
Particle Beams and Phase Space
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will	remain	constant	(Liouville);		
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Transverse coordinates:



Emittance in Terms of Moments

the “rms emittance”

§ Considering the general equation of an ellipse, the area enclosed by the 
ellipse is related to its coefficients by: 

§ Can define quantities scaled by an area, 𝜖, of our elliptical distribution:

2M. Syphers          Ops Lecture             SPRING  2020

x

x’ ax2 + bxx0 + cx02 = 1

A =
2⇡p

4ac� b2

↵ ⌘ �hxx0i
✏/⇡

� ⌘ hx2i
✏/⇡

� ⌘ hx02i
✏/⇡

�x2 + 2↵xx0 + �x02 = ✏/⇡

✏ = ⇡
p

hx2ihx02i � hxx0i2

The ellipse (red curve above) that contains ~95% has area ~6𝜖 

So, equation of the blue curve above:

𝛼, 𝛽, γcollectively are called the Courant-Snyder parameters, or Twiss parameters

(for Gaussian distribution)

area of ellipse:

see:  http://nicadd.niu.edu/~syphers/tutorials/ellipseNotes.html  

http://nicadd.niu.edu/~syphers/tutorials/ellipseNotes.html


TRANSPORT of Beam Moments
• Transport of particle state vector downstream from position 0 

• Create a “covariance matrix” of the resulting vector… 

•  … then, by averaging over all the particles in the distribution,
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Let’s Think About the Numbers & Units…

§ If <x2> ~ mm2, and <x’2> ~ mrad2, 
•      then the emittance can have units of  mm-mrad   (also = 𝜇m) 

§ Courant-Snyder parameters
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✏

mm2/(mm-mrad)	~	mm/mrad	=	m

(mm-mrad)/(mm-mrad)	=	dimensionless

mrad2/(mm-mrad)	~	mrad/mm	=	1/m

The	“𝜋”	comes	from	our	
definition	of	emittance	
as	an	area	in	phase	
space;	emittance	is	
often	expressed	in	units	
of	“𝜋	mm-mrad”

✏ = ⇡
p

hx2ihx02i � hxx0i2



Summary
§ Given an initial particle distribution in phase space at the input to a 

beam transport system, can describe that distribution (sometimes not 
all that well, but we try…) using Courant-Snyder parameters: 

§ The C-S parameters can then be computed downstream, using
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The Notion of an Amplitude Function…

7

• Can trace single particle 
trajectories through a periodic 
system 

• Can represent either 
• multiple passages around a 

circular accelerator, or 
• multiple particles through a 

beam line

M. Syphers          Ops Lecture 2           SPRING  2020



The Notion of an Amplitude Function…

7

• Can trace single particle 
trajectories through a periodic 
system 

• Can represent either 
• multiple passages around a 

circular accelerator, or 
• multiple particles through a 

beam line

M. Syphers          Ops Lecture 2           SPRING  2020



The Notion of an Amplitude Function…

Can	we	describe	the	maximum	amplitude	of	
		particle	excursions	in	analytical	form?	

	 				 	 of	course!						coming	up	next	...

7

• Can trace single particle 
trajectories through a periodic 
system 

• Can represent either 
• multiple passages around a 

circular accelerator, or 
• multiple particles through a 

beam line

M. Syphers          Ops Lecture 2           SPRING  2020



Pushing the “Envelope”
•Wish to look for a functional form of the outer envelope of particle motion, and the rate at 

which the phase of the oscillatory motion develops within that envelope 

• This will enable us to decouple the motion of individual particle from intrinsic properties of the 
accelerator design

Envelope described by an  
“amplitude function”
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Hill’s Equation — Analytical Solution
•We saw that the equation of transverse motion is Hill’s 

Equation: 

• Note:  “similar” to simple harmonic oscillator equation, but 
“spring constant” is not constant -- depends upon longitudinal 
position, s. 

• So, assume solution is sinusoidal, with a phase which 
advances as a function of location s; also assume amplitude 
is modulated by a function which also depends upon s:  

• Then, plug into Hill’s Equation ...

x(s) = A
√

β(s) sin[ψ(s) + δ]

x
′′ + K(s)x = 0
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Analytical Solution (cont’d)

x(s) = A
√

β(s) sin[ψ(s) + δ]

x′ =
1

2
Aβ−

1

2 β′ sin[ψ(s) + δ] + A
√

β cos[ψ(s) + δ]ψ′

x′′ = . . .

Plugging into Hill’s Equation, and collecting terms... 

    and    are constants of integration, defined by the initial 
conditions              of the particle.  For arbitrary        , must 
have contents of each [   ] = 0 simultaneously for sum = 0.

A δ
A, δ(x0, x

′

0)

x′′ + K(s)x = A
√

β

[

ψ′′ +
β′

β
ψ′

]

cos[ψ(s) + δ]

+A
√

β

[

−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K

]

sin[ψ(s) + δ] = 0
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−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K = 0

2ββ′′
− (β′)2 − 4β2(ψ′)2 + 4Kβ2 = 0

2ββ′′
− (β′)2 + 4Kβ2 = 4

ψ′′ +
β′

β
ψ′ = 0

βψ′′ + β′ψ′ = 0

(βψ′)′ = 0

βψ′ = const

ψ′ = 1/β

and

Differential equation 
that the amplitude 
function must obeyNote:  the phase advance is an 

observable quantity.  So, while 
could choose different value of 
const,  then      would just scale 
accordingly; thus, valid to choose 
const = 1.

β

Analytical Solution (cont’d)
§ Thus, we must have ...
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x(s) = A
√

β(s) sin[ψ(s) + δ]

thus,	we	need

The function β(s) is the
local wavelength (λ/2π)
of the oscillatory motion.
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Some Comments

§ We chose the amplitude function to be a positive definite function in its 
definition, since we want to describe real solutions. 

§ The square root of the amplitude function determines the shape of the 
envelope of a particle’s motion.  But the amplitude function is also a local 
wavelength of the motion.  

§ This seems strange at first, but ... 
• Imagine a particle oscillating within our focusing lens system; if the lenses are 

suddenly spaced further apart, the particle’s motion will grow larger between 
lenses, and additionally it will travel further before a complete oscillation takes 
place.  If the lenses are spaced closer together, the oscillation will not be 
allowed to grow as large, and more oscillations will occur per unit distance 
travelled. 

• Thus, the spacing and/or strengths (i.e., K(s)) determine both the rate of 
change of the oscillation phase as well as the maximum oscillation amplitude.  
These attributes must be tied together.
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x(s) = A
√

β(s) sin[ψ(s) + δ]



Equation of Motion  
of Amplitude Function

From
2ββ′′

− (β′)2 + 4Kβ2 = 4

we get
2β′β′′ + 2ββ′′′

− 2β′β′′ + 4K ′β2 + 8Kββ′ = 0

β′′′ + 4Kβ′ + 2K ′β = 0.

Typically, K ′(s) = 0, and so

(β′′ + 4Kβ)′ = 0

or
β′′ + 4Kβ = const.

is the general equation of motion for the amplitude function, β.

(in regions where K is either zero or constant)
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Piecewise Solutions

§ K = 0: 

• since            ,  then from original diff. eq. … 

• Therefore, parabola is always concave up 

§ (K < 0) K > 0:     (hyperbolic) sinusoidal + constant

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

2ββ′′
− (β′)2 = 4

β > 0

Parabola!

�(s) = �0 +
�0
0

2
p
K

sin(2
p
Ks) +

�00
0

4K
[1� cos(2

p
Ks)]

�00 =
4 + (�0)2

2�
> 0
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Summary

x(s) = A
√

β(s) sin[ψ(s) + δ]

−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K = 0

2ββ′′
− (β′)2 − 4β2(ψ′)2 + 4Kβ2 = 0

2ββ′′
− (β′)2 + 4Kβ2 = 4

ψ′′ +
β′

β
ψ′ = 0

βψ′′ + β′ψ′ = 0

(βψ′)′ = 0

βψ′ = const

ψ′ = 1/β

From
2ββ′′

− (β′)2 + 4Kβ2 = 4

we get
2β′β′′ + 2ββ′′′

− 2β′β′′ + 4K ′β2 + 8Kββ′ = 0

β′′′ + 4Kβ′ + 2K ′β = 0.

Typically, K ′(s) = 0, and so

(β′′ + 4Kβ)′ = 0

or
β′′ + 4Kβ = const.

is the general equation of motion for the amplitude function, β.

x
′′ + K(s)x = 0 Hill’s Equation

trial solution:

requires:

and

 (s) =

Z
ds

�(s)

(for K’ = 0)

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

�(s) = �0 +
�0
0

2
p
K

sin(2
p
Ks) +

�00
0

4K
[1� cos(2

p
Ks)]

for K = 0 :

for K > 0 :
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Courant-Snyder Parameters, & 
Connection to Matrix Approach

§ Suppose, for the moment, that we know the value of the amplitude 
function and its slope at two points along our particle transport system. 

§ Previously have seen how to write the motion of a single particle in one 
degree of freedom between two points in terms of a matrix.  We can 
now recast the elements of this matrix in terms of the local values of 
the amplitude function.   

§ Define two new variables, 

§ Collectively,                 are called the Courant-Snyder Parameters 
(sometimes called “Twiss parameters” or “lattice parameters”)

α ≡ −

1

2
β′, γ ≡

1 + α2

β

β, α, γ

2��00 � (�0)2 + 4K�2 = 4 becomes K� = � + ↵0
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Solutions using Courant-Snyder 
Parameters

§ Define two new variables: 

• will see that these are the same  and  from our ellipse description! 

§ Our previous results become 
• drift space: 

• gradient field:

α γ

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

�(s) = �0 +
�0
0

2
p
K

sin(2
p
Ks) +

�00
0

4K
[1� cos(2

p
Ks)]

�(s) =
�0

2
[1 + cos(2

p
Ks)]� ↵0p

K
sin(2

p
Ks) +

�0
2K

[1� cos(2
p
Ks)]

�(s) = �0 � 2↵0s+ �0s
2

—>

—>
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α ≡ −

1

2
β′, γ ≡

1 + α2

β



The Transport Matrix
§ We can always  write: 

§ So, solve for a and b in terms of initial conditions and write in matrix form 
• we get:

(

x
x′

)

=







(

β
β0

)1/2

(cos ∆ψ + α0 sin ∆ψ)
√

β0β sin ∆ψ

−
1+α0α
√

β0β
sin ∆ψ −

α−α0√

β0β
cos∆ψ

(

β0

β

)1/2

(cos ∆ψ − α sin ∆ψ)







(

x0

x′

0

)
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x(s) = a
p
� sin� + b

p
� cos� 

       is the phase advance from 
point s0 to point s in the beam line
� So,	can	write	any	of	our	transport	matrices	in	

terms	of	values	of	C-S	parameters	at	the	two	end	
points,	and	the	phase	advance	between	them.	



Tracking β, α, γ … and Phase Advance
§ Saw earlier that if given values of the Courant-Snyder parameters at one 

location in the beam line, and if know the matrix of the linear motion 
between that location and another location downstream, then can compute 
the values at the second location via: 

§ Also, if know parameters at one point, and the matrix from there to 
another point, then 

§ So, from knowledge of matrices, can “transport” phase and the Courant-
Snyder parameters along a beam line from one point to another
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where K ⌘
✓

� �↵
�↵ �

◆
K = M K0 MT

M1→2 =

(

a b
c d

)

=⇒
b

aβ1 − bα1

= tan ∆ψ1→2



Simple Examples
§ Propagation through a Drift: 

§ Propagation through a Thin Lens: 

§ Given α, β at one point, can calculate α, β at all downstream points 

M =

(

1 L
0 1

)

=⇒ ∆ψ = tan−1

(

L

β1 − Lα1

)

β = β0 − 2α0L + γ0L
2

α = α0 − γ0L

γ = γ0

M =

(

1 0

−1/F 1

)

=⇒ ∆ψ = 0

β = β0

α = α0 + β0/F

γ = γ0 + 2α0/F + β0/F 2
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K = M K0 MT



Another Summary
§ So, with knowledge of the layout of (linear) magnetic (and electrostatic) 

fields from which matrices describing the horizontal and vertical motion 
can be derived, and with an initial set of Courant-Snyder parameters 
describing the beam distribution, can transport the Courant-Snyder 
parameters along the beam line 

• Hence, can design a first-order focusing system without having to track 
particles.  Within such a system the beam size will be determined by the 
value of the emittance used. 

§ These same C-S parameters describing the beam ellipse in phase space 
are found to be the same parameters found in the analytical solution to 
Hill’s Equation if we identify 
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α ≡ −

1

2
β′, γ ≡

1 + α2

β
� =

Z s2

s1

ds

�(s)
<latexit sha1_base64="8KVuUog6uTlBMK0fQZeEkHGl9Pc=">AAACGnicbZA9SwQxEIZn/fb8OrW0CYqgjezaaCMcaiFioeCpcHsu2dysBrPZJZkVjmV/h41/xcZCETux8d+Yu7PwayDh4X1nSOaNcyUt+f6HNzQ8Mjo2PjFZm5qemZ2rzy+c2awwApsiU5m5iLlFJTU2SZLCi9wgT2OF5/HNXs8/v0VjZaZPqZtjO+VXWiZScHJSVA/CfVTEw9xKtsNCqSkqbRRUl+7erFiYGC7Kjq3KMEbia3a9iuor/obfL/YXgi9YaeweHjUA4Diqv4WdTBQpahKKW9sK/JzaJTckhcKqFhYWcy5u+BW2HGqeom2X/dUqtuqUDksy444m1le/T5Q8tbabxq4z5XRtf3s98T+vVVCy3S6lzgtCLQYPJYVilLFeTqwjDQpSXQdcGOn+ysQ1d2mQS7PmQgh+r/wXzjY3AscnvTRgUBOwBMuwBgFsQQMO4BiaIOAOHuAJnr1779F78V4HrUPe18wi/Cjv/RMAe6JK</latexit><latexit sha1_base64="tJEIg387/OAyn6DGfs3aQApoR0Y="></latexit><latexit sha1_base64="tJEIg387/OAyn6DGfs3aQApoR0Y="></latexit><latexit sha1_base64="f9nZja351CqIrp8yxhi3yKyFRfU=">AAACGnicbZDNSgMxFIUz9a/Wv6pLN8Ei6KbMdKMboagLlxVsLXTqkEnv1GAmMyR3hDLMc7jxVdy4UMSduPFtTGsXar2Q8HHOvST3hKkUBl330ynNzS8sLpWXKyura+sb1c2tjkkyzaHNE5nobsgMSKGgjQIldFMNLA4lXIW3p2P/6g60EYm6xFEK/ZgNlYgEZ2iloOr5ZyCR+akR9Jj6QmGQm8Arru3dKKgfacbzgSlyPwRk++agCKo1t+5Ois6CN4UamVYrqL77g4RnMSjkkhnT89wU+znTKLiEouJnBlLGb9kQehYVi8H088lqBd2zyoBGibZHIZ2oPydyFhszikPbGTO8MX+9sfif18swOurnQqUZguLfD0WZpJjQcU50IDRwlCMLjGth/0r5DbNpoE2zYkPw/q48C51G3bN84daaJ9M4ymSH7JJ94pFD0iTnpEXahJN78kieyYvz4Dw5r87bd2vJmc5sk1/lfHwBL3eg8g==</latexit>

x(s) = A
√

β(s) sin[ψ(s) + δ]



Free Betatron Oscillation
§ Suppose a particle traveling along the design path is given a sudden 

(impulse) deflection through angle   

§ Then, downstream, we have

Δx′ = Δθ ≡ x′ 0

s0

s

x

x(s) = ∆θ
√

β0β(s) sin[ψ(s) − ψ0]
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Example:
Suppose �✓ = 0.4 mrad, �0 = 4.0 m, �(s) = 6.4 m,
and � = n⇥ 2⇡ + 30�. Then x(s) = 1 mm.

(

x
x′

)

=







(

β
β0

)1/2

(cos ∆ψ + α0 sin ∆ψ)
√

β0β sin ∆ψ

−
1+α0α
√

β0β
sin ∆ψ −

α−α0√

β0β
cos∆ψ

(

β0

β

)1/2

(cos ∆ψ − α sin ∆ψ)







(

x0

x′

0

)

( 0
Δθ)

or,



Courant-Snyder Invariant
§ In general,

x = A
√

β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ
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Courant-Snyder Invariant
§ In general,

x = A
√

β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ
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Courant-Snyder Invariant
§ In general,

x = A
√

β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ

x2 + (βx′ + αx)2 = A2β

A2 =
x2 + (βx′ + αx)2

β

=
x2 + α2x2 + 2αβxx′ + β2x′2

β
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Courant-Snyder Invariant
§ In general,

x = A
√

β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ

A2
= γx2

+ 2αxx′
+ βx′2

x2 + (βx′ + αx)2 = A2β

A2 =
x2 + (βx′ + αx)2

β

=
x2 + α2x2 + 2αβxx′ + β2x′2
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Courant-Snyder Invariant
§ In general,

x = A
√

β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ

A2
= γx2

+ 2αxx′
+ βx′2

x2 + (βx′ + αx)2 = A2β

A2 =
x2 + (βx′ + αx)2

β

=
x2 + α2x2 + 2αβxx′ + β2x′2

β

From our general analytical approach today, we arrive at the result that for a single 
particle, the combination above will remain constant —  

it’s the same ellipse from before, and the “beta function” is the same parameter that 
we showed last time.  The seemingly arbitrary parameters  and  are related to 

the  function by:   

α γ

β α = −
1
2

β′ , γ = (1 + α2)/β
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§ The initial conditions of a freely-oscillating particle in the beam optics system determine 
its C-S invariant and hence the particle’s individual phase space ellipse

Properties of the Phase Space Ellipse

area = πA
2

x
′

x

area = πA
2
≡ ε

x̂ =

√

βε/π

x̂′ =

√

γε/π

x(x′ = 0) =
√

ε/πγ

x′(x = 0) =
√

ε/πβ

while the ellipse changes 
shape along the beam line, 
its area remains constant

Emittance =  area within a phase  
        space trajectory

γx2
+ 2αxx′

+ βx′2
= A2
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Long-Term Stability  
of Arbitrary Focusing System

§ Generate a single-turn matrix of the linear motion, made from matrices of 
individual elements (Note:  each with unit determinant) 

§ Look at matrix describing motion for one passage through a repetitive 
period: 

§ Now suppose repeat this operation k times.  We want:
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s0
sN

x



The Stability Criterion
§ Through an eigenvector approach, one can solve for the eigenvalues of 

the repetitive matrix M and find that for stability, must have
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The	Stability	Criterion| tr M | < 2

if M =

✓
a b
c d

◆
, I =

✓
1 0
0 1

◆

ad − bc = det M = 1

”trace” of a + d = trM = M

M

repeat application of matrix M over and over…
     the motion will be stable if -2 < trM < 2

The motion  is finite and 
bounded as  if  

⃗X = Mk ⃗X 0
k → ∞ | trM | < 2



Example:  FODO system
M

and repeat…

L L
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0 5 10 15 20

-2
-1

0
1

2

s

x

1 unit “cell”

Particle Trajectories in a Periodic Lattice

(Hill’s Equation)
�
K(s) =

e

p

�By

�x
(s)

⇥
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The Periodic Amplitude Function
§ Previously, … 

• Transport matrix, in terms of amplitude function at end points, and phase 
advance between:

(

x
x′

)

=







(

β
β0

)1/2

(cos ∆ψ + α0 sin ∆ψ)
√

β0β sin ∆ψ

−
1+α0α
√

β0β
sin ∆ψ −

α−α0√

β0β
cos∆ψ

(

β0

β

)1/2

(cos ∆ψ − α sin ∆ψ)







(

x0

x′

0

)

       is the phase advance from 
point s0 to point s in the beam line
� 
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Mperiodic =

(

cos ∆ψ + α sin ∆ψ β sin ∆ψ
−γ sin ∆ψ cos ∆ψ − α sin ∆ψ

)

Mperiodic

Natural	choice	in	a	circular	accelerator,	
when	values	of	β,	α	above	correspond	
to	one	particular	point	in	the	ring

sometimes “𝜇” is used 
to denote the periodic 
phase advance



Choice of Initial Conditions
§ Have seen how β can be propagated from one point to 

another.  Still, have the choice of initial conditions... 
§ If periodic system, like a “ring,” then natural to choose the 

periodic solutions for  β, α  
§ If beam line connects one ring to another ring, or a ring to a 

target, then we take the periodic solution of the upstream ring 
as the initial condition for the beam line 

§ In a system that takes a distribution from a source or off of a 
target, wish to “match” to desired initial conditions at the input 
to the downstream beam line system by using an arrangement 
of tunable focusing elements
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Computation of Courant-Snyder 
Parameters

§ As an example, consider again the FODO system 

§ Let’s, use above matrix of the periodic section to compute functions 
at exit of the F quad..

M =

(

1 0

−1/F 1

) (

1 L
0 1

) (

1 0

1/F 1

) (

1 L
0 1

)

=

(

1 L
−1/F 1 − L/F

) (

1 L
1/F 1 + L/F

)

=

(

1 + L/F 2L + L2/F
−L/F 2 1 − L/F − L2/F 2

)

F

-F

F

L L

D
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FODO Cell Courant-Snyder Parameters
§ From the matrix: 

§ If go from D quad to D quad, simply replace F --> -F  in matrix M above 
• So, at exit of the D quad:

traceM = a + d = 2 − L2/F 2
= 2 cos µ sin

µ

2
=

L

2F

M =

(

1 + L/F 2L + L2/F
−L/F 2 1 − L/F − L2/F 2

)

=

(

a b
c d

)

� =
b

sinµ
= 2F

s
1 + L/2F

1� L/2F

� = 2F

s
1� L/2F

1 + L/2F

↵ =
a� d

2 sinµ
=

s
1 + L/2F

1� L/2F

↵ = �

s
1� L/2F

1 + L/2F
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4	numbers

Mperiodic =

✓
cosµ+ ↵ sinµ � sinµ

�� sinµ cosµ� ↵ sinµ

◆

for	completeness,

� =
1 + ↵2

�



The Betatron Tune
§ In a cyclic accelerator (synchrotron), the particles will oscillate 

transversely (betatron oscillations) with the betatron frequency. 
§ The betatron frequency is determined by the total phase advance once 

around the ring:

� total =

I
ds

�(s)
⌫ ⌘ � total/2⇡

trM = 2 cos(2⇡⌫)

fbetatron = ⌫frev

Betatron	Tune:		#	of	oscillations	per	revolution
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Ex:  Tune of a FODO synchrotron
§ Suppose a ring is made up of N  FODO cells 
§ Each cell has phase advance given by the lens spacing and 

lens focal length: 

§ So, the tune of this simple synchrotron would be: 

§ Ex:  Main Injector at Fermilab:  R ~ 500 m; F ~ 13 m 
• so, 𝜈 ~ 20 
• thus, if initiate a betatron oscillation in this synchrotron it will 

oscillate ~20 times per revolution around the ring

sin
µ

2
=

L

2F

⌫ = Nµ/2⇡ ⇡ N
L

2⇡F
=

2LN

4⇡F
=

C

2⇡

1

2F
=

R

2F
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Arbitrary Distribution of Quadrupoles
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Bending through Dipole Field

36M. Syphers          Ops Lecture 2           SPRING  2020

L

ρ

dθ

~B

✓ =
L

⇢
=

B · L
(B⇢)

=
q ·B · L

p



Dispersion
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The	bend	angle	(and/or	
focusing	strength)	depends	
upon	momentum	

Similar	to	index	of	
refraction	depending	upon	
frequency	

dipole	steering	“error”	due	
to	a	different	momentum	
—>	“dispersion”	

focusing	“error”	due	to	a	
different	momentum		
—>	“chromatic	aberration"

B⇢ =
p

q

�x0 = ✓0
�p

p

�x ⇡ 1

2
`✓0

�p

p

f = f0(1 +
�p

p
)

D(s,�p/p) ⇡ D(s) ⌘ �x(s)

�p/p

dipole	magnet:

at	exit,	to	lowest	order,	
[i.e.,	in	“opposite”		
direction	of	bend]

likewise,	for	quadrupole:

Trajectory	differences	due	to	momentum	differences	referred	to	as	“dispersion”

and, “dispersion	function”

�✓

✓0
= ��p

p
p0 +�p

p0

x
p0 +�p

p0

✓ =
qB · `
p



Generating Dispersion
§ System of quadrupoles with alternating-sign gradients (F, D, F, …) 

separated by distance L, and with bending magnets present…
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Ex:  D = 3 m,  dp/p = 0.3%,  then 𝛥x = 9 mm

L

FF -F

sp0

✓✓

p0	+	dp0

L

D(s)

D
D=0

D=L𝜃/2

D =
Lθ
2 (1 +

L
2f )



Beam Size Including Dispersion

• Total excursion due to “off momentum” plus betatron oscillation: 

• Assuming no correlation between x𝛽 and particle’s momentum:
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x = x� +D � � ⌘ �p/p

hx2i = hx2
�i+D2h�2i

hx2i = ✏�/⇡ +D2h�2i

x2 = x2
� + 2x�D� +D2�2



Periodic Dispersion Function

uniform	bend	field: add	gradients…

p0 p0	+	dp0
p0

p0	+	dp0

the	orbit	of	an	off-momentum	particle	which	closes	on	itself	is	described	
by	the	periodic	dispersion	function

D(s, p) =
�x(s, p)

�p/p

the	trajectory	“closed”	orbit	
for	momentum	p+𝛥p
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Ex:  FODO Cells with Bending Magnets

L

FF F-F-F

sp0
✓✓ ✓✓✓

p0	+	dp0

Dmax,min =
L✓

2 sin2(µ/2)

✓
1± 1

2
sin(µ/2)

◆
sin

µ

2
=

L

2F

Values	of	dispersion	function	are	typically		~	few	meters
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Note:		in	a	weak-focusing	synchrotron,	would	have	D	=	R0	!



Adiabatic Damping from Acceleration

s

∆p, from RF system

§ Transverse oscillations imply transverse momentum.  As 
accelerate, momentum is “delivered” in the longitudinal direction 
(along the s-direction).  Thus, on average, the angular divergence 
of a particle will decrease, as will its oscillation amplitude, during 
acceleration. 

§ The coordinates x-x’ are not canonical conjugates, but x-px are;  
thus, from classical mechanics, the area of a trajectory in x-px 
phase space is invariant for adiabatic changes to the system.
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Adiabatic Damping from Acceleration
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~p

~p0

Note:		particles	at	peak	of	their	betatron	oscillation	will	have	
little/no	change	in	x’,	while	particles	with	large	transverse	
angles	will	have	their	x’	affected	most

details…

=) �x0 = �x0
0
�p

p0

x0 =
px
p

=
pxp

p20 +�p2 � 2�p p0 cos�
=

px
p0

✓
1� �p

p0
+ . . .

◆
⇡ x0

0

✓
1� �p

p0

◆

Note:		assuming	that	ALL	particles	
receive	the	same	𝛥p	from	the	cavity

x0
0

~px

Δ ⃗p

relative momentum gain 
from RF system



Damping of Oscillations
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Now	assuming	that	the	incremental	change	in	momentum	is	small	compared	to	the	overall	
momentum,	and	that	the	changes	occur	gradually	on	time	scales	large	compared	to	those	of	
the	betatron	motion…

�✏

✏
= ��p

p
✏ / 1

p
xrms /

1
p
p

So,

x = x0
x′ = x′ 0(1 − δ) δ ≡ Δp/p0

Then	if	the	original	emittance	is	 	then,	after	passing	through	the	

RF	system,

ϵ0 = π ⟨x02⟩⟨x′ 0
2⟩ − ⟨x0x′ 0⟩2

ϵ = π ⟨x02⟩⟨x′ 0
2(1 − δ)2⟩ − ⟨x0x′ 0⟩2(1 − δ)2 = ϵ0 (1 − 2δ + δ2) ≈ ϵ0(1 − δ)

Thus,
ϵ − ϵ0 = Δϵ = − ϵ0δ

or,



Normalized Beam Emittance
§ Hence, as particles are accelerated, the area in x-x’ phase space is not 

preserved; however, the area in x-px  is  preserved.  Thus, we define a 
“normalized” beam emittance, as 

§ In principle, the normalized beam emittance should be preserved during 
acceleration, and hence along the chain of accelerators from source to 
target.  Thus it is a measure of beam quality, and its preservation is a 
measure of accelerator performance. 

§ In practice, it is not preserved -- non-adiabatic acceleration, especially at 
the low energy regime; non-linear field perturbations; residual gas 
scattering; charge stripping; field errors and setting errors; etc. -- all 
contribute at some level to increase the beam emittance.  Best attempts 
are made to keep the emittance as small as possible.
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εN ≡ ε · (βγ)
Lorentz

p = (γm)(βc) = (βγ) mc
Here:  relativistic factors!


