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Free Betatron Oscillation
§ Suppose a particle traveling along the design path is given a sudden 

(impulse) deflection through angle   

§ Then, downstream, we have

Δx′ = Δθ ≡ x′ 0

s0

s

x

x(s) = ∆θ
√

β0β(s) sin[ψ(s) − ψ0]
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Example:
Suppose �✓ = 0.4 mrad, �0 = 4.0 m, �(s) = 6.4 m,
and � = n⇥ 2⇡ + 30�. Then x(s) = 1 mm.
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FODO Cell Courant-Snyder Parameters
§ From the matrix: 

§ If go from D quad to D quad, simply replace F --> -F  in matrix M above 
• So, at exit of the D quad:

traceM = a + d = 2 − L2/F 2
= 2 cos µ sin

µ

2
=

L

2F
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4	numbers

Mperiodic =

✓
cosµ+ ↵ sinµ � sinµ

�� sinµ cosµ� ↵ sinµ

◆

for	completeness,

� =
1 + ↵2

�



The Stability Criterion
§ Through an eigenvector approach, one can solve for the eigenvalues of 

the repetitive matrix M and find that for stability, must have
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The	Stability	Criterion| tr M | < 2

if M =

✓
a b
c d

◆
, I =

✓
1 0
0 1

◆

ad − bc = det M = 1

”trace” of a + d = trM = M

M

repeat application of matrix M over and over…
     the motion will be stable if -2 < trM < 2

The motion  is finite and 
bounded as  if  

⃗X = Mk ⃗X 0
k → ∞ | trM | < 2



The Betatron Tune
§ In a cyclic accelerator (synchrotron), the particles will oscillate 

transversely (betatron oscillations) with the betatron frequency. 
§ The betatron frequency is determined by the total phase advance once 

around the ring:

� total =

I
ds

�(s)
⌫ ⌘ � total/2⇡

trM = 2 cos(2⇡⌫)

fbetatron = ⌫frev

Betatron	Tune:		#	of	oscillations	per	revolution

7M. Syphers          Ops Lecture 3           SPRING  2020

(M	=	1-turn	matrix)



Generating Dispersion
§ System of quadrupoles with alternating-sign gradients (F, D, F, …) 

separated by distance L, and with bending magnets present…
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Ex:  D = 3 m,  dp/p = 0.3%,  then !x = 9 mm

L

FF -F

sp0

✓✓

p0	+	dp0

L

D(s)

D

D=0

D=L'/2

D = Lθ
2 (1 + L

2f )



New…



Adiabatic Damping from Acceleration

s

∆p, from RF system

§ Transverse oscillations imply transverse momentum.  As 
accelerate, momentum is “delivered” in the longitudinal direction 
(along the s-direction).  Thus, on average, the angular divergence 
of a particle will decrease, as will its oscillation amplitude, during 
acceleration. 

§ The coordinates x-x’ are not canonical conjugates, but x-px are;  
thus, from classical mechanics, the area of a trajectory in x-px 
phase space is invariant for adiabatic changes to the system.
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Adiabatic Damping from Acceleration
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~p

~p0

Note:		particles	at	peak	of	their	betatron	oscillation	will	have	
little/no	change	in	x’,	while	particles	with	large	transverse	
angles	will	have	their	x’	affected	most

details…

=) �x0 = �x0
0
�p

p0

Note:		assuming	that	ALL	particles	
receive	the	same	(p	from	the	cavity

x0
0

~px

Δ ⃗p

relative momentum gain 
from RF system

x′ ≈ px

p
≈ px

p0 + Δp
= px

p0 (1 + Δp
p0 )

−1

≈ x′ 0 (1 − Δp
p0 )



Damping of Oscillations
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Now	assuming	that	the	incremental	change	in	momentum	is	small	compared	to	the	overall	
momentum,	and	that	the	changes	occur	gradually	on	time	scales	large	compared	to	those	of	
the	betatron	motion…

✏ / 1

p
xrms /

1
p
p

So,

x = x0
x′ = x′ 0(1 − δ) δ ≡ Δp/p0

Then	if	the	original	emittance	is				 				then,	after	a	single	pass	

through	the	RF	system,

ϵ0 = π ⟨x02⟩⟨x′ 0
2⟩ − ⟨x0x′ 0⟩2

ϵ = π ⟨x02⟩⟨x′ 0
2(1 − δ)2⟩ − ⟨x0x′ 0⟩2(1 − δ)2 = ϵ0 (1 − 2δ + δ2) ≈ ϵ0(1 − δ)

Thus,

ϵ − ϵ0 = Δϵ = − ϵ0δ

or, Δϵ
ϵ0

= − Δp
p0



Normalized Beam Emittance
§ Hence, as particles are accelerated, the geometrical area (emittance) in 

x-x’ phase space is not preserved; however, the product of the emittance 
and the total momentum is  preserved.  Thus, we define a “normalized” 
beam emittance, as 

§ In principle, the normalized beam emittance should be preserved during 
acceleration.  Thus it is a measure of beam quality, and its preservation is 
a measure of accelerator performance. 

§ In practice, it is not preserved -- non-adiabatic acceleration, especially at 
the low energy regime; non-linear field perturbations; residual gas 
scattering; charge stripping; field errors, setting errors; etc. -- all 
contribute at some level to increase the beam emittance.  Best attempts 
are made to keep the emittance as small as possible.
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εN ≡ ε · (βγ)
Lorentz

p = (γm)(βc) = (βγ) mc
Here:  relativistic factors!

ϵN = 6π x2
rms(s)

β(s) (βγ)Lorentz
95%,	normalized	
														emittance: (for	the	case		

				of	no	dispersion)
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Errors and Their Corrections
§ Steering (dipole) Errors 
§ Focusing (quadrupole) Errors 
§ Chromatic (momentum) Effects 
§ Nonlinear Motion and Resonances 

§ Not only will errors create perturbations in the beam size, etc., but they 
will also tend to identify operational considerations, such as frequency 
choices, corrector placement, alignment tolerances, power supply 
specifications, etc.
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Steering (dipole) Errors
§ dipole field error: 

• manufacturing; powering; control setting, … 

§ dipole field “roll” (about the longitudinal axis) 

§ Quadrupole misalignment:
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By = B0 �! By = B0 +�B

By = B0, Bx = 0

�x0 = ��B`

B⇢

�x0 =
d

F

(x

sd

d

iron return yoke
excitation

 current

					
					 ϕBy = B0 cos ϕ ≈ B0

Bx = − B0 sin ϕ ≈ − ϕ B0 Δy′ = − ϕ
B0ℓ
Bρ

= − ϕθ0



Steering (dipole) Errors
§ A field error creates a betatron oscillation…
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′
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β0β sin ∆ψ
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1+α0α
√
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�x = x0 = 0

due	to	the	small	error	field:

x(s) = �✓
p
�0�(s) sin� 



0 5 10 15 20

-4
-2

0
2

4

s

x

Steering (dipole) Errors
§ Closed orbit distortions in a circular accelerator 

• These are not “one-time” kicks; they affect the particle motion every revolution
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The	trajectory	of	each	particle	
will	be	altered	by	the	angle	('	
every	time	it	passes	through	
the	error	field

black	=	nominal	
red	=	w/	error	field

see	ClosedOrbit.R



The Closed Orbit
§ Want to find the one trajectory which, upon passing through the error 

field, will come back upon itself 
• this is the “closed” trajectory, or closed orbit 

§ When find x0, x’0, can find x, x’ downstream:
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M0

✓
x0

x0
0

◆
+

✓
0
�✓

◆
=

✓
x0

x0
0

◆ �✓

error	field✓
x0

x0
0

◆
= (I �M0)

�1

✓
0
�✓

◆

(

x
x′

)

=







(

β
β0

)1/2

(cos ∆ψ + α0 sin ∆ψ)
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Closed Orbit Distortion from Single Error
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�x(s) =
�✓

p
�0�(s)

2 sin⇡⌫
cos [| (s)�  0|� ⇡⌫]

⇠ ⌫ oscillations

If	have	a	collection	of	errors	about	the	accelerator,	then	at	any	one	point:

�x(s) =
X

i

�✓i
p
�i�(s)

2 sin⇡⌫
cos [| (s)�  i|� ⇡⌫]

as	,	—>	integer,	huge	distortions	

															a	resonance!



Trajectory/Orbit Correction

§ To make a local adjustment or correction of the position of the beam in a 
beam line or synchrotron, three correctors are required (in general):
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'1 '2 '3

(x0

✓1 =
�x0p

�0�1 sin 10
✓2 = �✓1

s
�1
�2

sin 13

sin 23

✓3 = ✓1

s
�1
�3

sin 12

sin 23

The	trajectory	before	'1	and	
after	'3	is	left	undisturbed



Orbit Corrections

§ As an example, in a “FODO” synchrotron, one would place correctors 
near the location of each quadrupole — at maximum beta locations, and 
at the source of likely steering errors (misaligned quads)
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 13 = 2 12 = 2 23 = 2µ

'1 '2 '3
(x0

F								D										F										D										F

✓3 = ✓1

✓2 = �✓1
sin 2µ

sinµ
) ✓2 = �2✓1 cosµ

✓1 =
�x

�̂ sinµ

sin(μ/2) = L
2F



Focusing (gradient) Errors
§Sources of gradient focusing errors 
• Quadrupole magnet field error 
» powering error; control error; manufacturing error 

• Dipole pole tip error (non-parallel poles) 
• etc. 

§ Impact of gradient errors 
• Look at Hill’s Equation: 
» errors in the values of K will alter… 
•     phase advance (tune, or betatron frequency)
•     amplitude function, -
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x00 +K(s)x = 0



Focusing (quadrupole) Errors

§ β, . distortions and “beta-beat”
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�↵ = �1

2
��0

if ideal gradient produces strength q = B0`/(B⇢),
then a gradient error will produce �q = �B0`/(B⇢)
and the slope of � will change according to �↵ = �0�q

��0

gradient	error,	(q

β(s)

β0

��

�
(s) ⇡ ��q�0 sin 2 0(s)

Downstream	the	distortion	will	propagate:



β Distortion in a Synchrotron

§ In a circular accelerator, the closed solution of the amplitude function(s) 
will be altered by a gradient error.   With analysis similar to the situation 
for a closed orbit distortion, the gradient error will produce a “closed” β-
distortion all around the ring according to (for small errors):
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��

�
(s) ⇡ ��q�0 sin 2 0(s)

dipole	error: quad	error:

(q
��

�

x(s) = �✓
p
�0�(s) sin� 

��

�
(s) ⇡ � �q�0

2 sin 2⇡⌫
cos(2|� |� 2⇡⌫)



Focusing (quadrupole) Errors

§ Phase/tune shift 

• a gradient error will distort the amplitude function, and therefore distort 
the development of the phase advance downstream.  As the - distortion 
will oscillate about the ideal - function, the phase advance will slightly 
increase and decrease along the way.  This is particularly important in a 
ring where the betatron tune, ,, might need fine control. 

• To see the change in tune for a synchrotron, we look at the effect on the 
matrix for one revolution…
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The Tune Shift Formula
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M0

if M0 =

✓
a b
c d

◆

§ M0 is the one-turn matrix of ideal ring trM0 = 2 cos(2πν0)



The Tune Shift Formula

§ M is the one-turn matrix of the ideal ring 
followed by a small gradient error of 
strength q:
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M0

if M0 =

✓
a b
c d

◆

M =

✓
1 0
�q 1

◆
M0

Mthen M =

✓
1 0
�q 1

◆✓
a b
c d

◆
=

✓
a b

c� aq d� bq

◆

§ M0 is the one-turn matrix of ideal ring trM0 = 2 cos(2πν0)



The Tune Shift Formula

§ M is the one-turn matrix of the ideal ring 
followed by a small gradient error of 
strength q:
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M0

if M0 =

✓
a b
c d

◆

M =

✓
1 0
�q 1

◆
M0

Mthen M =

✓
1 0
�q 1

◆✓
a b
c d

◆
=

✓
a b

c� aq d� bq

◆

traceM = 2 cos 2⇡⌫ = a+d�bq = traceM0�bq = 2 cos 2⇡⌫0�(�0 sin 2⇡⌫0)q

§ M0 is the one-turn matrix of ideal ring trM0 = 2 cos(2πν0)



The Tune Shift Formula

§ M is the one-turn matrix of the ideal ring 
followed by a small gradient error of 
strength q:
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M0

if M0 =

✓
a b
c d

◆

M =

✓
1 0
�q 1

◆
M0

Mthen M =

✓
1 0
�q 1

◆✓
a b
c d

◆
=

✓
a b

c� aq d� bq

◆

traceM = 2 cos 2⇡⌫ = a+d�bq = traceM0�bq = 2 cos 2⇡⌫0�(�0 sin 2⇡⌫0)q

cos 2⇡⌫ = cos 2⇡(⌫0 +�⌫)
= cos 2⇡⌫0 cos 2⇡�⌫ � sin 2⇡⌫0 sin 2⇡�⌫
⇡ cos 2⇡⌫0 � 2⇡�⌫ sin 2⇡⌫0

cos 2⇡⌫ = cos 2⇡⌫0 �
1

2
q�0 sin 2⇡⌫0

§ M0 is the one-turn matrix of ideal ring trM0 = 2 cos(2πν0)



The Tune Shift Formula

§ M is the one-turn matrix of the ideal ring 
followed by a small gradient error of 
strength q:

27M. Syphers          Ops Lecture 3           SPRING  2020

M0

if M0 =

✓
a b
c d

◆

M =

✓
1 0
�q 1

◆
M0

Mthen M =

✓
1 0
�q 1

◆✓
a b
c d

◆
=

✓
a b

c� aq d� bq

◆

traceM = 2 cos 2⇡⌫ = a+d�bq = traceM0�bq = 2 cos 2⇡⌫0�(�0 sin 2⇡⌫0)q

cos 2⇡⌫ = cos 2⇡(⌫0 +�⌫)
= cos 2⇡⌫0 cos 2⇡�⌫ � sin 2⇡⌫0 sin 2⇡�⌫
⇡ cos 2⇡⌫0 � 2⇡�⌫ sin 2⇡⌫0

cos 2⇡⌫ = cos 2⇡⌫0 �
1

2
q�0 sin 2⇡⌫0

�⌫ ⇡ 1

4⇡
�0q

2πΔν sin 2πν0 ≈ 1
2 qβ0 sin 2πν0

§ M0 is the one-turn matrix of ideal ring trM0 = 2 cos(2πν0)



Tune correction/adjustment

§ In the same way that an error will change the tune of a synchrotron, so 
can a quadrupole field adjustment be made to implement a desired 
change in the tune 

§ Note, however, that a quad change will alter the horizontal tune in one 
direction, but will alter the vertical tune in the other direction.  Also, since 
the amplitude functions, -x and -y, may be different, the actual shifts in the 
two tunes will also be different in magnitude. 

§ Thus, to exercise independent control of ,x and ,y, there needs to be two 
quadrupoles (or 2 circuits)
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Tune correction/adjustment
§ Suppose we have a FODO arrangement, and we put adjustable 

quadrupoles near every “main” quadrupole (N = # quads):
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�⌫x =
N

4⇡

h
�̂�q1 + �̌�q2

i

�⌫y = �N

4⇡

h
�̌�q1 + �̂�q2

i

�̂

�̌
1

1

Δq ≡ ΔB′ ℓ
Bρ

horver



Tune correction/adjustment
§ Suppose we have a FODO arrangement, and we put adjustable 

quadrupoles near every “main” quadrupole (N = # quads):
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�⌫x =
N

4⇡

h
�̂�q1 + �̌�q2

i

�⌫y = �N

4⇡

h
�̌�q1 + �̂�q2

i

�̂

�̌
1

1

Δq ≡ ΔB′ ℓ
Bρ

horver



Tune correction/adjustment
§ Suppose we have a FODO arrangement, and we put adjustable 

quadrupoles near every “main” quadrupole (N = # quads):
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�⌫x =
N

4⇡

h
�̂�q1 + �̌�q2
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�⌫y = �N

4⇡

h
�̌�q1 + �̂�q2

i

�̂

�̌

Δq ≡ ΔB′ ℓ
Bρ

horver



Tune correction/adjustment
§ Suppose we have a FODO arrangement, and we put adjustable 

quadrupoles near every “main” quadrupole (N = # quads):
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�⌫x =
N

4⇡

h
�̂�q1 + �̌�q2

i

�⌫y = �N

4⇡

h
�̌�q1 + �̂�q2

i

�̂

�̌

Δq ≡ ΔB′ ℓ
Bρ

horver

§ The quadrupoles can be wired in two separate circuits, and thus the two 
tunes can be independently adjusted by any (reasonable) amount 
desired.



Chromatic Effects

§ We may think of dispersion (and the Dispersion function) as being 
the propagation of a steering error, where the error was introduced 
due to ,p/p.  

§ ,p/p will similarly introduce gradient “errors” 
• thus, expect the tune to depend upon ,p/p 
• and, expect the amplitude function - = -(,p/p) 

§ Some Examples 
• Chromatic Aberration in a final focus 
• Tune spread in a synchrotron due to momentum — chromaticity
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Chromaticity of a Circular Accelerator

§ Chromaticity -- change in the betatron tune, ,, with 
respect to relative momentum deviation ((p/p): 

§ There will be a different chromaticity value for each 
degree of freedom:
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⇠ ⌘ �⌫

�p/p

⇠x =
�⌫x
�p/p

⇠y =
�⌫y
�p/p

How	to	estimate	the	scale	of	the	effect?

x00 +K(s)x = x00 +
qB0(s)

p
x = 0



The Natural Chromaticity
§ While there may be error fields that contribute to chromatic effects 

(sextupole fields — later), there will be a “natural” chromaticity due to the 
ideal magnets of the synchrotron lattice 

§ Starting from                    for a single gradient error,
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�⌫ =

Z
1

4⇡
�(s)


�B0(s)

B⇢

�p

p

�
ds

⇠ = � 1

4⇡

Z
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Chromatic Corrections

§ Example:  suppose synchrotron has / = -10, and the beam has a 
momentum spread of ±0.1%; then the particle distribution will have a 
spread in tunes between ,0  0.01. 

§ In order to ensure that all particles have the same tunes (hor/ver), within 
tolerable levels, need to be able to adjust the overall chromaticity of the 
ring. 

§ Desire focusing element with a focusing strength that depends on 
momentum (linearly, preferably). 

§ This can be accomplished using sextupole fields in regions with horizontal 
dispersion.

∓
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Chromatic Corrections
§ Sextupole Field:  
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Also	Note:		introduces	(intentionally!)	a	non-linear	field!!
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Correction/Adjustment of Chromaticity
§ Suppose we have a FODO arrangement, and we put adjustable sextuple 

magnets near every “main” quadrupole (N = # sextupole magnets): 

§ The sextupoles can be wired in two separate circuits, and thus the two 
chromaticities can be independently adjusted by any (reasonable) amount 
desired.
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The Introduction of a Non-Linear Element
§ For the first time in our discussion, have introduced a “non-linear” 

transverse magnetic field for explicit use in the accelerator system — 
sextupoles for chromatic and/or chromaticity correction 

§ This opens the door to new and interesting phenomena, just as in the 
nonlinear longitudinal motion: 

• phase space distortions 

• tune variation with amplitude 

• dynamic aperture 

• …
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Sextupole Tracking Code Demonstration
§   while (i < Nturns+1) { 
§     du1   <-  du  + u*u/2 
§   u1   <-  a*u  + b*du1 
§   du   <-  c*u  + d*du1 + u1*u1/2 
§        u    <-  u1 
§     points(u, du, pch=".") 
§     i = i + 1 
§   } 

§ Let’s run a code…
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Sources of Transverse Nonlinearities
§ Real accelerator magnets 

• Finite width of the field region in a dipole magnet produces a 6-pole 
(sextupole) term  -- By(y = 0)  ~  x2 

• Real magnets also have: 
» Systematic construction errors 
» Random construction errors 
» Eddy currents in vacuum 
»         chambers as fields ramp up 

§ So, real life will introduce sources of linear AND nonlinear field 
perturbations which can affect the region of stable phase space ....
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Resonances and Tune Space
§ Error fields are encountered repeatedly each revolution -- thus, can be 

resonant with the transverse oscillation frequency 

§ Let the  “tune”     =  no. of oscillations per revolution 
• repeated encounter with a steering (dipole) error produces an orbit distortion: 

» thus, avoid integer tunes 

• repeated encounter with a focusing error produces distortion of amplitude 
function, β: 

» thus, avoid half-integer tunes

ν

�x � 1
sin⇥�

��/� � 1
sin 2⇤⇥
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Nonlinear Resonances
§ Phase space w/ sextupole field present (~x2) 

• topology is tune dependent: 
• frequency depends upon amplitude 
• “dynamic aperture”
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With	sextupole	field	present,	must	avoid	
tunes:	

integer,		integer/2,		integer/3,	...

“normalized”	
		phase	space;	ideal	
trajectories	are	circular



An Application
§ Put the transverse nonlinear fields to work for us 
§ Can pulse an electromagnet to send the particles out of the 

accelerator all at once; but Particle Physics experiments often desire 
smooth flow of particles from the accelerator toward their detectors 

§ Resonant Extraction 
• developed in 1960’s, particles can be put “on resonance” in a controlled 

manner and slowly extracted 
• third-integer:  carefully approach   
» driven by sextupole fields 

• half-integer:   carefully approach   
» driven by quadrupole and octupole (8-pole) fields

ν = k/3

ν = k/2
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Phase Space used for Extraction
§ Linear restoring forces with 

Sextupole perturbation, running 
near a tune of k/3 

§ Linear restoring forces with 
Octupole (8-pole) and quadrupole  
perturbations, running near a tune 
of k/2
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January 9, 2009 Phase space tune scan Leo Michelotti 3

9.67 9.68
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Figure 2: Horizontal phase space during tune scan, for tunes above 29/3.

k	=	“integer”



Third-integer Extraction
§ Example:  particles oscillate in 

phase space in presence of a 
single sextupole 

§ Slowly adjust the tune toward a 
value of k/3 

• (here, k=1) 

§ Tune is exactly 1/3 at the 
separatrix 

§ The lines that appear are 
derived from a first-order 
perturbation calculation 

§ Particles stream away from the 
“unstable fixed points”, stepping 
across a “septum” which leads 
out of the accelerator
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septum



Half-integer Extraction
§ Similar to last movie, but 

“ideal” accelerator has 
extra quadrupole and 
octupole (8-pole) fields 

§ Slowly adjust the tune 
toward a value of k/2 

• (here, k=1) 

§ Here, lowest-order 
separatrices defined by two 
intersecting circles 

§ Eventually, when very close 
to half-integer tune, entire 
phase space becomes 
unstable (|trM|>2)
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Coupling Resonances
§ Always “error fields” in the real accelerator 

§ “Skew” fields can couple the motion between the two transverse degrees 
of freedom 

• thus, can also generate coupling resonances 
» (sum/difference resonances) 

• in general, should avoid: m �x ± n �y = k

avoid	ALL	rational	tunes???
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Tune Diagram
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m �x ± n �y = klines	of	



Tune Diagram
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Tune Diagram
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Tune Diagram
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Tune Diagram

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hor tune

v
e
r 

tu
n
e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hor tune

v
e
r 

tu
n
e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hor tune

v
e
r 

tu
n
e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hor tune

v
e
r 

tu
n
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hor tune

ve
r t

un
e ●

46M. Syphers          Ops Lecture 3           SPRING  2020

m �x ± n �y = klines	of	


