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EM field of point charge moving at constant velocity *

Start with Maxwell’s equations:
— —> — =
V.D V.H =0,
— — — —
VXxE+oB =0, andeH oD = J.
d

Write in terms of electromagnetic potentials, X an

— S — — —> — — —>
B = VXA:>VX(E—|-87§A):O:>E:—VCD—&§A
l—> —= — — - = — —

—V X B—-eOlE = J =V XB—ueot&E& =pnJ

7

— — — — >— —
=V X (VXA +pue(Vod+074)=pJ
— — — > —
Note V x (V x A) =V (V.A)—-V2A

“for pretty movies of moving charge check Shintake-san’'s homepage SCSS-FEL.:
http://www-xfel.spring8.or.jp



= — = — >— —
—V A+ V(V. A+ uedr®) + pedy A = p J
?Z + pedyd = 0 in Lorenz gauge.

V2A — ueaEZ = —,u7 [JDJ, Eq. (6.16)] (1)

— — > — —> P
VD=p=-Vb-9V.A="
€

V2d — ped2d = —g [JDJ, Eq. (6.15)] (2)

For a source moving at constant velocity, v: p = p(Z — ¥'t) and

7 = T p(T — Tt). We then have to solve a set of inhomogeneous
d’Alembert equations: []f = g(z — v't).



Consider the case v = vz = f(x — vt) = (z,y,z — vt) = f(x,vy, ()
with ( = z —vt. Then

o¢

0-f — S0 =0 (3)
¢
Of — S0cf = —vof (4)

:>Df—>(8§+8§—|—8§—uev28c2)f=(3§+3y2+’7_28§) f (5)

. /
with ~ = \/ﬁ Let 2/ =~ = O = %—ZCE)Z/ =0, :
(02 + 02+ 02) f(z,y,7 12) = g(z,y,712). (6)

Point charge = p(Z — v't) — §(x)8(y)6(y 12') = v8(2)6(y)s(2) =
v5(z).



Results:
_)
A — Az (szAy:O);

2 4 _ o 24 4.7
VA= —vyuqui(x'), Vo, = —y=6(x").
€

Solve by inspection:

1 —
V:%/ —_ | — —47T(S($,) = {
||

where R = \/xQ + y2 4+ ~2(z — vt)2.

|| |I
‘Q#‘t

N

qz
e R’

— — —>
Now we can calculate E = -V ® — 0, A:
H
E = (V + ,uev@tz)—
47‘(’6
4

AreR3

[:c:c + yi + 2 (2 — vt) (1 — ,uer)E]

(7)

(8)

(9)



—

47T€ 73 [Z + yy + (2 — vt)Z] (10)

Convert to spherical coordinates:
12 + y2 = r2sin?0, z — vt = r cos#.

= R° = 2(sin2 0+ 72 c052 0)
= <1 + ’y sin? 9) = ~?r?(1 — pev?sin?6),
7
79 r
= F =
Ame~3r3(1 — pev2sin?9)3/2
q 1 — pev?

— : 11
Amer? (1 — pev2sin?9)3/2 (11)



Note: In vacuum, take pe — pugeg = ¢~ 2, and then

—

— q T

E = . (dDJ, Eqg. (11.154 12

471‘67“2’)/2(1 _ 52 sin2 9)3/2 [ q ( )] ( )

Note that E(x/2)/E(0) = 43 = field lines are “squashed” orthogo-
nal to the direction of motion.
Also we can find B =V x A:

ZZ,LLGCID? = E):,ueex(CDW)z,ue[?CDX?—I—CD%)X v
—

E=-Tx(VP+8A)=Vb x 7.

<)
X
&

B = v x E, or B=2"9%i—y2). (13)
41 R3



Further reductions [toward JDJ Eq. (11.152)]:

ﬁ _ q r (14)
o 47‘(‘607“2’}/2(1 — 325sin? 9)3/2
sinfg =20 = b
T V240242
2 6in? 8202 24022 - 262 (1 — g + 023
1 —p3csin“0=1— — —
b2 + (vt)? b2 + 22 b2 + 0242
b2 2,242
1—B%sin®g = +;2v :>’yr\/1—625in29:\/52_|_72,02t2
yYer
Finally
B 4 okl = q b
= L = ! (15)

T 4meg (b2 + 120212)3/2 T 4meg (b2 + ~202£2)3/2°
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Consider a charge qp comoving with ¢ at velocity w. The force
imparted to qg by q is

4o(E + 7 x B)
G0olE + pe® x (T x E)]

F

- F = q0 [(1 = ,uevz)E> + /LE”UQE,Z,:Z\}

1 — —1_ 1 — N ~
< E —|— Ezz> = qo [—Q(E — E.Z)+ E.Z
'7 7 Y

— 1 —
= ' = qo L EJ_+EH] (16)

The self-magnetic field of g cancels its self-electric field to within a
factor 1/~2.
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The squashing of the E-field of a moving charge, as it corresponds
to the equation of motion, is suggestive of the Lorentz contraction,
and thus indicative that electrodynamics is invariant under Lorentz
transformations.

Invariance of proper time: ) ) )
spherical waves propagate such that (‘Cil—f) —+ (%) —+ (%) = 2.
If ¢ is the same in all inertial reference frames (postulate), then

dx’ 2 dy’ 2 dz’ 2
() + () + (@) =<

11



So, we write:

c?dt® — dz? — dy® — dz? = 0 for photons. (17)

This holds true in any inertial coordinate system. More generally
we can define the proper time:

1
dr? = dt* — S (dz” + dy” + dz°). (18)
C

In SR, the proper time is an invariant — all inertial observers measure
the same dr. Note that:

1
dr® = dt*(1 — §%) = —dt*; (19)
8
G = %?; © = velocity measured in lab frame (©), dt = period
between ‘ticks” of clock in lab frame.
%

When v = 0, dr = dt = dr = period between ‘“ticks” of clock
comoving with @'. Every inertial observer measure the same value
for this time interval: it is a scalar — a fixed physical quantity!

12



O Z

Z particlein O
its light

y

v of O' measured by O
—>

spherical waves propagate

left: notation for previous slides. right: light cone, [AB] is time-like
[AC] is space-like.
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If 5t represents the period between ticks of @'s clock, then O sees
it ticks with period:

dt = ~ot (20)

This is “time dilatation”: O thinks O's clock runs slow.

Minkowski metric and Lorentz transformations:

Let 20 =ct, zl =2, 22 =y, 23=2 [so T’ = X (i=1,2,3)]. Then we
can write:

ds® = gaﬁdazadaﬁﬁ (21)
with a,6=10,1,2,3 and g, is the Minkowski metric:
1 0 0 O
2= 0 0 -1 o (22)

O 0 O -1

standard convention: Use Greek indices to represent sums from 0-3

and Latin indices for sum from 1-3.
14



The Lorentz transformation matrix from stationary observer O to

moving observer O’ is the “boost matrix” [JDJ, Eq.(11.98)] (/\O‘/\ggaﬁ —

9~s-
[ —f —7By —Bz
e 14 (%) (-1 iy - 1) Gefe(y— 1)
A R R IR (—) (- 1) *””g?zw— 1)
| 8 ﬁwﬁzw 1) Sy -1 1+ (%) (-1

provided the coordinates of @ and O’ are aligned. The the Lorentz
transformation from O and O’ is:

a— ga:ﬁ (24)

Note /\g = %’;5 If the coordinate axes are not aligned then the

transformation is the product of /\g and a rotation matrix.

15
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The principle of SR is : All laws of physics must be invariant un-
der Lorentz transformations. ‘“Invariant” « Laws retain the same
mathematical form and numerical constant (scalar) retain the same
value.

Particle dynamics in SR

Define the “4-velocity”: u® = % = c%
dt : ldazz dt dx?
0 7
= c— = and —_— = 25
s W= T T = P (25)
Then
Uqu® = gaﬁuﬁua =42 —423% = ¢? (26)

IS an invariant.
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Moreover since dr is an invariant and ¢ conforms to Lorentz trans-
formation, then

u'Y = /\guﬁ (27)

= u® satisfies the Principle of SR.
Define the 4-momentum of a particle:

Py = mu® (28)

= PY = ymc = E/¢, P' = p*; E = total energy, p' = ordinary
3-momentum, m = particle’'s rest mass. T hen

PoP® = m2uqu® = m2c? = E/c2 (29)

is an invariant. The fundamental dynamical law for particle interac-
tions in SR is that 4-momentum is conserved in any Lorentz frame.
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Note that

P'* = N§PP (30)
also one has:
PoP® = g,3PPP* = E?/c? — p? (31)
E?/c? — p? = (mc)? (32)
= F = \/(pc)2 - (ch)z.

The kinetic energy of a particle is T = E — mc?:

T = (pe)2 + (me?)2 — me? (33)

18



Example: Consider the reaction (one neutron at rest)

n+n—n+n+n+n

What is the minimum required energy for the incoming n that will
enable the reaction to proceed?
At threshold the four neutron are at rest in the lab frame, so that

the 4-momentum conservation requires:

P{ + P§ = P (34)
= (P + P$)(P1o + Pao) = P}Pp, = 16(mnc)?

P{Piy 4+ 2P{}Py,, + P$'Psy = 2(mnc)? + 2P{ Py,

= P{'Psy = 7(mnc)?. (35)

P{Pog = gagPP Py = gooPPPY = mycL

E = 7mn02. (36)
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Photon emission and absorption:
Ua

Let ug, = 4-velocity of emitter, absorber, respectively. Eeq = pho-
ton energy measured by emitter, absorber, respectively.
P% = 4-momentum of photon.

Then look at

Pou® 9o BPﬁ u®

pPY9O0 — piyt = PO = E.

1st term u® = c, 2nd term u' = 0 in either emitter's or absorber’s
frame.

20



So F = pau® is the photon energy measured by an observer with
4-velocity u®. The expression is the same in any frame, including
accelerating frame! So:

Ee:Paug aﬂd, Ea:Paug

Example: “Absorber’” is rotating with angular velocity €2 on a circle
of radius R,4. Emitter is stationary — Let's find E,/Fe

In emitter's frame: c2dr = gaﬁdwo‘dmﬁ, the emitter is stationary so
ug = (¢,0,0,0).

In absorber frame:

2(dr)? = gaﬁdazo‘dxﬁ
= 2dt? — v2dt? = Pdt? — R4dp?
R2
dr® = dt* — —Zdg” (37)
C
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From previous slide (two slides ago) we have:

But cosf = sino,

i
|P| = PO Thus

Eq  Pou?  Poul — Pul
Ee Paug POC
0 =14
Poug, — | p'||ug| coso

- Poc (38)

and for photons P,P® = (P92 — |[P]2 = 0 =

Ee C (39)

— At ud = - 40
J1—(RAQ/0)2 " /1= (RaQ/c)? (40

22



Ea _ e _ Ae _ 1 (RaQ/c)sing

= 41
Be  Xa Aa /1 — (RaQ/c)? )
Doppler shift (¢ = 90°):
de | 1-(RaQ/c) _ J 1 — (RaAQ2/c) (42)
Aa /1 - (RyQ/c)2  \ 1+ (RaS/c)
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Covariance of Electrodynamics
We wish to proceed in keeping with Jackson’s notation, which in-
volves switching from SI units to Gaussian units.

ST G
— — — —
V.D =p V.D =4rp
— — — — — — 14 = 417
— — — — — —
VXxE+8&B=0 VxE+tB =0
VB =0 VB =0
F=¢(E+7 x B)=0 F=g(E+XxB)
Cogversuons
i?m SI /Z%DG _ DSI \/WpG(JG,qG) _ pSI(JSI’qSI)
— Fzde.
0BG = BSI, fﬂuo — HST: gl = ST pouC = 45T ¢ =

(poea) /2.
24



As one check, look at the Lorentz force:

1
FC = “(EC+ -7 x BY)
C
TSI q°! [a ﬁsz+\/—_> 47T§SI]
= = TEQ HOEQ UV X {/—
V4TeQ e

— qSI(E>SI + 7 X E)SI)
The conversion from “Maxwell G” to “Maxwell SI'" works the same

way. So we do have a prescription to go from Gaussian results to
SI results and vice versa.

25



Current density as a 4-vector:
Consider a system of particles with positions =’ ,(t) and charges gn.
The current and charge densities are:

T(@ ) = Y aud> (T — ()2 (t),
n
p(Z,t) = > qnd> (T — ZTn(d))
n
Note that for any smooth function f(7), §3 acts as:

| 1@8R@ -7 = 1) (44)

if we define JO = ¢p and JY(ZT) = 3, qnd3(a® — x2(t))dzt (), then
using 6% function we can write:
o dxy(t)

7@) = [ X and*(a” — a5 (8))da® =

J¢ is a fugction of x® — it is a Lorentz invariant; J% is a 4-vector.
J% = (cp, J). Also note J% = pu®

(45)
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Equation of charge continuity:

= =, L o 3/— — dm%(t)
V.J(2,t) = zn:qnamié (2 — 2 n(t)) ”
9 day (t)

= _ anaxi 53(T — Tn(t))
— Z qn8t53(? — Zn(t))
= —9p(T,t) = —8p[cp(T,t)]. (46)

So the equation of charge continuity writes as 0%J, = 0

dt

27



4-gradient
In the previous slide we use the operator 0,. It is defined as

0

This operator transforms as:
o 0 0x¥ o0 0
A S — —1\v — —1\v ™V
a“  OxH oxV Ox'H (A )“&cV (A )” . (48)
—
Note that 0, = (g, V).
We can "upper’ the indice and define
oM = g"d, = (8p,~ V) (49)

Finally we can define the d'Alembertian: [ ] = 0%0,.

28



Potential as a 4-vector:

A% = (o, Z) (50)
Lorentz Gauge then write 9,A% = 0. We also have
AY = 4771104, (51)
or in SI units
LAY = poJ®,  [S]] (52)

this is the equation we wrote when deriving the field induced by a
charge moving at constant velocity.
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Returning to Maxwell Equation
Define the matrix Fo8 = 9248 — 9P AY = ¢g09;AP — gPogsA™

0 —E, —BEy —E;

E. 0O —-B, B
e = E, B, O B, (53)
E. —B;, By O
Look at:
O FP = 9y FO8 + 91 F1P 4 9, F28 4 93 F35:
9o F 0 = 99F90 4 5, F10 4 9,20 4 9,30
— QE'=V.E = 4np= 4T 50, (54)

C
Similarly,

= L0, B) + 0:(0) + 9y (~B2) ~ 9:(By) = —0u(Ex) + [V x Bl

4
[V x Bls — —8tEg; = _le (55)
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... TThe same for component 2, and 3. So we cast these equations
under:

4
O P = 2" g8 (56)

C
T his corresponds to the inhomogeneous Maxwell’'s equations. In SI

. . _ —
units F¢7 is obtained by replacing E by E /c.

How do we get the homogenous Maxwell’'s equations?
Let's introduce the Levi-Civita (rank 4) tensor as:

+1 ifa,3,v,0 are even permutation of 0,1,2,3
P =1 1 ifa, 3,v,0 are odd permutation of 0,1,2,3 , (57)
0 otherwise

and consider the quantity e*#°93Fy.; with Fs, = gyagsgF".
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0 E. E, K,

| -B. o -B. B,
=\ _g, B. 0o -B,
~E. By Bs O

(58)

F.s is obtained from F® by doing the change E — —E. Now

consider the component " 0" of the 4-vector e*91993F. s:

Ok s = 01239 Fyy + 01320, By +

02135 p o 4 02319 ;4 (03125 p o 4 03215 b

O1F23 — 01F3p — 02 F13 + 02F31 + 03F12 — 03F>1

Oz(—Bgz) — 02(Bz) — 0y(By) + 0y(—By) + 0:(—B:) — 0.(B>)
_2V.B(=0) (59)
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now let's compute the "1" component

100950 s = 10239 Fyg 4 (103290 gy + 130205 Fyy + 132095 Fopg
+e12939, Foz + 14300, F30

—00F>23 + doF30 — O3Fp2 + 93F>0 + O2Fp3 — 92 F30
= 2(DgF32 + 02Fp3 + 03F20)

— 2 (%ath _8.E, + ayEz>

= 2|(Vx B+ %ath] (= 0) (60)

It is common to define the dual tensor of F, s as Fab = %eO‘BV(SF,Y(;.
With such a definition the homogeneous Maxwell equations can be
casted in the expression:

— — — —
Note: Fog= Fog(E — B, B — —E).
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— — —
To include H and D, one defines the tensor GoP = FO‘B(E —
—_ =

D, B — ﬁ), and then Maxwell’'s equations write:
4
8,G = 2" 78 and 8,F*° = 0. (62)
C

Due to covariance of Fo‘ﬁ, it is a tensor, the calculation of em field
from one Lorentz frame to another is made easy. Just consider:

el (63)

or in matrix notation

F' = AFA\ = AFA (64)
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Example: Consider a boost along the z-axis, then

v 0 0 =By
0 10 O

AN=1 9 01 o (65)

-8 0 0 ~

Plug the F matrix associated to F9 in Eqg. 64, the matrix multipli-
cation vyields:

0 v(Ez — 5By) 'Y(Ey + BB:) E,
_’Y(Ey + /BBx) —B., 0 ’V(Baz + ﬁEy)
—FE; 'Y(By — BE;) —v(B:+ /BEy) 0

by inspection we obtain the same equation as [JDJ, Eq. (11.148)].
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Fundamental Invariant of the electromagnetic field tensor: *
Note that the quantities

FMYE,, = 2(E?2 — B2), and F'F,, = 4E.B, (67)

are invariants. Usually one redefines these two invariants as:

1 1 1
7y = —ZF“’/FW - 5(152 — E?), and I, = —ZFW;EW — _E.B.(68)

Note that these invariants may be rewritten as:
1 5 1

where F' = F = FF%qay and F = F|| = FH%aw.
Finally note the identities:

FF=FF =TI, and F? — F2 = 2741 (70)

*adapted from G. Munoz, Am. J. Phys. 65 (5), May 1997
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Eigenvalues of F' (for later!):
Look for eigenvalue A\ associated to eigenvector WV:

T
FU =)\ = FFU = \FV = FU = —TQw.

(F? — FAW = —2]71W = [\? — (To/)\)?] W,

So characteristic polynomial is: A\* + 273)\? — 75 = 0.
Solutions are:

= WB+ BT
A=A =A_, A3 = —A\g = i\

(71)

(72)

(73)
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Equation of motion:
The equation describing the dynamics of a relativistics particle of

mass m and charge ¢ moving under the influence of em field Fyg is:

du® qd o 3

— == . 74

dr mc g (74)
with «® = (v¢,v7). Note that this is equivalent to introducing the
""quadri-force”

fH = FHqy,,. (75)
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