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Longitudinal Focusing

§ sometimes referred to as “phase focusing” or “time 
focusing”

§ particles of different energy (momentum) move at 
different speeds, so tend to “spread out” relative to the 
“ideal” particle which is assumed to exist traveling with 
perfect synchronism with respect to the oscillating fields

§ wish to study the (longitudinal) motion of particles relative 
to this “synchronous particle”
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Longitudinal Focusing

§ time of flight — the “slip factor”

§ Evolution due to dp/p or dW/W

§ Longitudinal focusing, time of arrival:
•  bunchers, rebunchers, debunchers
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The Slip Factor

4M. Syphers          Ops Lecture 4           SPRING  2020

t =
L

v
dt

t
=

dL

L
� dv

v
dv

v
=

1

�2

dp

p

dt

t
=

✓
↵p �

1

�2

◆
dp

p
dt

t
= ⌘

dp

p

↵p ⌘
✓
dL/L

dp/p

◆

⌘ ⌘ ↵p �
1

�2

Momentum Compaction Factor:

The Slip Factor:

↵p ⌘
✓
dL/L

dp/p

◆

⌘ ⌘ ↵p �
1

�2

For	a	straight	section,	or	a	linac,	η	=		-1/!2		<	0	

For	a	region	with	bending,	"p	might	not	be	zero



A Simple Example
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Implications of the Slip Factor

§ Suppose no bending in the line (e.g., linac), or, perhaps have bending 
yet γ2 < 1/αp

• then, the slip factor is negative, and particles of higher momentum 
take less time to traverse the same distance as the ideal particle

§ If the energy of the particles is high enough in the presence of bending, 
then can have γ2 > 1/αp 

• in this case, the slip factor is positive — the changes in path length 
outweigh the changes in speed when determining the time of flight 
difference

• here, a higher-momentum particle will actually take longer to traverse 
the same distance as the ideal particle, even though it’s moving faster
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Linear Motion Very Near the Ideal Particle

§ Particles moving along the ideal trajectory move toward 
or away from the ideal particle according to their speed 
(momentum/energy) and path length differences
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Linear Motion Very Near  
the Ideal Particle [2]

§ Imagine a particle on the ideal trajectory and that has the ideal 
energy, Ws.  A second particle on the ideal trajectory, but with a 
different energy, W, may be ahead of or lagging behind the ideal 
particle.

§ We will use radio frequency (RF) cavities to provide an 
accelerating voltage to the particles as they pass by.

§ The ideal particle will arrive at the cavity at the “ideal” time or, 
equivalently, at an ideal phase, #s, to receive an appropriate increase 
in its energy (which might be an increase of “0”).

§ We will keep track of the “difference” in energy between our test 
particle and the ideal particle:
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�W ⌘ W �Ws

Ws = “ideal” energy



Acceleration using AC Fields
§ Pass through a gap with an oscillating field, particle gains energy … 

§ Here, # is the “phase” of the oscillating field at the time of arrival 

§ But here, V  is an “average” or “effective” potential; depends upon the 
frequency of the field in the gap, the incoming speed of the particle (due 
to the field varying with time), and the phase of the oscillation relative to 
the particle arrival time: 

§ For our purposes today, we will lump the transit time factor, T, and the 
peak voltage, V0, into a single “effective voltage”, V
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Linear Motion Very Near the Ideal Particle

§ Let the ideal particle receive energy gain according to:

§ As nearby particles pass through the cavity, will give particles that 
are ahead/behind a decrease/increase in energy

§ Can use matrix techniques to propagate the longitudinal motion
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Linear Motion through Cavities and Drifts

§ Keep track of time differences and energy differences…
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Linear Motion through Cavities and Drifts

§ So, with this in mind, can create a system to transport 
beams with large momentum spread that keeps the 
particles “together” in time along the path
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M = … MdriftMcavityMdriftMcavityMdrift

focus

Most important for low-energy beams, such as high-charge-
state ion beams



Bunchers, Re-bunchers, Debunchers

§ If start with continuous stream of particles (DC current, 
with no strong “AC” component), can create  bunches 
(AC beam) using a single cavity (buncher)

§ If already have bunched beam that is allowed to travel a 
certain distance, the particles within the bunch will begin 
to spread out due to the inherent spread in momentum

• re-buncher:  mitigate this effect (last slide)
• debuncher:  enhance this effect

• for example, to spread beam out when injected into a 
storage ring or synchrotron
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Beam Buncher
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Beam Buncher
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Linacs and Synchrotrons

§ Essential difference: 

• pass N cavities 1 time each 

•     pass 1 cavity N times 

• otherwise, essentially the same longitudinal dynamics
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Acceleration of Ideal Particle

Wish to accelerate the ideal particle.  As this particle exits the 
(n+1)-th RF cavity/station we would have 

If we are considering a synchrotron, we can consider the 
above as the total energy gain on the (n+1)-th revolution.  The 
ideal energy gain per second would be:   

Next, look at (longitudinal) motion of particles near the ideal 
particle:                     = phase w.r.t. RF system 
                                 = energy difference from the ideal

�

�E ⌘ E � Es

E(n+1)
s = E(n)

s +QeV sin�s

dEs/dt = f0QeV sin�s
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Difference Equations of Motion
§ Assume accelerating system of cavities is set up such that ideal particle 

arrives at each cavity when the accelerating voltage V  is at the same 
phase (called the “synchronous phase”); consider at “test” particle:

h = L/��, � = c/frf

E = mc2 +W ; �E , �W

Notes: (difference	equations)

Desire	h	to	be	an	integer.			
If	L	is	circumference	of	a	synchrotron	then:	
			where	f0	is	the	revolution	frequency,	
In	this	case,	h	is	called	the	“harmonic	number”

h = frf/f0
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Applying the Difference Equations
 while (i < Nturns+1) { 

    phi = phi + k*dW 

    dW  = dW + QonA*eV*(sin(phi)-sin(phis)) 

    points(phi*360/2/pi, dW, pch=21,col="red") 

    i = i + 1 

  } 

Let’s run a code…
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Acceptance and Emittance
§ Stable region often 

called an RF “bucket” 
• “contains” the 

particles 
§ Maximum vertical 

extent is the 
maximum spread in 
energy that can be 
accelerated through 
the system  

§
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Acceptance and Emittance
§ Stable region often 

called an RF “bucket” 
• “contains” the 

particles 
§ Maximum vertical 

extent is the 
maximum spread in 
energy that can be 
accelerated through 
the system  

§ Desire the beam 
particles to occupy 
much smaller area in 
the phase space

∆t

∆E

area:  “eV-sec”
Note:  E, t canonical
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The	equation	of	the	trajectories	in	phase	space!
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Synchrotron Oscillations

§ Particles near the synchronous phase and ideal energy 
will oscillate about the synchronous particle with the 
“synchrotron frequency” (this is call synchrotron motion, 
even for a linac!)  In a synchrotron, … 

• “synchrotron tune”  ==  # of synch. osc.’s per revolution

compute	small	oscillation	frequency:

⇡ �� cos�s
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2
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if ⌘ > 0, choose cos�s < 0
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in	(1),	let	



Comment on Frequencies of the Motion
§ From what we’ve just seen today, the synchrotron motion in a circular 

accelerator takes many (perhaps hundreds of) revolutions to complete 
one synchrotron period 

§ On the other hand, in the transverse plane, a particle will typically 
undergo many betatron oscillations during one revolution 

§ Thus, transverse/longitudinal dynamics typically occur on very different 
time scales — this actually justifies us studying them independently
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Motion Near the Ideal Particle

Linearize	the	motion,	and	write	in	matrix	form…
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M								=													Mc									.									Md

or,

“thin”	cavity drift
(acts	as	longitudinal	focusing	element)

Note:		for	%	<	0,		Md	is	a	“backwards”	drift;		i.e.,	$#	decreases	for	$E>0	
																																													(when	no	bending)

%	=	-1/!2	in	straight	region	(linac)
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as	found	previously!

Remember	from	transverse	motion,		
		and	when	M	was	periodic,	

									=	phase	advance	through	periodic	section

Can	imagine	“longitudinal”	&,	",	!,	$'	parameters	as	well	
Note:		from	M	of	previous	page,	if	represents	periodic	structure	(synchrotron	or	portion	of	linac),	then

longitudinal	phase	advance
oscillation	frequency		
w.r.t.	cavity	number,	“n”	
(e.g.,	synchrotron	tune)

x /
p
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and trM = 2 cos� 
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Some Numbers (finally!)…
§ Suppose (~ Main Injector): 

• h = 588 
•  = 1/182 - 1/9.52 = -0.008 
• Q = 1;   V = 1 MV;    = 1 
• E = 8.9 GeV,    = 1 
•    

§      then, … 

§
                =   0.009 = 1/109

η = 1/γ2
t − 1/γ2

cos ϕs
β

νs = − 588 ⋅ (−0.008)
2π(8.9 × 109) ⋅ 106
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takes	~100	turns	to	undergo	a	complete	synchrotron	oscillation



The Stationary Bucket
§ Suppose do not wish to accelerate the ideal particle… 

• for lower energies, where the slip factor is negative, 
then need to choose #s = 0o
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�s = 0, 2⇡ (sin�s = 0)

�s = 0, ⌘ < 0

�E2 + 2
�2E
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QeV cos� = constant

0� 2
�2E

2⇡h⌘
QeV = constant

�E = 0 at � = ±⇡

�E = ±

s

�2�2E

⇡h⌘
QeV cos(�/2)

“stationary”	bucket:

anticipate	stability:	—>	choose

then,

on	the	separatrix:		

thus,	solve	for	constant	and	hence	find	the	Eq.	of	separatrix:

separatrix:
(for	“stationary	bucket”)

�E

�
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—>	no	average	acceleration

Ex:							 	=	0.004	
Δ ̂E
E

= 2
π(588)(0.008)(8.9 × 109) (106)

maximum	energy	spread	
	that	can	be	held	by	the	system



Numerical Solution for Bucket Area
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During	acceleration,	the	stable	phase	space	area	will	be	less…	



Back to Small Oscillations…

This	Eqn.	represents	trajectories	in	longitudinal	
phase	space	of	particles	near	the	ideal	particle.

from	(2),	

if																														,		then	…� = �s +��

�E2+2
�2E

2⇡h⌘
QeV (cos�s cos���sin�s sin��+(�s+��) sin�s) = constant

�E2 + 2
�2E

2⇡h⌘
QeV (cos�s(1�

1

2
��2)� sin�s��

+�s sin�s +�� sin�s) = constant

(small)

�E2 +

✓
� �2E

2⇡h⌘
QeV cos�s

◆
��2 = constant (3)
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�E2 + 2
�2E

2⇡h⌘
QeV (cos�+ � sin�s) = constant



Beam Longitudinal Emittance 

Suppose	beam	is	well	contained	within	an	ellipse	given	by	(3),	and	suppose	
					we	know	either										or											(or,							)	of	the	distribution	(i.e.,	maximum	extent).	
					Then,	the	constant	is	easily	seen	to	be:

					So,	area	of	ellipse	(the	longitudinal	emittance)	is:	

											or,	in	E-t	coordinates,				

units:		“eV-sec”

�Ê ��̂ �t̂

constant = �Ê2 = � �2E

2⇡h⌘
QeV cos�s��̂2

⇡ �Ê��̂

S ⌘ ⇡ �Ê�t̂ = ⇡ �Ê
��̂

2⇡frf

S =
1

2frf

s

��2EeV

2⇡h⌘
Q cos�S ��̂2

S = 2⇡2frf

s

��2EeV

2⇡h⌘
Q cos�S �t̂2or,
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S

Ex:							 	=	1.8	eV-sec	S = 2π2(53 × 106) (8.9 × 109)(106)
2π(588)(0.008) (10 × 10−9)2



§ In a synchrotron, there can be an energy at which the slip 
factor changes sign — this is call the “transition energy” 

§ In a typical FODO-style synchrotron, the transition gamma 
is roughly equal to the betatron tune

Transition Energy

⌘ = ↵p �
1

�2
=

⌧
D

⇢

�
� 1

�2 ⌘ = 0 = ↵p �
1

�2

�t ⌘
1

p
↵p

⌘ =
1

�2
t

� 1

�2

34

R
R0

p
p0

d

2d

�⌧

⌧0
=

✓
1

1 + 3d/⇡R0
� 1

�2
0

◆
�p

p0

earlier:
↵p ⌘

✓
dL/L

dp/p

◆

⌘ ⌘ ↵p �
1

�2
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Transition

We	had…

So,		

			when	η	<	0,	we	want	cos	#s	>	0	
		
			when	η	>	0,	we	want	cos	#s	<	0	

⌫s =

s

� h⌘

2⇡�2E
QeV cos�s) d2��

dn2
�

✓
2⇡h⌘

�2E
QeV cos�s

◆
�� = 0

if ⌘ > 0, choose cos�s < 0

�tmc2 = transition energy

) if �t exists, need “phase jump” to occur at transition crossing

−1.0−
0.50

.00.
51.0

x

sin(x)

#	=	0 for	!	<	!t	
																																								for	!	>	!t
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⌘ =
1

�2
t

� 1

�2



Transition Crossing 
§ If the synchrotron accelerates 

through its transition energy, 
then the phase of the RF system 
has to be shifted at the time of 
transition crossing 

§ The synchrotron motion slows 
down as approach transition — 
it would stop if the slip factor 
were exactly zero! 

• loss of phase stability! 
• momentum spread also gets 

larger near transition 
§ So, best to accelerate quickly 

through this energy region! 
• and change the phase quickly!

⌘ =
1

�2
t

� 1

�2
−1.0−

0.50
.00.

51.0

x
sin(x)

#	=	0 for	!	<	!t	
																																								for	!	>	!t

⌫s =

s

� h⌘

2⇡�2E
QeV cos�s
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Some Movies…
§ Bucket Transformation 
§ Parabolic acceleration 
§ Parabolic acceleration — full bucket 
§ Snap Capture 
§ Adiabatic Capture 
§ Transition Crossing
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Bunch Manipulations in Synchrotrons
§ Cogging 
§ Slip Stacking 
§ Bunch Rotation 
§ Bunch Coalescing 
§ Barrier Buckets
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Cogging
§ Essentially, phase slippage by changing the relative momeutm 
§ Ex:  beam transfers between two synchrotrons

Suppose	C2	=	2C1;	want	to	inject	bunch	in	synchrotron	S1	into	a	
						particular	“bucket”	location	in	synchrotron	S2	

need	to	adjust	the	revolution	frequency	of	one	ring	(pick	S1,	say)	
							until	the	two	revolving	“markers”	line	up	

							if	C2	=	2C1			<<==>>			f1	=	2f2,		and	may	never	line	up!	

So,	make	$.1/.1	=	%	$p/p			such	that,	after	N	turns,	

																																									N	|$.1|		=		$C1/v

S1 S2

S1 S2
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Cogging [2]
Suppose	want	to	“cog”	beam	by	one	RF	bucket	in	S1	…		then	$C1	=	C1/h	

adjust	$fRF	which	yields	$'1	each	turn;	leave	on	for	N	turns;	N	=	(time	between	buckets)/$'1	

to	cog	by	one	bucket,				N	|$.1|		=		1/frf					⇒						N	(.1	%	$p/p)	=	1/frf				⇒			N	$p/p	=	1/((.1%h	f1)	

																																																												or,					N	$p/p	=	1/(%h)	

Note:		when	generate	an	average	$p/p,	the	average	horizontal	displacement	in	the	
synchrotron	at	a	particular	position	where	there	is	dispersion	will	be	$x	=	D	$p/p.	
																																																									Thus,			N	$x	=	D/(%h)	

Ex:			Suppose	we	can	accommodate	radial	motion	on	the	scale	of	10	mm	where	the	
dispersion	function	has	value	2.5	m	in	a	synchrotron	with	%	=	0.05	and	h=100.			
													Then,	to	cog	by	one	RF	bucket	would	take		
																																										N	=	(2.5	m	/	0.01	m)	/	(0.05	*	100)	=	50	revolutions.

�! �⌧

⌧
= ��f

f
= ��frf

frf
= ⌘

�p

p
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Ex:  Slip Stacking  
(ex:  FNAL Main Injector)

§ Essentially “cogging” during injection 
• inject ~ 1/2-circumference-worth of beam 
» accelerate slightly  —>  moves orbit outward 
• (use RF system “A”, say)

• inject 2nd batch into the ring, behind the first batch 
» decelerate slightly —> moves orbit inward 
• (using RF system “B”, say)

• $p  between these 2 orbits implies they will “slip” in time until 
they line up: 

•                                

• re-capture with a higher voltage RF in order to match the bucket 
shape to the beam emittance

Δt
t

= ( 1
γ2t

− 1
γ2 ) Δp

p
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data
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Bunch Rotation

start:
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Bunch Rotation

instantly	raise	RF	voltage…																					bunches	will	begin	to	rotate	in	phase	space:

start:
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Bunch Rotation

instantly	raise	RF	voltage…																					bunches	will	begin	to	rotate	in	phase	space:

when	rotated	by	90o	can	rapidly	switch	to	a	higher-harmonic	RF	system	in	order	to	maintain	
the	shorter	bunch	length;					or,		for	example,			extract	the	beam	and	send	to	a	target!

start:
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Bunch Coalescing

similar	to	bunch	rotation,	but	also	involves	a	change	in	RF	frequency	(harmonic)
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Bunch Coalescing

similar	to	bunch	rotation,	but	also	involves	a	change	in	RF	frequency	(harmonic)

switch	off	high	frequency,	low	voltage	system,	
switch	on	low	frequency,	high	voltage	system…
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Bunch Coalescing

similar	to	bunch	rotation,	but	also	involves	a	change	in	RF	frequency	(harmonic)

switch	off	high	frequency,	low	voltage	system,	
switch	on	low	frequency,	high	voltage	system…
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Bunch Coalescing

similar	to	bunch	rotation,	but	also	involves	a	change	in	RF	frequency	(harmonic)

switch	off	high	frequency,	low	voltage	system,	
switch	on	low	frequency,	high	voltage	system…
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Bunch Coalescing [2]
§ Can use coalescing 

techniques to take 
bunched beam from 
one accelerator, make 
intense bunches, and 
inject into downstream 
accelerators to 
increase bunch 
intensities 

• downside:  increased 
longitudinal emittance

then,	recapture	with	the	original	harmonic	system	@	higher	voltage

after	dilution…
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M. Syphers          g-2 Collab Mtg     July 2018 56

21 bunches 
from Booster: V

time

dE

dt

dE

dt

dt

2nd, 37 ms later1st bunch, after ~100 ms 3rd, 37 ms later 4th, 37 ms later

100 ms

Ex:  Muon g-2 Bunch Formation  
(approximately)

dE

dt

Intensity


