribution will have the form 

no( x ,  P , )  dxdpx = 

where the subscripts e have been suppressed to simplify notation. Here, o,, 
corresponds to the rms displacement the particle distribution would have if 
the lattice functions were perfectly matched. 

Upon transforming to polar coordinates, the integral for the resulting time 
average distribution due to an amplitude function mismatch becomes 

( 7.47) 



236 -- EMITTANCE PRESERVATION 
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Figuro 7.6. Particle distribution resulting from amplitude function mismatch at injection. 

or 

Figure 7.6 shows the resulting distribution. In contrast to the distributions 
resulting from steering errors, the centroid of the beam is hardly disturbed, 
and hence, as can be seen, the amplitude function must be greatly mis- 
matched to produce a significant increase in the variance of the distribution. 

Once again the variance of the resulting particle distribution can be found 
using Equation 7.13. If the initial coordinates of a particular particle are 
given by ( x o ,  p x 0 )  where 

then this particle will commence describing a circular trajectory in phase 
space on subsequent passages through the synchrotron, where the radius of 
the phase space trajectory is given by a = d m .  Upon averaging over 
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the entire distribution, we have 

and hence 

It follows that the resulting distribution will have variance 

( 7 S O )  

(7.51) 

(7.52) 

(7.53) 

(7.54) 

But br = F + d G  and hence b: + 1 = 2Fbr. Therefore, upon averag- 
ing over time, the variance of the distribution will be increased by a factor 

02/a; = F = + ( @ y o  + Poy - ~ C Y C U ~ ) .  (7 3) 

This expression can be made to look more like the expressions obtained 
for steering errors by rewriting it as (see the Problems) 

F = 1 + i ldet  AJI (7.56) 

where J is the 2 X 2 matrix containing the Courant-Snyder parameters: 

I = ( : ?  !q. (7.57) 

For the case where the slope of the amplitude function is matched and equal 
to zero, we have 

(7.58) 

It is interesting to note that the change in emittance (or a') generated by an 
amplitude function mismatch is proportional to the incoming emittance, in 
contrast to  the effect of a steering error, where the emittance increase is 
independent of the initial emittance. 

Table 7.1 summarizes the ernittance dilution factors to injection amplitude 
function, dispersion function, and steering errors. 
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Table 7.1. Transverse ernittance dilution factors; 
see text for explanations. 

Amplitude function mismatch: 

Dispersion function mismatch: 

Injection steering error: 

7.2 DIFFUSION PROCESSES 

In this section we wish to discuss the general behavior of particle distribu- 
tions in the presence of mechanisms which continuously stimulate emittance 
growth. Let us suppose we have an initial distribution of particles in trans- 
verse phase space, f&x, x’), where x is the transverse coordinate and x’ is 
the slope of a particle’s trajectory, x’ = dx/ds, as observed at some particu- 
lar point in the accelerator. In the absence of such mechanisms, we assume 
that this distribution will not change with time, and so 

However, if some process is randomly altering the betatron amplitudes of the 
particles in the beam, the extent of the distribution will grow with time and 
f(x,  x’, f )  will satisfy the diffusion equation. 

To understand the diffusion equation, imagine a system of particles, 
constrained to move with one degree of freedom, with density function f(x). 
Let J be the average number of particles per unit area crossing a plane 
perpendicular to the x-direction per unit time. We now look at a region 
around x ,  as sketched in Figure 7.7, and consider the number of particles 
flowing into and out of this region. 

The number flowing into the region bounded by x and x + Ax and with 
cross-sectional area A in the small time interval A t  is AJ(x)At.  The 
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I X X + A X  Figure 7.7. Diffusion of particles across a boundary at x .  

number flowing out is given by AJ(x + A x )  A t .  Thus, 

a 
at 
-( fA A X )  = A J ( x )  -AJ(x  + A X ) ,  

or 

(7.60) 

(7.61) 

Now if f is uniform, the migration of particles due to some random 
process into the region between x and x + A x  will equal the average flow of 
particles out of this region, and so J ( x )  would be zero. If the density function 
had a greater value at x than at x + A x  (i.e., if f has a nonzero gradient), 
then more particles are apt to wander into the region from the left than from 
the right. That is, one would expect J to be proportional (to good approxima- 
tion) to the rate of change of f with respect to x :  

a f 
ax 

J =  - C - ,  (7.62) 

where C is a constant of proportionality. Substituting Equation 7.62 into 
Equation 7.61, we obtain the diffusion equation in one degree of freedom: 

a f  a2f _ -  - c 7 .  
at ax 

The more general three-dimensional form of the diffusion equation is 

af  - = c V 2 f  
at 

(7.63) 

( 7.64) 

For the case of diffusion in one of the transverse degrees of freedom of a 
particle distribution in an accelerator, it is again useful to consider the 
distribution in x ,  p x  phase space.. We consider only initial distributions with 
cylindrical symmetry in this phase space. Let r be the amplitude of a 
particle’s transverse oscillation: r 2  = xz  + p: = x 2  + (fix’ + ax)’. Then the 
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density function, in polar coordinates, satisfies 

- = c V z f = c - -  a f  l a (  r - .  :;) (7.65) 
at r dr 

We can see the significance of the diffusion constant C by multiplying 
Equation 7.65 by r 2  and integrating over all of phase space. We find 

1 . 2  rdr  = c / r  ( r  : ) r d r ,  (7.66) 

- / r 2 f r d r  a = C / r ’ d ( r  z), 
at 

- ( r 2 )  a = C‘[ ( r 3  g): - /( r g ) ( Z r d r ) ]  at 

= - 2 C / r 2 d f  

= - 2 C [ ( r 2 f ) l ;  - /f * Zrdr]  

= 4 C / f r d r  

= 4c, 
or 

i a  
4 at 

c = - - ( r 2 ) .  

(7.67) 

(7.68) 

We thus see that C is related to the time rate of change of the emittance 
of the beam. We therefore transform coordinates to involve the Courant- 
Snyder invariant W = [ x 2  + ( p x ’  + ~ y x ) ~ l / p  = r 2 / p .  So we may write f = 
f ( W ,  t )  and note that the variable W is independent of longitudinal location 
within the accelerator. The diffusion equation then 

- af = --(w$). 4 c  a 
at p aw 

To allow for processes which may occur at various 
ference, we can define a new diffusion constant 

becomes 

(7.69) 

points along the circum- 

(7.70) 
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and write our diffusion equation as 

- af = R ”( W g ) .  
at aw (7.71) 

To proceed, we define two quantities: 

W 
z = - ,  (7.72) wo 

7 = ( ; ) t ,  (7.73) 

where W, is the Courant-Snyder invariant corresponding to the limiting 
aperture of the accelerator (Le., the admittance). If a is the half aperture at a 
location where the amplitude function has the value p,  then W, = a2/P.  
Notice that Z and T are both dimensionless quantities. 

In terms of Z and T ,  the problem reduces to 

subject to the boundary conditions 

( 7.74) 

(7.75) 

(7.76) 

The solution of the above differential equation is 

with 

(7.78) 

where An is the nth zero of the Bessel function J&) (A ,  = 2.405, A,  = 
5.520,. . . ). 
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We now consider a particular form of the initial distribution, namely a 
bi-Gaussian in x ,  x' phase space. For this situation, the function fo will be 

(7.80) 

or 

a' 

2u 
fo( 2) dZ = ~ e - ( 0 2 / 2 0 2 ) z  d Z .  

So the coefficients c, become 

(7.82) 

(7.83) 

where (Y = a2/2u2.  If the entire initial beam distribution lies well within the 
aperture so that the integrand is sufficiently near zero before 2 approaches 
1, i.e., if a is greater than about 5, then the c,'s may be approximated by 

where 

1 
c, = ~ 2e-L~(coshr ,  - sinhr,) 

J , ( A n )  

1 
=- 

J ,  ( A,) 2 - 2*n 

A: u 

4 a  
2, = -(-) . 

(7.84) 

(7.85) 

(7.86) 

If the initial distribution does not satisfy the above condition, then the c, 
integrals may be performed numerically. 

The development of the particle distribution with time, as well as the total 
beam intensity as a function of time, may now be computed. By integrating 
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f(Z, T )  over the range of 2, the number of particles N ( T )  may be obtained, 
namely, 

or 

N (  T )  = /f( 2, T )  dZ 
0 

(7.87) 

( 7.88) 

(7.89) 

For u e a, this becomes 

N(T)  = 2C 1 exp( - :[ T + 2( :)'I). (7.91) 
n A n J , ( A n )  

Figure 7.8(a) shows how f(2, T )  varies with time for the case u / a  = 0.20. 
The particle distribution grows in transverse size until it reaches the aperture 
( Z  = 11, at which time the area under the curve quickly begins to decrease. 
The intensity N ( T )  for this same case is displayed in Figure 7.8(b). From 
T = 0 to T = 0.1 the intensity is nearly constant. Upon reaching the aperture 
limit, the intensity rapidly falls off until T = 0.5, where the final lifetime 4/A: 
is reached. 

When a substantial fraction of the initial Gaussian distribution lies outside 
the aperture limit (all particles with Z > 1 being lost immediately), the 
rather flat region of N ( Z )  for small Z disappears. Figure 7.9(a) shows the 
intensity vs. time for the case u / a  = 0.2. The lifetime, determined by 

(7.92) 

is shown in Figure 7.Nb) for the same two cases. The one case begins with a 
very long lifetime which then decreases to the value 4/A:, while the other 
case begins with a very short lifetime which rapidly approaches its asymptotic 
value. 
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' 4  I 

3 

Figure 7.8. (a) Variation of density function f and (b) variation of particle beam intensity with 
time for an aperture at 5a.  
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The dimensionless quantity 7 is related to time t by 

7 = ( t ) t ,  

and hence the asymptotic lifetime is given by 

(7.93) 

(7.94) 

If the emittance growth is caused by the changing of particle direction due 
to fluctuations in magnetic fields, elastic scattering off residual gas particles, 
etc., then the next step is to evaluate the diffusion constant R under these 
various circumstances. 

7.2.1 

In this section, we wish to look at the development of betatron oscillations, 
and hence growth in emittance, if there is a sequence of random energy 
changes such as might be produced by noise in a radiofrequency accelerating 
system. We assume for this argument that each energy increment upon each 
passage through the accelerating station is uncorrelated with all other such 
occurrences. Now suppose the momentum of a particle changes abruptly by 
an amount A p .  If the particle were not already undergoing a synchrotron 
oscillation, one would now begin with initial conditions AE = ppcu and 
Aq5 = 0, where u = A p / p .  If the dispersion D or its derivative D' is 
different from zero, a betatron oscillation will start with respect to the new 
off-momentum orbit with initial conditions x = -Du and x' = --D)u, as 
indicated in Figure 7.10. 

RF Noise and Excitation of Oscillations 

Figure 7.10. The dashed line represents the locus of closed orbits for various particle 
momenta. 
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Let's consider a sequence of fractional momentum changes (uJ. In our 
familiar vector notation, after the first kick, 

(:;) = -ul(;,). (7.95) 

After transformation by the single-turn matrix M, a second kick is delivered, 
so 

( 7.96) 

(7.97) 

and after n turns 

(:!) = - ( u l M " - '  + U ~ M " - ~  + + * .  + u , - , M  + u,,)(:!) (7.98) 

= - U m M " - " ( g 4 )  
m = l  

(7.99) 

We're interested in emittance growth, so we should look at the Courant- 
Snyder invariant, which is given by 

where 

(7.101) 

(7.102) 

and AT refers to the transpose of A. 
Writing M in the form 

M = I c o s p  + J s i n p ,  (7.103) 

where p is the phase advance for one revolution, each term in W(n) will be 
of the form 

-u ,u , zT(  Icos  p L I  + J T  sin p, )SJ(  Icos  pz + J sin pz)b, (7.104) 

where p1 = (n - m)p and pz = (n - k ) p .  Noting that I T S  = -SJ and 
J 2  = - I ,  this expression reduces to 

Z U , U k  cos ( m  - k)p (7.105) 
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with 2? defined as 

2? = y D 2  + 2cuDD' + POI2. (7.106) 

Then we have 

n 

m , k  
W=2?xUmUkC0S(m - k ) p .  (7.107) 

Since we do not know the particular sequence of errors {u$, the best we can 
do is to average over a large ensemble of such sequences. Then 

where P is the total number of sets in the ensemble. For uncorrelated kicks 
such as we would have from a truly random noise source, 

1 P  ' c u m , p u k , p  = 
p p-1 

(7.109) 

and so 
n 

m-1 
( W )  =z x u5, = n x ( u 2 ) ,  (7.110) 

which gives for the diffusion constant 

d e2(v2) 
R = - (W)  = f 0 x ( U 2 >  = f o x  (7.111) 

dt ( 3 4 E 2  ' 

where is the rms voltage due to noise in the accelerating system and 
fo is the revolution frequency. In terms of a normalized emittance E,  = 
7ry(o/c)cr2/p, 

de, .rry e2(v2) 
- -  dt -+ox " 3 ' (7.112) 

where we note that u2 = ( x 2 )  = ( r 2 > / 2 .  Note that if the dispersion func- 
tion and its derivative are both zero at the source of the noise, emittance 
growth can be avoided. 
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Figure 7.1 1. Coulomb scattering of electron from target nucleus. 

7.2.2 Beam-Gas Scattering 

As another example of a diffusion process we consider the small angle 
scattering of particles in the beam off of residual gas molecules in the vacuum 
chamber. We first consider the deflection of a single particle from a target 
nucleus and then the effect of multiple scattering off many sue;; iargets. From 
this we can obtain an expression for the time rate of change of the rms 
particle amplitude due to beam-gas scattering, and hence an emittance 
growth rate. 

Coulomb Scatterlng Consider an incident particle of charge e ap- 
proaching a target nucleus of charge Ze as shown in Figure 7.11. The particle 
approaches with a speed v and impact parameter 6. The Coulomb repulsion 
(or attraction) changes the direction of motion of the particle by the angle 8. 
If the scattering angle is small, the transverse momentum p L  that the 
particle acquires is given by 

and 

e 
p I  = /FL dt = ./EL dt = -/EL dz 

U 

P I  Ze 
p 27re0pvb 

8 = - =  

(7.1 13) 

(7.114) 

(7.115) 

The differential cross section d o / d R  is the area do presented by a target 
particle for scattering an incident particle into the solid angle dfl. For a 
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particle approaching the target with impact parameter b,  d o  = 27rbdb. For 
small angles, d f l  = 27re do. Hence, the differential cross section is 

d o  21rbdb 
dR =l%TiIl* (7.116) 

The absolute value is taken because both the area and the solid angle are 
positive quantities. 

Using 

Ze 
b -  

~ T ~ C , P V B  ' 
(7.117) 

we have 

(7.1 18) 

from which 

d o  b db 
(7.119) 

This is the small angle limit of the famous Rutherford scattering cross section 
formula. 

Multlple Coulomb Scatterlng We next imagine a thin layer of mate- 
rial through which a particle passes, interacting with many atoms along its 
way. Upon each interaction, the particle's transverse coordinate is changed 
very little, but its direction of motion is altered according to the results of the 
section above. For the interaction with one scattering center, the variance of 
the particle's scattering angle is given by 

/02( d a / d f l )  dR 

/( d a / d f l )  d f l  
( e2h  = (7.120) 

The limits of integration are 

(7.121) 

(7.122) 
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where a is the “radius” of the target atom, and R is the “radius” of the 
target nucleus. 

Using the Rutherford cross section above, we find that 

( e2h  = 20:,, ~n(~,ax/emin)  

(7.123) 

where re = e2/(4.rre,rn,c2) is the classical radius of the electron. By adding 
up the contributions due to the scattering off the scattering centers within 
radius a of the particle’s trajectory and through a thickness 1 of a material of 
density p and atomic weight A,  we get 

(7.124) 

for the variance of the scattering angle distribution. Here NA is Avagradro’s 
number. 

When dealing with radiation processes one often expresses lengths in units 
of the radiation length &d, given by 

1 N !  a - -  = 2a-p~’r,2 In -, 
L r a d  A R 

(7.125) 

where (Y = 1/137 is the fine structure constant. In tables, the material 
density is often suppressed and “lengths” are expressed in units of grams per 
square centimeter. 

The variance of the scattering angle distribution may now be written as 

4.rr mec2 I 
( 6 2 )  = - - - 

(Y ( pv ) Lrad 

( 7.126) 

where E, = m e c 2 d w  = 21 MeV. If we now consider the projection onto 
one particular transverse plane, then 

(e2)  = (8:) + (e;) = 2(e,Z). (7.127) 

Therefore, the variance of the scattering angle in one transverse degree of 
freedom is given by 

(7.128) 
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The D/Hus/on Constant Finally, we use the result of the previous 
section to discuss the scattering of the beam particles off of the residual 
particles in the vacuum chamber. The average rate of change of the trans- 
verse scattering angle in one degree of freedom is given by 

d 
dt 

- - 

P [ pTorr ] 
= (3.3 x 1od7/sec) 

Y 2  
9 

(7.129) 

(7.130) 

(7.131) 

where the last expression is given for a proton beam, assuming air for the 
residual gas in the vacuum chamber, and assuming u = c. Here, P [    TO TI-1 is 
the average vacuum chamber pressure expressed in microtorrs. 

The diffusion constant is R = d (  W ) / d t  and AW = AKx2 + [ p x ’  + crx12)/p) 
= ( 2 a x  Ax’ + p 2 A x r 2 ) / p .  So, when averaging over many scatterings, 

and the emittance growth rate, using eN = T y ( u / c ) a 2 / p ,  is 

P [  pTorr] 

Y 
= a(p)(1.6 X lO-’/sec) 

(7.132) 

(7.133) 

(7.134) 

for the assumptions above. 

7.3 EMITTANCE REDUCTION 

The processes described in the last two sections are indicative of common 
and often unavoidable sources of emittance dilution in hadron synchrotrons. 
Potential major sources of emittance growth can often be identified, and 
modifications can be made during the design of the accelerator to improve 
the situation. One may still have residual effects, which may be difficult to 
identify, and one may still desire smaller emittance beams than can be readily 
produced by normal means. In particular, beams of exotic particles, such as 
antiprotons, which are produced through the targeting of primary beams will 
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have inherently large transverse emittances as well as large energy spread. It 
was the desire to build proton-antiproton (pp) colliding beam accelerators 
which led to the development of electron cooling and stochastic cooling. 
These emittance reduction techniques, in particular the latter, allowed an- 
tiprotons to  be accumulated in reasonable quantities and with reasonable 
ernittances so that pp collisions in the 0.5-2 TeV center of mass energy range 
could be achieved. The invention of stochastic beam cooling and the subse- 
quent discovery of the vector bosons at CERN in the SpfiS collider led to the 
award of the Nobel Prize in physics to C. Rubbia and S. van der Meer. Over 
the past several years beam cooling techniques have been utilized in several 
accelerators in high energy and nuclear physics experimental facilities. 

Electron cooling2 involves the thermal interplay of a proton beam and an 
electron beam toward equilibrium transverse and longitudinal temperatures; 
the initial electron temperature is quite low (parallel beam with low momen- 
tum spread), and the initial proton beam temperature is significantly higher. 
While this technique is qualitatively simple to visualize, a complete quantita- 
tive treatment is beyond the scope of this section. Rather, we turn to a 
description of stochastic cooling. The basis of this technique is a shade less 
intuitive, yet its analysis is more straightforward. 

7.3.1 Transverse Stochastic Cooling 

The concept of a stochastic cooling system is remarkably simple. It is also 
remarkable that it is technically f ea~ ib le .~  Suppose we want to reduce the 
transverse emittance of a beam. A beam bunch contains a finite number of 
particles; thus the beam centroid will deviate from the central orbit of the 
bunch by a finite amount. If we detect and correct this deviation, the effective 
emittance of the bunch will be reduced. If we were indeed talking about a 
single bunch, we would have succeeded in making a minuscule reduction in 
the emittance and the process would be at an end. But if, on the other hand, 
our beam sample rapidly interchanges particles with other samples, the 
fluctuation in the centroid position is regenerated and the process can be 
repeated. In concept, at least, the system might consist of the arrangement in 
Figure 7.12. The centroid position is sensed at the pickup, and the signal is 
conveyed across the ring, amplified, and delivered to a kicker which provides 
an angular deflection proportional to the displacement sensed at  the pickup. 
The kicker is located an odd number of quarter wavelengths in betatron 
phase downstream of the pickup. The signal path must be shorter than the 

*G. 1. Budker, Proc. Intl. Symp. on Electron and Positron Storage Rings, Saclay, 1966, p. 11-1-1. 
For a general overview, see W. Kells, “Electron Cooling,” in Physics of High Energy Particle 
Accelerators, AIP Conf. Proc. 87, New York, 1982. 
’D. Mohl, G. Petrucci, L. Thorndahl, and S. van der Meer, “Physics and Technique of Stochastic 
Cooling,” Physics Reports 58, No. 2 (1980). The following discussion has been adapted from 
A. V. Tollestrup and G. Dugan, “Elementary Stochastic Cooling,” in Physics of High Energy 
Particle Accelerators, AIP Conf. Proc. 105, New York, 1983. 
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Ampliller 

Figure 7.1 2. Stochastic cooling system consisting of pickup electrodes, amplifier, and beam 
deflector. 

orbital path length between the two devices to ensure that the signal reaches 
the kicker at the same time as the beam. 

It is desirable to reduce the transverse emittance of a beam containing a 
very large number of particles. If the system had infinitely fine time resolu- 
tion, each particle could be sensed and corrected and the process could be 
successfully concluded in a few revolutions. However, a real system does not 
have this capability, and so there will be only finitely many particles in the 
sample that are corrected. Clearly, the smaller the number of particles in the 
sample, the closer one approaches the ideal. 

First, we relate the sample size to the system bandwidth. Suppose there 
are N particles uniformly distributed around the ring. If the sample size is 
such that the beam is divided into k samples, each containing N, particles, 
then the minimum wavelength that can be resolved in the analysis of the 
data is 

2 c  
Amin = - 

k ’  

where C is the ring circumference. Therefore, 
information extends to 

U ku 
fm,= - 5 - = 

’min 2C 

(7.135) 

the frequency content of the 

k 

2 T ’  
- (7.136) 

where T is the revolution period. For a system with a flat frequency response 
from f = 0 to f = W ,  W determines f,,. So the number of particles in a 
sample, in terms of the bandwidth W, is given by 

N N  
k 2TW 

Ns=-=- (7.137) 

We now consider a measurement of a particular sample. Each particle in 
the sample receives a correction proportional to the sample’s mean displace- 
ment (x ) .  So an individual particle’s displacement after the kick is x - g ( x > .  
To get at the emittance reduction, we need to consider the change of the rrns 
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of the distribution. For the k th particle, 

- 255 

We write 

1 1 1 
(x )  = - E x i  = - x k  + - c x i .  

N s  i Ns Ns i # k  
(7.139) 

Then 

Averaging over all the particles, we get 

2 

(7.141) 

The second term on the right hand side is the sum of the contribution of each 
particle acting back upon itself. This coherent term is offset in part by the 
fourth term, representing the incoherent contribution of the other particles 
in the sample. Since the individual particle displacements are uncorrelated, 
the sum present in the third term is zero. 
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We can analyze the last term as follows: 

1 
= - C(X’> 

Ns k 

1 
= - - N S ( x 2 )  

= ( x 2 > ,  (7.142) 

Ns 

where in the second step we have assumed that the various xi are uncorre- 
lated. Thus, keeping terms up to first order in l / N s ,  we have for the rate of 
change of ( x 2 >  

The cooling rate is then 

1 de 2 g  - g 
-- E dn = - (  N, 2 ) ,  

(7.143) 

(7.144) 

or, in terms of time, 

1 de 1 dE 1 2 g - g 2  2W - = - ( 2 g  - g2). (7.145) 
1 - = = ---- = 
7 E dt E dn T NST N 

Let’s add two refinements to this relationship. System noise is an important 
consideration in the design of a cooling ring. Suppose that the noise intro- 
duced at the kicker is equivalent to a position error x ,  at the pickup. Then 
the correction applied to each particle becomes 

x - g ( ( x >  + x , ) .  (7.146) 
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Proceeding as before, 

[ x  - g ( ( x )  + .,)I 2 = x 2  - 2 g x ( ( x )  + x , )  + g 2 ( ( x ) 2  + 2 x , ( x )  + 4)  
(7.147) 

for a single particle, and averaging over the sample gives 

Averaging over many samples, ( x , )  = 0 and so 

1 d ( x 2 )  1 
--= [ - 2 g  + g2(1  + U ) ]  - 9  

( x 2 >  dn Ns 
(7.149) 

where U = ( x ~ > / ( x > ~  is the ratio of the expected noise to the expected 
signal power. 

Our second refinement is to take into account the fact that the fluctuation 
in the centroid position may not be regenerated independently from one turn 
to the next. In other words, if particles move rapidly from one sample to 
another, each sample will rerandomize during the course of one turn and we 
will have the ideal situation. But the “mixing” may not be perfect, and we 
have to allow for this possibility. 

The movement from sample to sample is due to the spread in orbital 
frequencies arising from the spread in particle momentum. The number of 
revolutions required for a particle of momentum A p / p  to pass from one 
sample to another is 

T, 
A T ’  

M =  - (7.150) 

where T, = ( N , / N ) T  = 1/(2W) is the sample time, and AT is the change in 
the revolution period due to the momentum deviation A p / p .  Then 

(7.151) 

For ideal mixing, M = 1. Intuitively, one would expect the cooling rate to 
degrade by a factor of M as we depart from perfect mixing. Actually, this 
factor of M appears only in the incoherent term, and so the emittance 
decreases according to 

= ~ ~ e - ’ / ~ ,  (7.152) 
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where we have for the cooling rate 

1 2w 
r N  
- = - [ 2 g - g Z ( M +  V ) ] .  (7.153) 

7.3.2 Longitudinal Stochastic Cooling 

The transverse cooling sketched in the last section is able to reduce the 
transverse emittances of antiprotons to the level appropriate for pj5 collider 
operation. We have not thus far addressed the question of how one accumu- 
lates large numbers of antiprotons. It is inherent in the production process 
that antiprotons are produced over a broad range of momenta, and this 
spread needs to be reduced. Longitudinal cooling is able to achieve both 
goals, as we shall see. 

Suppose we detect momentum differences by their related orbital fre- 
quency differences. We need a way of applying no correction if the frequency 
is correct; this can be accomplished by adding a filter to the layout shown in 
the preceding section. If a correction is required, it will be applied by a 
longitudinal kick, rather than a transverse kick as was done in the previous 
section. Because the cooling systems have a wide bandwidth, this implies that 
the filter remove not only the fundamental of the derived frequency but its 
harmonics as well. 

In a system devised for accumulation of particles it is natural to speak in 
terms of particle flux and density functions. The time evolution of the density 
function $(El  will represent a trade off between the diffusive effects of the 
incoherent interactions and the collective flow arising from the coherent 
forces. The equation that describes the time evolution of a density function 
subject to these processes is called the Fokker-Planck equation. 
As in the discussion of beam-gas scattering, the flux arising from diffusion 

can be written in the form 

J”= -DV3, ,  (7.154) 

where J” is the particle flux. In the case under consideration here, since 
energy is the only degree of freedom, 

(7.155) 

where the diffusion “constant” may be a function of energy. To this, we must 
add coherent forces. If the rate of energy gain is C(E) ,  then we must add 
+ C ( E )  to the flux, obtaining 

a* 
J = C ( E ) *  - D ( E ) -  

aE 
(7.156) 
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Figure 7.13. Particle density function )(€I. 

We can now obtain the time rate of change of $ from the continuity 
equation: 

+ a [ C (  E ) $  - D( E )  1. (7.157) 
a* 
at aE 
- = - v .  J = _ _  

This is called the Fokker-Planck equation. 
Let’s arrive at the expression for the flux by an alternative route so that we 

may identify the coefficients C ( E )  and D ( E )  in terms of the kicker voltage. 
Suppose $ ( E )  appears as in Figure 7.13. We are interested in the flux at E ,  
due to an energy increment Ek generated by the kicker. The number of 
particles present in the shaded area is 

(7.158) 

On the time scale associated with the kicker frequency, the particle 
distribution changes very little. Therefore, we may average over a time 
interval sufficiently short that $ does not change, but sufficiently long to get 
meaningful averages of the kicker voltage factors. We get 

(7.159) 

Therefore, the average flux of particles passing through this region will be 

(7.160) 

By comparison with our earlier expression for the flux, the coherent force 
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coefficient and the diffusion (noise) coefficient are given by 

I d  
D ( E )  = - - ( E i ) .  

2 dt 

(7.161) 

(7.162) 

We may now apply the above relationships to momentum stacking and 
cooling. We will examine two cases for which the particle density does not 
depend upon time. In such equilibrium circumstances the Fokker-Planck 
equation tells us that the flux is constant. We first consider a simple example 
in which the flux is zero. Suppose there is a coherent force driving particles 
toward some central energy E,, where the force is proportional to the energy 
deviation E - E,, and suppose that the diffusion force is a constant. Then 
C ( E )  = - a ( E  - E,) and D ( E )  = Do. So this static situation is described by 

(7.163) 

The solution to the above equation is the Gaussian 

(7.164) -a( E -E&!/ZD, + = +oe 

A large particle density results if the noise ( D o )  is small and if the restoring 
force (a) is large. 

Now suppose we were to introduce a small group of particles with central 
energy Ei,  where Ei - E ,  is large compared to the rms of the distribution 
above. Then the coherent force would dominate the force due to diffusion, 
and this small group would be driven toward the larger distribution over 
some time interval, as depicted in Figure 7.14. Such a scenario is referred to 
as momentum stacking; small pulses of particles are continuously injected 
into the synchrotron at an energy Ei and then are collected into an equilib- 
rium distribution with a central core at E,. 

The remarks concerning momentum stacking in the preceding paragraph 
suggest the basis for the method of antiproton accumulation used at CERN 
and Fermilab. In this method-the Van der Meer method-the flux is 
constant with time, with particles continuously being injected into the accu- 
mulator storage ring. We note that the coherent force, in terms of the voltage 
V ( E )  applied by the kicker each turn, would be 

(7.165) 

where T is the revolution period. To arrive at an approximate expression for 
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Eo 

Figure 7.14. Momentum stacking. 

the diffusion coefficient, assume that the expectation value of E i  arises solely 
from the incoherent noise in the sample. Then, recalling the argument in the 
preceding section relating ( x 2 >  to ( x ) ,  

( E z )  = (E,)’  x N,. (7.166) 

In this case, since we are sampling frequencies (and therefore energies), the 
number of particles in the sample is proportional to +. Hence, we expect the 
diffusion coefficient to be of the form 

D ( E )  =AVZ+, (7.167) 

where A is a constant determined by the design of the cooling system. 
So, putting this all together, the constant flux is given by 

eV a+ 
J = -+ - A V *  - = J , .  

T aE 

Solving for d+/dE, we have 

e + -  a+ 
aE AVz+ AVT 

Jo - -- _ -  

(7.168) 

( 7.169) 

We now choose a kicker voltage which will make a$/aE as large as possible: 

2 TJ, V =  - *  (7.170) 
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ENERGY RELATIVE TO THE CENTRAL ENERGY (MeV) 

Flgure 7.15. Design curves for antiproton energy density at FNAL Accumulator Ring, showing 
development of the "p stack" over time. From Tollestrup and Dugan, with permission. 

So we have 

(7.171) 
a* e2* e2* - * e2* 

z- +-=- - = -- 
dE 4JoT2A 2JoT2A 4AT2Jo Ed ' 

or 

Therefore, in the equilibrium state, there is a constant flux of particles being 
injected at energy E,; over time, the particle density increases exponentially 
with the energy difference E - Ei as shown in Figure 7.15. [In this figure, the 
particle flux is negative (from the right) and hence the density increases to 
the left as shown.] 

To generate the density profile described above, the kicker voltage must 
be given by 

(7.173) 

which tells us that the particles in the higher density region need to receive 
less kick in an exponential fashion. As can be seen in Figure 7.15, the particle 
density in the core can be increased many orders of magnitude in just a few 
hours. For a sense of scale, the central energy of this accumulator ring is 
8 GeV. 
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7.4 SOME REMARKS ON BEAM DISTRIBUTIONS 

We have often, throughout the text, assumed that particle distributions are 
Gaussian in order to perform calculations. The question always arises whether 
or not this is a reasonable assumption. It is easy to conceive of ways of 
producing beam distributions which are not Gaussian, such as those pro- 
duced in a hadron storage ring by deflecting the beam with a pulsed kicker 
magnet and allowing filamentation to occur; indeed, this experiment has been 
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n = 300 turns 

=I-  

I n = 1000 turns 

(dl 

Figure 7.1 6. (Continued). 

performed many times. But if care is taken to match trajectories and optical 
properties at injection and to minimize other coherent disturbances to the 
beam, then abrupt changes to individual particle trajectories are apt to be 
dominated by purely random processes. 

Consider, for example, a zero emittance initial beam distribution-that is, 
all the particles start out at the origin of phase space. Now suppose that on 
each turn about the accelerator each particle receives a random change in 
the slope of its trajectory-either a positive increment of one unit, a negative 
increment of one unit, or no change at all. Each particle will undergo its own 
independent random walk. The results of such a scenario are shown in 
Figure 7.16. Over a large number of such increments and for a large number 
of particles, the distribution of transverse positions will tend to have the 
shape of the normal (Gaussian) distribution function. This is just the manifes- 
tation of the central limit theorem of probability the01-y:~ the distribution 
function for a sum of random variables approaches the normal distribution 
function as the number of variables in the sum increases. The most powerful 
aspect of the theorem is that the result is independent of how the fluctua- 
tions are distributed, just so long as they are random. 

‘See, for example, H. J. Larson, Introduction to Probability Theory and Statistical Inference, John 
Wiley & Sons, New York, 1974. 
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Hence, one can imagine a beam of protons, each particle having suffered 
various random deflections due to scattering from gas molecules, intrabeam 
scattering, perturbations in magnetic fields, power supply noise, mechanical 
vibrations, and so on. So long as the various events are random and 
uncorrelated among the various particles, the distribution function describing 
the position of a particle which has been subjected to all of these random 
processes will be Gaussian, to good approximation. 

At the beginning of this chapter it was mentioned that discussion of 
electron beam emittance would be left to Chapter 8. There we will see that 
the dominant source of emittance fluctuation is the emission of photons due 
to synchrotron radiation, an inherently random process. Since the ensuing 
damping times are, in general, short, one would expect that even correlated 
processes such as injection errors might be swamped by the synchrotron 
radiation effects. Thus, electron beams in circular accelerators are certainly 
expected to have Gaussian distributions, and that is what is observed. The 
fact that proton beams in large synchrotrons also typically appear Gaussian 
suggests that the central limit theorem is at work here as well. 

1. Compute the increase in the normalized (39%) emittance due to a 1 mm 
amplitude steering error observed at a point where p = 100 m for 
injection energies of ( a )  8 GeV, (b) 150 GeV, and (c) 2 TeV. 

2. Suppose an injection line leading into a planar synchrotron leads to a 
nonzero value for the vertical dispersion function. Show that the variance 
of the resulting vertical distribution after dilution takes place is related to 
the variance of the incoming distribution by 

2 a 2 = a ~ +  - ( A D Z ) ,  1 
2 

where up/p  is the rms of the distribution in A p / p ,  and AD is the value 
of the dispersion function delivered by the beamline to the observation 
point. The slope of the dispersion function is assumed to be well 
matched. 

3. Show that the quantity F used in the discussion of amplitude function 
mismatch may be written as 

F = 1 - i d e t ( J  - J , ) ,  

where the J’s  are the matrices of Courant-Snyder parameters used in the 
text. Here, J ,  reflects the values of the synchrotron lattice, while J 
contains the parameters delivered by the beamline. 
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4. Using the result of the previous problem, show that a quadrupole located 
in a transfer line between two accelerators which has a field error of 
ABf/Bf will produce an emittance dilution given by 

where, f is the nominal focal length of the quadrupole and Po is the 
design value of the amplitude function at the location of the quadrupole. 

5. Show that det(AJ) is an invariant within an unperturbed lattice, indepen- 
dent of longitudinal coordinate s. Thus, the choice of an injection point 
is arbitrary when discussing the mismatch of Courant-Snyder parameters. 

6. Show that the emittance dilution factor due to an amplitude function 
mismatch can be written as 

7. Downstream of a gradient perturbation, show that the amplitude func- 
tion mismatch propagates through the unperturbed lattice of a syn- 
chrotron obeying the differential equation 

-- d 2  ( A’ ) + 4u:( z) = - 2 u i  det( AJ) 
d 4 2  P o  

where 4 = $/vo is the reduced phase and uo is the unperturbed tune. 

8. Suppose a synchronous transfer occurs between two accelerators which 
have their RF frequencies and bucket areas properly matched in order to 
preserve longitudinal emittance in the transfer. If the bunch area in 
phase space is much smaller than the bucket area, compute the change in 
longitudinal emittance due to a small (a) energy mismatch, (b) phase 
mismatch. 

9. In the text, we discuss how injection errors lead to an increase in 
emittance. Liouville’s theorem states that phase space density is con- 
served for Hamiltonian systems. Explain this apparent contradiction. 

10. Consider the x,(Px‘ + a x )  phase space distribution generated by a 
steering error of amplitude Ax inflicted upon a Gaussian beam of initial 
rms size a,. Compute the radius a. of the phase space circle which 
contains 39% of the injected particles. Define a dilution factor ai/ui, 
and compare this with the expression u2/ut = 1 + 4 A x 2  found in the 
text. 
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11. Verify that 

f (  Z ,  T) = c c , J , (  A n h f ) e - A t T / 4  

is indeed the appropriate solution of the diffusion equation, as was stated 
in Equation 7.77. 

12. Suppose the normalized emittance of the beam injected into the Fermi- 

n 

13. 

14. 

15. 

16. 

lab Main Ring is 1 5 ~  mm mrad (95%). Assume that the average vacuum 
pressure is 5 x lo-’ Torr. If the limiting half aperture of the accelerator 
is 10 mm at a location of ( p )  = 50 m, estimate the fractional beam loss 
due to scattering with the residual gas after 4 seconds for an injection 
energy of (a) 8 GeV and (b) 20 GeV. It may be helpful to make use of the 
graphs in the text. 

Consider a beam which uniformly populates x , ( p x ’  + a x )  phase space 
out to a radius a,. Show that the solution to the diffusion equation is 

where a is the limiting aperture. 

It is now common to inject negative hydrogen ions delivered by a linear 
accelerator into the first synchrotron of a large proton accelerator facil- 
ity. The electrons are stripped by passing the incoming beam through a 
carbon foil. Estimate the emittance increase if the particles pass through 
a foil of 25 p m  thickness every 1.6 psec for a total of 16 psec. 

Suppose the luminosity lifetime 

1 d 9  - - - - 1 

7 9’ dt 

in the Tevatron collider is 10 hours, and suppose it is due to transverse 
emittance growth of both particle species. If the emittance is attributed 
to RF noise, estimate the rms noise voltage. Assume ~ ~ ( 9 5 % )  = 207r 
mm mrad. The horizontal lattice functions at the accelerating stations are 
p = 72 m, a = -0.47, D = 2.4 m, and D’ = 0.02. Comment on the role 
of gas scattering in the luminosity lifetime. 

Transverse betatron cooling in the Fermilab Debuncher ring is carried 
out with a 2-4 GHz system. The orbit period is 1.6 psec, the slip factor q 
is 0.006, the momentum spread may be characterized as 0.3%, and the 
initial noise-to-signal ratio is - 2. Calculate the optimum cooling rate 
for a beam of lo7 antiprotons. 
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17. The appeal of electron cooling is easy to illustrate. In conventional 
kinetic theory, the gas temperature is related to the mean energy of the 
molecules by 

( P 2 >  3 
- =  -kT. 

2m 2 

So for an ion beam, one can define a “temperature” for each degree of 
freedom by 

( P : o )  ( P,20 ) ( P:o) 
9 9 2 m m m 

where the Boltzmann constant has been supressed. The subscript “0” 
implies that the momenta are measured with respect to the rest frame of 
the beam centroid. 
(a) Show that for one transverse degree of freedom 

where all the quantities are now measured in the laboratory frame. 
Here, (@’I2 = ( ( x ’ ) ~ ) .  Note that, because of the presence of the 
amplitude function p, the temperature is a function of position. 

(b) Evaluate T, for typical injection parameters from a proton linac into 
a synchrotron. Take ( u / c ) y  = 0.7, eN = 7r/2 mm mrad, and p = 10 
m. 

(c) Repeat the calculation for the longitudinal degree of freedom. Show 
that 

Take up = to obtain a numerical estimate. 
(d) In electron cooling, an electron beam traveling at the same speed as 

the ion beam centroid interchanges energy with the ion beam. Esti- 
mate the temperature of an electron beam emitted from a hot 
cathode, in the same units as that used for the ion temperatures 
above. 

18. In this chapter, we have concentrated on transverse emittance growth, in 
large part because of the importance of transverse emittance to the 
luminosity of a collider. But longitudinal emittance cannot be ignored, 
for eventually dilution processes may lead to loss of particles from stable 
buckets. Derive an expression for longitudinal emittance growth analo- 
gous to Equation 7.112. 



CHAPTER 8 

Synchrotron 
Radiation 

Synchrotron radiation radiation is the dominant factor in the design of high 
energy electron synchrotrons and is the obstacle to exceeding 100 GeV or so 
in this type of accelerator. It has also brought about the spectacular success 
of synchrotron light sources. Only today is synchrotron radiation becoming a 
design consideration for proton synchrotrons. In the proton case, single 
particle motion, to a very good approximation, exemplifies a Hamiltonian 
system. Particle motion in electron synchrotrons, on the other hand, is 
inherently dissipative. 

In this chapter, we look at some of the basic properties of the radiation 
process, the power, and the characteristic photon energy. The energy loss 
due to synchrotron radiation and its replacement by the RF acceleration 
system leads to a variation with time of the oscillation amplitudes in all three 
degrees of freedom, and we compute the related time constants. We will 
reproduce an elegant theorem-Robinson’s theorem-which relates these 
three time constants and demonstrates that there is a net damping effect that 
can be apportioned among the degrees of freedom at the choice of the 
designer. An electron storage ring will be designed to damp in each degree of 
freedom. 

The fact that the radiation process is quantized implies that there are 
statistical fluctuations in the radiation rate. These fluctuations cause excita- 
tion of synchrotron oscillations, and of betatron oscillations in at least one 
transverse degree of freedom. The interplay between the quantum fluctua- 
tions and damping will result for an ensemble of particles in an equilibrium 
beam distribution, which we will find to  be Gaussian. 
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8.1 RADIATION FROM RELATIVISTIC PARTICLES 

If a slowly moving particle of charge e undergoes an acceleration a,  then the 
radiated power P is given by the Larmor formula: 

The angular distribution of the radiation varies as sin’ 8, where 8 is the angle 
between the direction of the acceleration and the point of observation. 

We can find the radiated power for relativistic charges by using the fact 
that radiated power is a Lorentz invariant. To arrive at the latter conclusion, 
we can argue as follows. Suppose a photon of angular frequency w‘ is 
traveling at a direction 8 with respect to the x’-axis in a “primed” frame that 
is moving parallel to the x-axis of the “unprimed” laboratory frame. Trans- 
formation to the unprirned frame gives 

where y is the Lorentz factor characterizing the relative motion of the two 
frames. If two photons are emitted at angles 8’ and 8’ + 7r with the same 
angular frequency w’, then in the laboratory frame the total energy will be 
proportional to 

If the emission takes place in a short interval T ‘ ,  then in terms of radiated 
power, the relation above can be written 

PT = P’r’y ,  (8 .5 )  

or P = P’, after recognition of the effect of time dilation. That is, the power 
that is lost to the Doppler shift in one direction is gained back in the other. 
So long as the angular distribution of radiation in the primed frame has the 
appropriate symmetry, we can conclude that the power is an invariant. 
Though not developed in all generality, this is enough for our purposes here. 

Look at two cases: acceleration perpendicular to and parallel to the 
direction of motion of a relativistic charge. The first corresponds to a particle 
undergoing deflection in a bending magnet. In an inertial frame traveling at 
the speed of the particle and tangent to the orbit at the time of arrival of the 
particle, at that instant the particle will be at rest and undergoing accelera- 
tion in the -y ’  direction. This situation is shown in Figure 8.1. In this 
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(a) (6) 

Figure 8.1. A particle undergoing circular motion in the loborotory frame (a) will come 
momentarily to rest when viewed in a frame moving tangent to its trajectory (b). 

(primed) frame the power radiated is given by the Larmor expression, with a’ 
inserted for the acceleration. For acceleration transverse to the relative 
direction of motion of the two frames, a‘ = y2a. In the primed frame, the 
power distribution has the proper front-back symmetry needed for the 
argument of the preceding paragraph to be valid, so the power is an 
invariant. As a result, the power in the laboratory frame is 

In the second form, a has been replaced by the centripetal acceleration c 2 / p  
of a relativistic electron. The third form will be useful when we discuss 
radiation damping; here, E is the total energy, E = ymc2, and B is the 
magnetic field producing the curvature of the particle’s path. 

In contrast, suppose that the acceleration is in the direction of motion of 
the charge. In the primed frame, the angular distribution just rotates by 7r/2, 
so our invariance-of-power argument is still all right. But now a’ = y3a, and 
so the power radiated in the laboratory frame is 

1 e2a2 p = - -  3 Y 6 .  
67reo c 
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At first glance, this result looks even more ominous than the one for 
transverse acceleration. But such is not the case-acceleration in the direc- 
tion of motion of a rapidly moving particle is not as easily produced as 
transverse acceleration. Equation 8.7 can be recast in the form 

where ro is the classical radius of the particle. Take one of the factors of p, 
express it in terms of the rate of change of energy of the particle, i, and 
compare P with E. Write the other factor of f i  just as the force F. Then we 
have 

P 2 roF 
E 3 mc2p’ 
- -  - -- 

and for the ratio on the left to be significant, the particle must experience an 
energy gain or loss comparable with its rest energy within a distance equal to 
its classical radius. That is possible on the atomic or nuclear scale (e.g., 
bremsstrahlung), but not with laboratory sized accelerator components. 

So we will be concerned only with radiation arising from transverse 
acceleration. The radiation loss per turn on the design orbit of a synchrotron 
will be 

where 

Uo = /oZnRPdr/c 

= CrE4R( ;), 

47r ro meters 
8.85 x 10-5 - 

C r = - - =  3 ( r n C 2 ) 3  GeV3 ’ 

(8.10) 

(8.11) 

(8.12) 

and the square of the curvature l/p is averaged over the circumference 27rR 
of the ring. The numerical coefficient has been evaluated for the electron, 
using ro = 2.818 X lo-” m. The average power radiated is 

( P >  =fv,, (8.13) 

where f is the orbit frequency c/27rR.  
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8.2 OAMPlNG OF OSCILLATIONS 

With the inclusion of synchrotron radiation, the transverse and longitudinal 
oscillations of a single particle no longer have invariant amplitudes, for the 
system is now dissipative. In this section we calculate the damping rates. 
Note that a characteristic time for synchrotron radiation effects is the time 70 
in which an electron of energy E would radiate E,  i.e., 

(8.14) 

and the rates will be expressed in terms of T ~ .  

Damping of vertical betatron oscillations is easy to understand. Syn- 
chrotron radiation reduces the momentum of a particle in the direction of its 
motion, while the acceleration system restores momentum parallel to the 
central orbit. Consider the case in which there is no net acceleration, as in 
beam storage. On the average, the two momentum increments are equal in 
magnitude. If, in an element of path &, the particle radiates energy du and 
receives the same energy increment from the acceleration system, then the 
momenta before and after, and S2, are related by 

du pi du 
ji2 =pi - - 7 + -$. 

l P l l  C 
(8.15) 

as seen in Figure 8.2. In terms of the transverse and longitudinal compo- 
nents, 

(8.16) 

(8.17) 

Division of the first by the second gives the relationship between y’ = p , , / p ,  
before and after traversing Cis: 

1 - d u / E  ’’ = ’’ 1 - d u / E  + du/ (  cp,) 

= y ; (  1 - d u / E ) ,  (8.18) 

where E is the total energy of the particle, and we have kept only the lowest 
order term in d u / E  in the second equation. Therefore, the equation of 



274 SYNCHROTRON RAD I AT1 0 N 

Figure 8.2. A particle undergoing a vertical betatron oscillation radiates in its direction of 
motion, and the momentum is restored in the direction of the design trajectory. 

motion in y contains a term 

1 du 
E zy’ y” = - - (8.19) 

in addition to the focusing term proportional to y. For a damping rate slow 
compared to the betatron oscillation frequency, the free oscillation then is 
just modified by the multiplicative factor 

(8.20) 

and so the damping time constant is 

7,, = 2 ~ ~ .  (8.21) 

Identification of the damping time constant for synchrotron oscillations is 
almost as easy. Suppose the deviation from the synchronous energy of a 
particle is AE.  In traversing an infinitesimal element of a turn, A E  will 
change according to 

AEZ = AEl  - d u ( A E , )  + h ( O ) ,  (8.22) 

where the second and third terms on the right are the energy loss due to 
synchrotron radiation at energy displaced from the synchronous energy A E, 
and the energy gain from the radiofrequency system at A E = 0 respectively. 
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In terms of the radiated power, 

du( A E , )  = P (  A E , ) d t ,  

+ 2 8 ] [ 1  + pT]dfo, 0 AEl  (8.23) 
B 

du( 0) = P (  0) dt ,  , ( 8.24) 

where d t ,  has been expressed in terms of the time element dt ,  on the 
synchronous orbit using Figure 3.16, and P ( A E )  has been written in terms of 
P(0)  using Equation 8.6. The A B in the first bracket of Equation 8.24 can be 
eliminated in favor of the fractional energy difference by the use of 

A E  
E 

AB = B'x = B'D-.  (8.25) 

Then to lowest order in the A's, the change in AE per turn due to 
synchrotron radiation becomes 

- = - A E l T 9 [ 2  + - + 2 0 -  B dt,.  
d A E  

(8.26) 
dn E P "'I 

Here, T is the period of the synchronous orbit, and as usual, we assume that 
changes in energy are small in that time scale. The first term in the integral is 
just 2U,/E, where, as before, Uo is the energy radiated in one turn by the 
synchronous particle. If we change to time as the independent variable by 
multiplying both sides by the orbit frequency, f ,  we obtain 

- -  
dt 

The quantity fUo/E is 1/7,, where T, is the characteristic time for radiation 
processes. If we take 70 outside of the brackets, then, after cancellation of 
various coefficients. the result is 

d A E  A E  
- =  - -(2 +a) ,  

dt 70 
(8.28) 

(8.29) 
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When this term is added to the equations of motion for a synchrotron 
oscillation, the solution for the motion will contain the factor 

and so the time constant for damping in this degree of freedom is 

(8.30) 

(8.31) 

The analogous argument for the horizontal betatron oscillation is longer. 
It’s more elegant to use Robinson’s theorem, which deduces the sum of the 
damping rates for all three degrees of freedom.’ Since we already know the 
results for two of the modes, the theorem gives us the third immediately. 

The derivation goes as follows. Consider the transfer matrix of the 
six-vector x ,  x ’ ,  y, y’,  4, A E through a path element dr. The diagonal ele- 
ments for x’ and y’ will differ from unity by the quantity - d u / E ,  as we have 
seen above. The diagonal element for A E will differ from unity by - 2 d u / E .  
The only terms in the determinant of the matrix that are first order in dr 
come from the diagonal elements. So for this infinitesimal matrix 

det dM = 1 - 4 d u / E ,  (8.32) 

and since the determinant of a product of matrices is the product of their 
determinants, to lowest order for one revolution 

(8.33) UO det M = 1 - 4-. 
E 

But the determinant is also the product of the eigenvalues. For oscillatory 
modes, the eigenvalues can be expressed as exp(yk). The six yk occur in 
conjugate pairs, so the imaginary parts do not contribute to the product. If 
we call the real parts ax,  a,,, and as, then 

ax + ffy +a, = -2- UO 
E ’  

(8.34) 

The a’s are the decrements per turn; multiplication by the orbit frequency 

‘K. W. Robinson, “Radiation Effects in Circular Electron Accelerators,” Phys. Rev. 111, No. 2 
(1958). 
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gives the result for the time constants: 

(8.35) 

Therefore, using Robinson's theorem, we see that the damping time in the 
horizontal degree of freedom is 

(8.36) 

For a separated function synchrotron, where the focusing and bending are 
performed by separate elements, then 9 is small, and so for this case 
T~ = 2~~ and all three degrees of freedom damp. This is, of course, the 
behavior one wishes for a storage ring. 

8.3 QUANTUM FLUCTUATIONS A N D  EQUlLlBRlUM BEAM SIZE 

If the results of the preceding section were the end of the subject, we could 
design an electron storage ring in which all three degrees of freedom 
damped, and the emittances would shrink to zero. But such is not the case. 
The radiation process proceeds through the emission of discrete quanta, and 
the fluctuations in this random process produce an excitation of horizontal 
betatron oscillations and synchrotron oscillations. 

To see how this excitation comes about, suppose that a particle is traveling 
along its synchronous orbit and emits a photon of energy w .  The position of 
the particle doesn't change, so it suddenly finds itself starting a synchrotron 
oscillation with an initial energy offset - w and a horizontal betatron oscilla- 
tion with initial conditions x = D w / E  and x' = D'w/E .  Because of the 
random character of the photon emission, synchrotron radiation contributes 
a constant term to the growth of the horizontal and longitudinal emittances. 
This is just the situation we encountered in Chapter 7 when discussing 
emittance growth due to RF noise. Using that result, we expect the variance 
of the horizontal particle distribution to increase at  the rate 

(8.37) 

where X is defined in Equation 7.106, px is the amplitude function, and N 
is the number of photon emissions per turn: 

(8.38) 
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In an ideal planar synchrotron, where there is no vertical dispersion, i?? is 
zero in the vertical degree of freedom and so quantized photon emission 
does not stimulate vertical emittance growth. 

The behavior of the rms energy spread due to quantum fluctuations 
follows from a similar argument, and so, with the inclusion of the damping 
terms, the equations of motion for the variances in the three degrees of 
freedom are: 

d a,? 2 2  

dt TY 
- = --Uy, 

d a; 2 

dr 7 s  

- -  - - -u: + f N f O ( w 2 ) .  

(8.39) 

(8.40) 

(8.41) 

These equations are easily integrated to yield 

We see that within a few radiation damping times (assuming that all three 
degrees of freedom are damped) equilibrium transverse emittances and 
energy spread are reached: 

(8.45) 

( 8.47) 

Note it is common practice to quote emittances using F = 15% in Table 
3.1 when discussing electron storage rings. The resulting equilibrium distribu- 
tions will be Gaussian, as anticipated by our discussion of the central limit 
theorem in Chapter 7. 

While (8) and 9. are functions of the accelerator lattice, ( w ) and ( w  ') 
are uniquely determined from the photon spectrum generated by synchrotron 
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Figure 8.3. An observer sees a pulse of synchrotron radiotion of time duration dt’ as the cone 
of radiation sweeps out an angle dfJ r+ 2 / y .  

radiation. A characteristic photon energy can be estimated as follows. Con- 
sider a highly relativistic charged particle traveling in a circular trajectory. 
We know that the radiated energy is concentrated in a cone of angular extent 
approximately given by f l / y  = mc2/E,  as shown in Figure 8.3. An observer 
will see a pulse of radiation which lasts for a time on the order of 

( c  - u ) d t  dt 1 dtl 1 
dt’ = = ( 1  - : ) d t  = = 3w.o = A 9 (8.48) 

c 

where oo is the instantaneous angular frequency of the circular motion. 
From Fourier analysis we know that the spectrum of such a pulse will contain 
frequencies up to about f,,, = ny’w,. To see this, consider the Fourier 
coefficient 

1 

7 0  
= - / 2 T f (  z)cos nz dz a, ( 8.49) 

of the function f(z).  If f ( z )  is a pulse of unit height and duration 7 which 
repeats after a period 70, then 

1 1 2 7 r n ~  
a ,  = -/2*T’Tocos nzdz = - sin - 

T O  n7r 7 0  

27 sin( 2 7 n ~ / 7 , )  
= -  (8 S O )  

T O  27rnT/T0 

The coefficients which contribute to the Fourier series will cut off at about 
n = 70 /27 .  For our case, n = 27r/200dt’ = 7ry’. Thus, the maximum pho- 
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Figure 8.4. 
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Synchrotron radiation power spectrum. The function S is defined in the text. 

ton energy should be on the order of 

w, = hnw0 = ~ y ~ h w , .  (8.51) 

We will not derive the actual power spectrum. It is given by 

3 3  ZY hwo, 

(8.52) 

(8.53) 

( 8.54) 

where K is a modified Bessel function, and w, is termed the critical energy.’ 
The function S is shown in Figure 8.4. 

In terms of the critical energy, the mean and variance of the distribution 
are given by 

8 
( w )  = - 

15fi  wc’ 

( w ’ )  = ; w c .  l1 2 

(8.55) 

(8 -56) 

’See, for example, J. D. Jackson, Clussicul Elecfrodynumics, Wiley, New York, 1975, and 
M. Sands, “The Physics of Electron Storage Rings-An Introduction,” in Physics with Iniersecr- 
ing Sforuge Rings, ed. B. Touschek, Academic Press, New York, 1971. 
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We may therefore rewrite our equilibrium conditions as 

(8.57) 

E y  = 0, ( 8.58) 

(8.59) 

For a synchrotron with constant bending radius, the critical energy may be 
written as 

w, = --(& 9 k P  uo 
8 r  ro 

(8.60) 

For typical designs in the E = 10 GeV range, U, is in the neighborhood of 10 
MeV. To allow for straight sections, let’s put p / R  :. Then w, = 19 keV, 
that is, in the hard x-ray part of the spectrum. Let 0 = 0 (separated function 
lattice). If the dispersion function is on the order of 2 m and the amplitude 
function is on the order of 40 m in the bending regions, then ( Z )  = 
(2 mI2/40 m = 0.10 m. So the equilibrium emittance and energy spread for 
our example would be E ,  = 2500 mm mrad and uE/E = 0.8 X 
The contribution to the horizontal beam size from the transverse emittance 
would be u, = (pX~X/y)l/z = 2.2 mm. The total horizontal beam size is 
u = ( p , ~ , / y  + D2 u z / E 2 ) 1 / 2  = 2.7 mm. 

Our idealized results imply that the vertical beam size is zero. In reality, 
some portion of the transverse emittance will be coupled into the vertical 
degree of freedom, as will some small part of the horizontal dispersion. 
Though the vertical beam size will not be zero, for a corrected lattice it will 
be an order of magnitude or more smaller than the horizontal beam size. As 
a result, the words “ribbon beam” are often applied to describe the trans- 
verse bunch cross section. 

PROBLEMS 

1. Calculate the radiation per turn lost in synchrotron radiation by 
(a) the Cornell 10 GeV electron synchrotron, whose radius of curvature is 

(b) a 5 TeV electron synchrotron built around the earth’s equator. 
0.1 km, and 

In each also estimate the bend field. 

2. Suppose that a 20 TeV proton storage ring has a circumference of 87 km, 
a bending radius of 10 km, and a stored current of 70 mA. Calculate the 
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power going into synchrotron radiation. If that power must be removed 
from the superconducting magnets, at a temperature of 4 K by refrigera- 
tors operating a t  20% of ideal Carnot efficiency, estimate the refrigeration 
power demand. 

3. For a separated function synchrotron, oscillations in all three degrees of 
freedom are damped. Express their time constants in terms of 70. Suppose 
the Fermilab Main Ring were to be used as an electron accelerator. 
Evaluate the time constants at 20 GeV. (For the Main Ring, R = 1 km 
and p = 0.75 km.) 

4. In a combined function alternating gradient ring, all three degrees of 
freedom do not damp; in particular, radial betatron oscillations are 
generally antidamped. Show that this is so for the simple combined 
function ring of Problem 5 of Chapter 3. 

5. In a separated function electron storage ring, show that the (un-norrnal- 
ized) horizontal emittance and the variance of the fractional momentum 
spread are both proportional to the square of the energy. Evaluate the 
constants for the Fermilab Main Ring under conditions of Problem 3 
above. 

6. In an undulutor electrons traverse a series of magnets, producing alternat- 
ing up and down fields. The integrated field through this device is zero, so 
the orbit suffers no net deflection. The angular deviation within a given 
magnet is within the l / y  cone of the synchrotron radiation, so coherence 
is maintained in the radiation from one magnet to the next. If the pattern 
of up and down fields has a period length L, show that the synchrotron 
radiation will have a characteristic wavelength L / ( 2 y z ) .  This estimate can 
be made by a variant of the argument used to obtain w, in the text. 

7. In this chapter, the power radiated by a bunch containing n particles is n 
times the power radiated by a single particle, whereas the factor would be 
n2 if the radiation were coherent. Justify the choice of a factor of n. 

8. The synchrotron radiation power spectrum, Equation 8.52, is calculated 
on the basis of classical electrodynamics. We could expect this result to be 
valid provided the critical energy, w,, is small compared with the energy of 
the particle. Some of the challenging parameter sets that have been put 
forward for linear electron colliders imply operation in a quite different 
regime. For order-of-magnitude purposes, suppose n particles of (total) 
energy E are uniformly distributed in a cylinder of radius r and length L. 
A particle traveling in the opposite direction with the same energy 
intercepts the bunch at radius r; it will emit synchrotron radiation (called 
“beamstrahlung”) due to the electromagnetic fields of the bunch. Esti- 
mate the ratio of the critical energy to the total energy based on the 
cIassical picture for y = lo’, n = lo9, r = m, and L = lod6 m. 



APPEND'X A 
Tables of 
Accelerator 
Parameters 

A number of problems use some of the Fermilab proton accelerators as 
examples. The following tables may be useful in the event that the statements 
of the problems are confusing or incomplete. The parameters for the Main 
Ring relate to its present role as an injector for the Tevatron, so the 
maximum energy is only 150 GeV rather that the 400 GeV of the pre-Tevatron 
era. 
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Table A. 1.  Booster synchrotron. 

Circumference 2~ X 74.47 meters 
Injection energy 200 MeV (kinetic) 
Peak energy 8 GeV (kinetic) 
Cycle time sec 

Harmonic number, h 
Transition gamma 
Maximum RF voltage 
Longitudinal emittance 

Horizontal &,,ax 

Vertical p,,, 
Maximum dispersion 
Tune vx = vy 
Transverse emittance' 

84 
5.45 
0.86 MV 
0.25 eV sec 

33.7 meters 
20.5 meters 
3.2 meters 
6.7 
8~ mm mrad 

Bend magnet length 2.9 meters 
Standard half-cell length 19.76 meters 
Bend magnets per cell 4 
Bend magnet total 96 
Typical bunch intensity 3 x 10'0 
Phase advance per cell 
Cell type FOFDOOD 

96 deg 

'Normalized, 95%. 
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Table A.2. Main Ring as Tevatron injector. 

Circumference 
Injection energy 
Peak energy 
Cycle time 

Harmonic number, h 
Transition gamma 
Maximum RF voltage 
Longitudinal emittance 

&.,,,a in insertion 
pmna in cells 
Maximum dispersion 
Tune v, = v y  
Transverse emit tance a 

Bend magnet length 
Standard half-cell length 
Bend magnets per cell 
Bend magnet total 
Typical bunch intensity 
Phase advance per cell 
Cell type 

27r x loo0 meters 
8 GeV (kinetic) 

150 GeV 
;L 2.6 sec 

1113 
18.7 

3 MV 
0.25 eV sec 

225 meters 
100 meters 

6 meters 
19.4 
127r mm mrad 

6.1 meters 
29.7 meters 

8 
774 

2 x 10'0 
68 deg 

FODO 

285 

'Normalized, 95% 
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Table A.3. Tevatron - collider mode. 

Circumference 
Injection energy 
Peak energy 
Acceleration period 

Harmonic number, h 
Transition gamma 
Maximum RF voltage 
Longitudinal emittance 

p,, in insertion 
p,,, in cells 
p* at collision point 
Maximum dispersion 
Tune v, = v y  
Transverse emittancea 

Bend magnet length 
Standard half-cell length 
Bend magnets per cell 
Bend magnet total 
Typical bunch intensity: 

protons 
antiprotons 

Phase advance per cell 
Cell type 

27r x 1000 meters 
150 GeV 
900 GeV 
52 sec 

1113 
18.7 
1.4 MV 

3 eV sec 

900 meters 
100 meters 
0.5 meter 
12 meters 

19.4 
2 4 ~  mm mrad 

6.1 meters 
29.7 meters 

8 
774 

1 x 10" 
5 x 10'0 

FODO 
68 deg 

'Normalized, 95%. 
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Accelerating station, 31 
Accelerating structure, 28 

multicell, 29 
Action-angle variables, 135 
Admittance, 79 
Alternating gradient focussing, 59 
Amplitude function, 75, 101 

injection mismatch, 232-237, 

perturbation, 96 
265-266 

Beam breakup, 199 
Beam cooling, 253 

electron, 253, 268 
longitudinal stochastic, 258 
mixing, 257 
momentum stacking, 260 
stochastic, 253 
transverse stochastic, 253 
Van der Meer method, 260 

Beam distribution, Gaussian, 81, 
263 

Beam size, 90 
Beam-gas scattering, 249 
Beamstrahlung, 282 
Betatron, 22 
Betatron oscillation, 22, 57 

adiabatic damping, 83-85 
coupled, 144 

equation of motion, 66-70 
closed form solution, 72-75 
piecewise method of solution, 

71 
phase advance, 75-76 
tune, 77 

Brightness, 11 
Bucket, 36 

area, 45 
stationary, 37, 45, 55 

Bunch, 36 

Canonical transformation, 130 
Central Limit Theorem, 264, 278 
Chaos, 55,  109 
Charge density multipole 

coefficient, 193 
Chromaticity, 86, 96-98, 203 

adjustment, 98 
natural, 98 

Classical radius, 175 
Closed orbit, 91-93 

three bump adjustment, 104 
Cockcroft-Walton accelerator, 22 
Coherent tune shift, 179 
Compaction factor, 89 
Correction magnet system, 126 
Coulomb scattering, 249 

multiple, 250 
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Coupled harmonic oscillator, 145 
eigenfrequency, 146 
normal modes, 145 

Coupling, transverse, 144 
eigenfrequencies, 159 
eigentunes, 152 
linear, 144 
nonlinear, 144, 160 
tune separation, 153-154 

Courant-Snyder invariant, 78 
Courant-Snyder parameters, 74, 

101 

Decoherence, 225 
Diffusion constant, 240 
Diffusion equation, 238 
Disk-loaded wave guide, 30 
Dispersion function, 85-91, 171 

mismatch, 107, 231, 265 
Dispersion relation, 207-208, 210, 

Dynamic aperture, 108 
219 

Eddy currents, 112 
Electrostatic accelerator, 19 
Electrostatic septum, 122 
Emittance: 

dilution factors, 238, 265 
growth, 221 
longitudinal, 45, 55 
normalized transverse, 85 
transverse, 80 

rest, 12 
total, 12 

Energy: 

Equation of motion, general, 4 
Extraction, 122, 143 

Field index, 59 
Filamentation, 81, 225 
Fixed point, stable and unstable, 36 

Focussing: 
strong, 59-63 
weak, 59,99 

FODO lattice, 65, 93 
Fokker-Planck equation, 259 

Gradient, 61, 66 
error, 94 

Hamilton’s equations, 120, 129 
matrix form, 155 

Hamiltonian, 129 
relativistic, 131 

Harmonic number, 33, 36 
Hill’s equation, 72, 87 

Ideal particle, 30-31 
Images: 

magnetic, 180 
method of, 178 

Impedance, 185, 197 
longitudinal, 186, 198, 218 
space charge, 185 
transverse, 298 

Incoherent tune shift, 176 
Injection mismatch, 222 
Instabilities, coherent, 172, 180, 199 

beam breakup, 199 
frequency spread, 215 
head-tail, 203 
Landau damping, 212, 215, 219 
macroparticle model, 199 
negative mass, 180, 209 
strong head-tail, 201 
threshold, 203 

Keil-Schnell criterion, 21 1 
Kilpatrick criterion, 54 

Landau damping, 212, 215, 219 
Larmor formula, 5 ,  270 
Lattice, 63 
Linear accelerator (linac), 18 

Floquet transformation, 11 1 Livingston plot, 2 
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Longitudinal oscillation, see 
Synchrotron oscillation 

Lorentz contraction, 6 
Lorentz transformation, 5 

Luminosity, 8, 16-17 
of electromagnetic fields, 7 

Magnet: 
bend (dipole), 14 
quadrupole, 15 

Magnetic rigidity, 61 
Magnetic septum, 122 
Matrix of transverse motion, 61 

eigenvalue equation, 64 
eigenvalues, 63 
eigenvectors, 63 
stability condition, 64 
unimodularity, 64 

Maxwell’s equations, 4 
Momentum compaction factor, 89 
Momentum dispersion function, see 

Momentum stacking, 260 
Multipoles, see Nonlinear magnetic 

Dispersion function 

fields 

Negative mass instability, 180, 209 
Nonlinear magnetic fields, 108 

multipole coefficients, 11 1 
multipole expansion, 111, 166 
random errors, 115 
systematic errors, 115 

Off-momentum particle, 85 

Panofsky- Wenzel theorem, 
Paraxial approximation, 60 
Phase focussing, 18, 23 
Phase space dilution, 81 
Phase stability principle, 30 
Point transformation, 130 

Quality factor Q, 25, 27 

199 

Radiated power, 270 
longitudinal acceleration, 271 
transverse acceleration, 270 

Radiation length, 251 
Radiofrequency noise, 246 
Radius of curvature, 60 
Reduced phase, 110, 161 
Reference orbit, 66 
Relativistic charge, electromagnetic 

Resonance, 110 
fields of, 187 

difference, 150, 168 
first integral invariant, 168 
half-integer, 95 
Hamiltonian treatment, 138 
integer, 94 
islands, 109 
lines, 169 
nonlinear, 115, 179 
sum, 115, 150, 160, 168 
third-integer, 115, 138 
width, 121 

Resonant cavity, 24 
ohmic heating, 26 
pillbox, 24 
tunability, 28 

Resonant extraction, 122, 143 
Ribbon beam, 281 
Robinson’s Theorem, 276-277 

Sector magnet, 90 
Separated function lattice, 93 
Separatrix, 36, 39, 109, 121 
Shunt impedance, 27 
Side-coupled cavity, 29 
Skew multipole, 167 
Skew quadrupole, 147 

matrix, 148, 153 
Skin depth, 26, 54, 191 
Slip factor, 32, 35, 41 
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Space charge, 173 
due to uniform cylindrical beam, 

due to Gaussian beam, 174 
equation of motion, 175 
impedance, 185 
longitudinal field, 181, 183, 189 
tune shift, 176, 215-216 

173 

Spring constant, 72 
Stability: 

longitudinal, 34 
transverse, 58 

Steering error, 91, 103-104, 228 
Stopband, 95, 142 
Strong focussing, 59-63 
Surface resistivity, 26, 54 
Symplectic condition, 156 
Symplectic conjugate, 158 
Synchronous energy, 35 
Synchronous particle, 33 
Synchronous phase, 33 

jump at transition, 41 
Synchrotron oscillation, 30 

adiabatic damping, 41-44 
difference equations of motion, 

differential equations, 37 
first integral, 38 
linearized motion, 39 
stable phase range, 54 
tune, 39 

34 

Synchrotron, 18 
Synchrotron radiation, 269 

characteristic photon energy, 279 
characteristic time, 273 
critical energy, 280 
damping, 273 
energy loss per turn, 272 

energy spread and beam size, 278 
horizontal damping time, 277 
longitudinal damping time, 276 
power spectrum, 280 
quantum fluctuations, 277 
radiated power, 272 
sources, 10 . 
vertical damping time, 274 

Thin lens approximation, 60 
Three-bump orbit correction, 104 
Time dilation, 6 
Transit time factor, 25 
Transition crossing, 46 
Transition energy, 32, 41, 181 
Transverse oscillation, see Betatron 

oscillation 
Tune plane, 169 
Tune shift, 95 

beam-beam, 177, 216 
coherent, 179, 217 
conducting cylindrical pipe, 180 
conducting parallel planes, 179 
incoherent, 179 
long range, 217 
octopole, 142 
space charge, 176, 215-216 

Undulator, 282 

Van de Graaff accelerator, 22 
Vlasov equation, 206-207 

Wake field, 186, 194 
resistive wall, 189 

Wake function, 197 
Weak focussing, 59, 99 
Wronskian, 155 


