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Radiation from accelerating charges
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Radiation emitted at time t′ reaches the observer (P ) at time t > t′.
It is retarded due to the finite speed of light. Let’s first derive the

4-potential due to the moving charge.
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Four-potential produced by a moving charge

Start with the inhomogenous Maxwell’s equation:

∂α = Fαβ =
4π

c
jβ (1)

jβ is the 4-current jβ ≡ (cρ,
−→
J ). Use the definition of Fαβ = ∂αAβ−

∂βAα and impose the Lorenz Gauge condition ∂αAα = 0 we have:

∂α∂αAβ − ∂α∂βAα = ∂α∂αAβ =
4πjβ

c
(2)

which can be re-written:

¤Aβ =
4π

c
jβ(x) (3)

Solution of the latter equation → find Green’s function D(x, x′) for

the equation

¤xD(x, x′) = δ(4)(x− x′) (4)
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where δ(4)(x−x′) ≡ δ(x0−x′0)δ(3)(−→x −−→x′). If free-space (no boundary

condition) then D(x, x′) = D(x− x′). Let zα = xα− x′α, D(x− x′) →
D(z) and the d’Alembert equation rewrites:

¤zD(z) = δ(4)(z).

Which can be solved using the Fourier transform method: write

D(z) =
1

(2π)4

∫
d4kD̃(k)e−ikz, and,

δ4(z) =
1

(2π)4

∫
d4ke−ikz (5)

Expliciting in the wave equation on finds:

D̃(k) = − 1

kβkβ

where kβ ≡ (k0,−→κ ) is the four-wavevector, and let z = (z0,
−→
R).

kβkβ = k2
0 − κ2.
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so the Green function is given by:

D(z) =
1

(2π)4

∫
d4k(−)

e−ikz

k2
0 − κ2

= − 1

(2π)4

∫
d3κei−→κ−→R

∫
dk0

e−ik0z0

k2
0 − κ2

(6)

Consider the integral over k0. It can be replaced by an integral

over a closed contour in the complex space associated to k0. The

integrand has two poles at k0 ± κ on the real axis. If we consider

z0 > 0 the contour need to be closed toward Im(k0) = −∞ and the

integral is:

∫ +∞
∞

dk0
e−ik0z0

k2
0 − κ2

=
∮

C
dk0

e−ik0z0

k2
0 − κ2

= −2iπ
∑

Res

(
e−ik0z0

k2
0 − κ2

)

= −2π

κ
sin(kz0) (7)
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So D, the retarded Green function, becomes:

D(z) =
1

(2π)3

∫
d3k

sin(κz0)

κ
ei−→κ .

−→
R (z0 > 0) (8)

=
Θ(z0)

(2π)3

∫
d3k

sin(κz0)

κ
ei−→κ .

−→
R

where Θ(x) is the Heaviside function. Introducing d3κ = k2dκ sin(θ)dθdφ

then we can work out the integral over angle:

∫
sin θdθdφei−→κ−→R =

∫ 2π

0
dφ

∫ π

0
sin θdθeiκz cos θ = 2π

[
eiκz cos θ

−iκz

]π

0

= 4π
sin(κR)

κR
. (9)
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So,

D(z) =
Θ(z0)

(2π)3

∫
dκ

4π

R
sin(κR) sin(κz0) (10)

=
Θ(z0)

2π2R

∫ ∞
0

dκ sin(κR) sin(κz0)

= − 1

4πR

1

2π

∫ +∞
0

[
eik(R+z0) − eik(R−z0) − e−ik(R−z0) + eik(R+z0)

]

=
Θ(z0)

4πR

1

2π

∫ +∞
−∞

[
−eik(R+z0) − eik(R−z0)

]
(11)

=
Θ(z0)

4πR
[δ(z0 −R) + δ(z0 + R)] =

Θ(z0)

4πR
δ(z0 −R) (12)

since the condition z0 > 0 implies δ(z0 + R) = 0.
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D(x− x′) =
Θ(z0)

4πR
δ(x− x′ −R) (13)

Now use the identity

δ[(x− x′)2] = δ[(x− x0)
2 − |x− x′|2]

= δ[(x0 − x′0 −R)(x0 − x′0 + R)]

=
1

2R

[
δ(x0 − x′0 −R) + δ(x0 − x′0 + R)

]
(14)

where we make the use of δ[(x−x1)(x−x2)] = δ(x−x1)+δ(x−x2)
|x1−x2| . The

function D becomes:

D(x− x′) =
1

2π
Θ(x0 − x′0)δ[(x− x′)2]. (15)

Then the retarded 4-potential is given by the convolution integral:

Aα(x) = const. +
4π

c

∫
d4x′D(x− x′)Jα(x′) (16)
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Liénard-Wiechert Potentials

The 4-potential caused by a charge in motion is:

Aα(x) =
4π

c

∫
d4x′D(x− x′)jα(x′), (17)

The 4-current is (see Part II)

jα(x′) = ec
∫

dτvα(τ)δ(4)[x′ − r(τ)] (18)

τ is the charge’s proper time. So expliciting D and jα the 4-potential

takes the form

Aα(x) = 2e
∫

dτd4x′Θ(x0 − x′0)δ[(x− x′)2]vα(τ)δ(4)[x− r(τ)]

= 2e
∫

dτΘ(x0 − x′0)vα(τ)δ[(x− r(τ))2] (19)
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Aα(x) = 2e
∫

dτδ(τ − τ0)Θ(x0 − x′0)vα(τ)
∣∣∣ −1

2vβ(τ)[x− r(τ)]β

∣∣∣

using the relation

δ[f(x)] =
∑

i

δ(x− xi)∣∣∣∂f
∂x

∣∣∣
x=xi

.

The four-vector potential finally writes:

Aα(x) =
evα(τ)

vβ[x− r(τ)]β

∣∣∣∣∣
τ=τ0

which can be written in the more familiar form:

Φ(−→x , t) =

[
e

(1−−→β .n̂)R

]

ret

, and,
−→
A(−→x , t) =


 e

−→
β

(1−−→β .n̂)R




ret

(20)

where ret means the quantity in bracket have to be evaluated at the

retarded time t′ that satisfies the causality condition.

10



Field associated to a moving charge

r(t�)

r(t)

x

P(x,t)

oR

particle trajectory

Causality imposes:

c(t-t�)=|R|

q
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Field associated to a moving charge

Consider a charge q in motion the Lienard-Witchert potential are

given by:
(

Φ(−→x , t)−→
A(−→x , t)

)
=

[
q

(1−−→β .n̂)R

(
1−→
β

)]

ret

. (21)

The fields are given by
−→
E = −−→∇Φ− 1

c
∂
−→
A

∂t , but, we need to evaluate

the quantities at the retarded time t′. First let’s express the
−→∇ and

∂/∂t operators in term of retarded quantities.

R(t′) = c(t− t′) ⇒ ∂R

∂t
= c

(
1− ∂t′

∂t

)
. (22)

On another hand:

∂R

∂t
=

∂R

∂t′
∂t′

∂t
. (23)
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1

2

∂R2

∂t′
= R

∂R

∂t′
=
−→
R.

∂
−→
R

∂t′
, so, R

∂R

∂t′
= −−→v .

−→
R. (24)

Thus

∂R

∂t
= −c

−→
β .n̂

∂t′

∂t
(25)

From equation 22 and 25 one gets:

∂t′

∂t
=

1

1−−→β .n̂
≡ 1

κ
⇒ ∂

∂t
=

1

κ

∂

∂t′
(26)

For the operator
−→∇ take:
−→∇R =

−→∇[c(t− t′)] = −c
−→∇t′ (27)

if
−→∇t′ is the gradient operator evaluated at constant t′ then

−→∇R =
−→∇t′R +

∂R

∂t′
−→∇t′

= n̂− c
−→
β .n̂

−→∇t′ (28)
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From equation 27 and 28 one gets:

−→∇t′ = −n̂

c(1−−→β .n̂)
(29)

So we finally get:

−→∇ =
−→∇t′ −

n̂

cκ

∂

∂t′
(30)

So the electric field is :

−→
E = −−→∇Φ− 1

c

∂
−→
A

∂t
= −−→∇t′Φ +

n̂

cκ

∂Φ

∂t′
− 1

κc

∂
−→
A

∂t′
, (31)

with Φ = e
κR.

−→∇t′Φ =
−e

(κR)2
[R
−→∇t′κ + κ

−→∇t′R] (32)

−→∇t′R = n̂, and
−→∇t′κ =

−→∇t′(1−
−→
β .n̂) = −−→∇t′(

−→
β .n̂) = −(

−→
β .
−→∇t′)n̂. (33)
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⇒ −→∇t′κ = −(
−→
β .
−→∇t′)

−→
R

R

= −R(
−→
β .
−→∇t′)

−→
R −−→R(

−→
β .
−→∇t′

R2

= −
−→
β − n̂(

−→
β .n̂)

R
. (34)

So we finally get:

−→∇t′Φ =
−e

(κR)2
[−−→β + n̂(

−→
β .n̂) + (1−−→β .n̂)n̂]

= − e

(κR)2
[n̂−−→β ] (35)

where we have used κ = 1 − −→β .n̂. Now let’s calculate the quantity
n̂
cκ

∂
∂t′Φ:

∂Φ

∂t′
= −e

∂

∂t′
(

1

κR

)
=

−e

(κR)2
[κṘ + Rκ̇] (36)
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Ṙ = −c
−→
β .n̂, and κ̇ = −

−→̇
β .n̂− ˆ̇n.

−→
β .

ˆ̇n =
∂

∂t′

−→
R

R
=

R
−→̇
R − Ṙ

−→
R

R2

=
−−→v + (−→v .n̂)n̂

R
= −c

−→
β − (

−→
β .n̂)n̂

R
. (37)

Then

κṘ + κ̇R = −c
−→
β .n̂κ + R{−

−→̇
β .n̂ + c

−→
β [

−→
β − (

−→
β .n̂)n̂

R
]}

= −
−→̇
β .
−→
R + cβ2 − c

−→
β .n̂ (38)

So

Φ̇ = − e

(κR)2
[−
−→̇
β .
−→
R + cβ2 − c

−→
β .n̂]. (39)

So from Equations 35 and 39 we have

−→∇t′Φ = − e

(κR)2
{n̂−−→β +

n̂

cκ
[+
−→̇
β .
−→
R − cβ2 + c

−→
β .n̂]} (40)
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Now we need to compute ∂
−→
A

∂t :

∂
−→
A

∂t
=
−→̇
A

∂t′

∂t
=

1

κ

−→̇
A (41)

So

−→̇
A =

−→̇
β Φ +

−→
β Φ̇ = +

e

Rκ

−→̇
β

e
−→
β

(Rκ)2
[
−→̇
β
−→
R + c

−→
β n̂− β2c] (42)

Finally the E-field is:

−→
E (t′) = −−→∇Φ(t′)− 1

c

∂
−→
A

∂t′

=
e

(κR)2κ

[
(n̂−−→β )κ +

n̂

c
(
−→̇
β .
−→
R + c

−→
β .n̂− cβ2)

−
−→
β

c
(
−→̇
β .
−→
R + c

−→
β .n̂− cβ2)− e

cRκ2

−→̇
β


 (43)
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After simplification (and using
−→
β .n̂ = 1− κ) we end-up with:

−→
E (t′) =

e

κ3R2


n̂

c

−→̇
β .
−→
R + (1− β2)n̂−

−→
β

c

−→̇
β .
−→
R +

−→
β −−→β β2




=
e

κ3R2

[
(1− β2)(n̂−−→β )

]
+

e

cRκ3

[−→̇
β .n̂(n̂−−→β )−

−→̇
β κ

]

So finally the
−→
E and

−→
B fields are given by:

−→
E (t′) =

[
e

κ3R2γ2
(n̂−−→β )

]

ret

+
[

e

κ3R
{n̂× [(n̂−−→β )×

−→̇
β ]}

]

ret
−→
B (t′) = [n×−→E ]ret

where the identity n̂ × [(n̂ − −→β ) ×
−→̇
β ] =

−→̇
β .n̂(n̂ − −→β ) −

−→̇
β (1 − −→β .n̂)

was used.
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field of a charge moving at constant velocity

−→
E (−→x , t) = q


 n̂−−→β
γ2κ3R2




ret

+
q

c



n̂× [(n̂−−→β )×

−→̇
β ]

κ3R




ret

, and

−→
B (−→x , t) = [n̂×−→E ]ret.

if β̇ = 0, constant velocity then:

−→
E (−→x , t) = q


 n̂−−→β
γ2κ3R2




ret

.

from part II, we know that:

−→
E⊥(−→x , t) =

γqb
(
b2 + γ2v2t2

)3/2
.
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O

t=0

t�

P� P

Q r

R

t

-vt

b

z

x

PP ′ = v(t− t′) = βR, P ′Q = PP ′ cos(θ) = βR cos(θ),
PQ = βR sin(θ) = βR b

R = βb; QO = R− PP ′ = (1−−→β .n̂)R

r2 = QO2 + PQ2 = (1−−→β n̂)2R2 = r2− β2b2 = (vt)2 + b2− β2b2 So,
r2 = γ−2[b2 + γ2v2t2] = [κ2R2]ret

and x̂.(n̂−−→β )ret = sin(θ) = b
R so that

Ex = q


x̂.(n̂−−→β )

γ2κ3R2




ret

= q
bγ

[b2 + γ2v2t2]3/2
. (44)
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Power radiated

−→
S (−→x , t).n̂: power crossing a unit area, at time t, of a surface that

incircles the radiating particle. n̂ is the normal to unit area.

The total energy radiated through the unit area is:

W =
∫ +∞
−∞

dt′ dt

dt′
−→
S (−→x , t).n̂ =

∫ +∞
−∞

dt′[κ−→S .n̂]ret

So,

dW

dt
= [κ

−→
S .n̂]ret

This is dP (t′)/dA or 1/R2dP (t′)/dΩ so the instantaneous power ra-

diated at time t′ per unit solid angle dΩ is given by:

dP (t′)
dΩ

= [κ
−→
S .n̂R2]ret
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From now on, consider only radiation field i.e. R large – this is the
“far field” approximation, then

−→
S .n̂ =

c

4π
[
−→
E × (n̂×−→E )].n̂

=
c

4π
[E2 − (n̂.

−→
E )2].

Consider n̂.
−→
E :

n̂.
−→
E ∝ n̂.{n̂× [(n̂−−→β )×

−→̇
β ]}

∝ n̂.{(n̂.
−→̇
β )(n̂−−→β )− [n̂.(n̂−−→β )]

−→̇
β }

∝ n̂.{(n̂.
−→̇
β )(n̂−−→β )− (1−−→β .n̂)

−→̇
β }

= 0. (45)

Hence,

−→
S .n̂ =

c

4π
E2 =

q2

4πc



|n̂× [(n̂−−→β )×

−→̇
β ]|2

κ6R2




ret
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dP (t′)
dΩ

= [κR2−→S .n̂]ret =
q2

4πc



|n̂× [(n̂−−→β )×

−→̇
β ]|2

κ5




ret

.

This is the power radiated per unit solid angle in terms of the charge

proper time t′.
If we wants to know dP (t)/dt the power radiated per unit solid angle

at the time t it arrives at the enveloping surface, then one must trace

back to the associated t′ time (retardation).

Note also that dt = dt′κret → if a particle is suddenly (dirac-like)

accelerated for a time ∆t′ = τ , a pulse radiation will appear at the

observer at time t = r/c and the pulse duration will be ∆t = κretτ .

Energy is conserved: total energy radiated=total energy lost by the

particle

BUT τ dP (t′)
dΩ = τκret

dP (t)
dΩ ; Energy radiated by unit of time = κret

times the energy lost to far-field per unit time.
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Instantaneous rate of radiation

P (t′) =
q2

4πc

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)

|n̂× [(n̂−−→β )×
−→̇
β ]|2

κ5

|n̂× [(n̂−−→β )×
−→̇
β ]|2 = |(n̂.

−→̇
β )(n̂−−→β )− (1−−→β .n̂)

−→̇
β |2

= |(n̂.
−→̇
β )(n̂−−→β )− κ

−→̇
β |2

= (n̂.
−→̇
β )2[1− 2n̂.

−→
β + β2]− 2κβ̇(n̂.

−→̇
β )(n̂−−→β ) + κ2β̇2

= (n̂.
−→̇
β )2[1− 2n̂.

−→
β + β2]− 2κ(n̂.

−→̇
β )(n̂.

−→̇
β −−→β .β̇) + κ2β̇2

Using
−→
β .n̂ = 1− κ we get:

|n̂× [(n̂−−→β )×
−→̇
β ]|2 = −γ−2(n̂.

−→̇
β )2 + 2κ(

−→
β .
−→̇
β )(n̂.

−→̇
β ) + κ2β̇2. (46)
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So,

P (t′) =
q2

4πc
2π

∫ π

0
dθ sin(θ)

1

κ5
[κ2β̇2 + 2κ(

−→̇
β .n̂)(

−→
β .
−→̇
β )− 1

γ2
(
−→̇
β .n̂)2]

=
q2

2c

∫ π

0
dθ sin θ



β̇2

κ3
+

2(
−→
β .
−→̇
β )β̇ini

κ4
− 1

γ2

β̇iβ̇jninj

κ5


 . (47)

Recall κ ≡ 1−−→β .n̂ = 1− cos θ, and let

I ≡
∫ π

0

sin θdθ

(1−−→β .n̂)3
=

∫ 1

−1
− du

(1− βu)3
=

2

(1− β2)2
= 2γ4

Ji ≡
∫ π

0

ni sin θdθ

(1−−→β .n̂)4
=

1

3

∂I

∂βi
=

8

3

βi

(1− β2)3
=

8

3
βiγ

6,

Kij ≡
∫ π

0

ninj sin θdθ

(1−−→β .n̂)5
=

1

4

∂Ji

∂βj
=

2

3

δij +
6βiβj

1−β2

(1− β2)3
=

2

3
γ6[δij + 6γ2βiβj].

⇒ P (t′) = q2

2c[β̇
2I + 2(

−→
β .
−→̇
β )β̇iJi − 1

γ2β̇iβ̇jKij].
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explicit I, Ji, and Kij:

P (t′) =
q2

2c

[
2γ2β̇2 +

16

3
γ6βiβ̇i(

−→
β .
−→̇
β )− 2

3
γ4(δij + 6γ2βiβj)β̇

iβ̇j
]

=
q2

2c

[
2γ4β̇2 +

16

3
γ6(

−→
β .
−→̇
β )2 − 2

3
γ4[β̇2 + 6γ2(

−→
β .
−→̇
β )2

]

=
2q2

3c

[
γ4β̇2 + γ6(

−→
β .
−→̇
β )2

]

=
2q2

3c
γ6

[
(1− β2)β̇2 + (

−→
β .
−→̇
β )2

]
=

2q

3c
γ6[β̇2 − β̇2β2(1− cos2 Φ)

=
2q2

3c
γ6[1− β̇2β2 sin2 Φ] =

2q2

3c
γ6[β̇2 − (

−→
β ×

−→̇
β )2] (48)

This is the relativistic generalization of the Larmor’s results (to

recover the standard Larmor power consider β → 0).
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example 1: radiative energy loss from a linear accelerator

In linear accelerator (or “linac”),
−→̇
β ‖ −→β . In order to calculate P (t′),

we need to evaluate β̇. From p = γβmc we have:

ṗ = mc(γ̇β + γβ̇) = mc[(γ3ββ̇)β + γβ̇]

= γmc

(
β2

1− β2
+ 1

)
β̇ = γ3mcβ̇. (49)

So

P (t′) =
2

3

q2

m2c3
ṗ2 [JDJ Eq. (14.27)]

Since P ∝ m−2 lighter particle are subject to higher losses. The

rate of momentum change is proportional to the particle energy

change:ṗ = dE/dz (consider particle being accelerated along the

ẑ-direction).
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The question is for what energy gain does radiative effects start to
influence the dynamics. Let Pext ≡ [dE/dt]ret be the power associ-
ated to the external (accelerating force) then the radiative effect
are comparable to external force effects when:

Prad

Pext
=

P (t′)
vdE/dz

=
2

3

q2

m2c3

[
1

v

dE

dz

]

ret
∼ 1.

Consider e-: typically v ' c, and q = e then

Prad

Pext
=

2

3

e2/(mc2)

mc2

[
dE

dz

]

ret

So Prad ' Pext if dE/dz ' mc2/re = 0.511/(2.8 × 10−15) = 2 × 1014

MeV/m
compare to 100 MeV/m state-of-art conventional accelerator or to
30 Gev/m plasma-based accelerator ∗; we see that radiative effects
have negligible impact on the dynamics of e- beams.
∗W. Leeman, et al., Nature Phys. 2, 696-699 (October 2006), also The
Economist, September 28th, 2006
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example 2: radiative energy loss in a circular accelerator

In circular accelerator acceleration is centripetal:
−→̇
β ⊥ −→

β so

β̇2 − (
−→
β ×

−→̇
β )2 = β̇2(1− β2) =

β̇2

γ2

So the radiated power is:

P (t′) =
2

3

q2c

R2
(βγ)4 =

2

3

q2c

R2
β4

[
E

mc2

]4
,

where E is the total energy. The revolution period is T = 2πR/(βc),
and P = ∆E

T . So the radiative loss per turn is:

∆E = PT =
2

3

q2c

R2
β4

[
E

mc2

]4 2πR

βc

that is:

∆E =
4π

3

q2

R
β3

[
E

mc2

]4
[JDJ Eq. (14.32)]
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Consider an e- synchrotron accelerator, the energy loss per turn and

per electon is:

∆E ' 4π

3

e2

R

(
E

mc2

)4
.

Take E = 1 TeV, R = 2 km we then have:

∆E [eV] =
1

3ε0

e

R

(
E

mc2

)4
= 44.2 TeV !!

For protons however we gain a factor (me/mp)4 = 1/18364 so

∆Eproton ' 4 eV

High energy physics circular accelerator use proton (or ions) reasons

for Tevatron at FNAL or LHC at CERN. One can however use e-/e+

storage ring as a copious source of radiation for use or for “cooling”

=radiation damping in the internation linear collider proposal.
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Field line associated to a linearly moving charge
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Field line associated to a moving charge in circular motion
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Angular Distribution of radiation emitted by an accelerated charge

dP (t′)
dΩ

=
q2

4πc

|n̂× [(n̂−−→β )×
−→̇
β ]|2

κ5

=
q2

4πc

κ2β̇2 + 2κ(
−→̇
β .n̂)(

−→
β .
−→̇
β )− γ−2(

−→̇
β .n̂)2

κ5
(50)

where we have used Eq.46.

Case of linear motion−→
β .n̂ = β cos θ,

−→̇
β .n̂ = β̇ cos θ, κ = 1−−→β .n̂ = 1− β cos θ, and numer-

ator of dP (t′)/dΩ is:

β̇2[κ2 + 2κβ cos θ − (1− β2) cos2 θ]

= β̇2[(κ2 + 2κβ cos θ + β2 cos2 θ)− cos2 θ]

= β̇2[(κ + β cos θ)2 − cos2 θ] = β̇2 sin2 θ. (51)
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dP (t′)
dΩ

=
q2β̇2

4πc2
sin2 θ

(1− β cos θ)5
[JDJ, Eq.(14.39)] (52)

The location of peak intensity are given by:

0 =
d

dθ

(
sin2 θ

(1− β cos θ)5

)

=
sin (θ)

(
2 cos (θ) + 3β (cos (θ))2 − 5β

)

(1− β cos θ)4
(53)

whose solutions are:

[cos θ]± =
1

3β
[−1± (1 + 15β2)1/2] (54)

Only [cos θ]+ is viable since we must have | cos(θ)| < 1. So finally

θ± = ± arccos

[
1

3β
[−1 + (1 + 15β2)1/2]

]
β→1−→ ± 1

2γ
(55)

these are locations of maximum in power.
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Angular distribution for the case of linear motion

β=0.0001 β=0.1 β=0.25

β=0.5 β=0.99 all β’s

θ±
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Ultra-relativistic limit: as the β → 1 the intensity angular distribution

is contained within small angle (so θ ¿ 1). The power angular

distribution then becomes:

dP (t′)
dΩ

' q2β̇2

4πc2
θ2

(1− β(1− θ2

2 ))5
=

q2β̇2

4πc2
32θ2

2(1− β) + βθ2))5

' 8

π

β̇2

c2
γ10θ2

(1 + γ2θ2)5
[JDJ, Eq.(14.41)]. (56)
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Comparison of exact θ-dependence (solid line) with ultra-relativistics

approximation (dash line) for two cases of β:

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

γθ

P
/m

ax
(P

)
β=0.9

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

β=0.999

P
/m

ax
(P

)

γθ
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Case of circular motion

y

x

z
n

q

f

q

b

b

snapshot of motion taken at time t′.

ẑ = cos θn̂− sin θθ̂

x̂ = sin θ cosφn̂ + cos θ sinφθ̂ − sinφφ̂

Thus
−→
β .n̂ = β cos θ,

−→
β .
−→̇
β = 0, and

−→̇
β .n̂ = β̇ sin θ cosφ
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dP (t′)
dΩ

=
q2

4πc2
β̇2

(1− β cos θ)3

[
1− sin2 θ cos2 φ

γ2(1− β cos θ)2

]
[JDJ Eq.(14.44)](57)

Unlike linear motion, the power angular distribution peaks at θ = 0.

Considering the ultra-relativistic limit (β → 1, θ ¿ 1).

dP (t′)
dΩ

=
8

π

q2

c2
β̇2

(1 + γ2θ2)3
γ6

[
1− 4γ2θ2 cos2 φ

(1 + γ2θ2)2

]
[JDJ Eq.(14.44)](58)

β=0.05 β=0.2 β=0.5

(distribution evaluated in the plan φ = 0)
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A part from a different in the intensity distributions for linear and

circular motion, there is also a difference in total radiated power:

PLinear =
2

3
q2m2c3ṗ2

PCircular =
2

3
q2cγ4β̇2 =

2

3
q2m2c3γ2ṗ2

Thus
PCircular

PLinear
= γ2

For a given applied force, there is γ2 times more radiation energy

if the force is applied perpendicular to the charge’s velocity that is

applied parallel to the velocity.
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Radiation Spectrum

Go in the observer’s frame:

dP (t)

dΩ
=

1

κ(t′)
dP (t′)

dΩ

=
q2

4πc



|n̂× [(n̂−−→β )×

−→̇
β ]|2

κ6




ret

≡ |−→A(t)|2 (59)

wherein

−→
A(t) =

√
c

4π
[R
−→
E ]ret (60)

to obtain the power spectrum of the radiation we need to work in

the frequency domain, so decompose
−→
A as:

−→
A(ω) =

1√
2π

∫ +∞
−∞

dt
−→
A(t)eiωt, (61)
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and reciprocally:

−→
A(t) =

1√
2π

∫ +∞
−∞

dω
−→
A(ω)e−iωt, (62)

From Parseval’s theorem the total energy radiated per dΩ is

dW

dΩ
=

∫ +∞
−∞

dt|−→A(t)|2 =
∫ +∞
−∞

dω|−→A(ω)|2 (63)

If
−→
A(t) ∈ R, then

−→
A ∗(ω) =

−→
A(ω) and:

dW

dΩ
= 2

∫ ∞
0

dω|−→A(ω)|2 (64)

So the radiation spectrum per unit of solid angle is:

d2I(n̂, ω)

dΩdω
= 2|A(ω)|2 (65)

Thus we need to evaluate
−→
A(ω)
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−→
A(t) =

q√
4πc



n̂× [(n̂−−→β )×

−→̇
β ]

κ3




ret

(66)

and so,

−→
A(ω) =

q

2π
√

2c

∫ +∞
−∞

dt



n̂× [(n̂−−→β )×

−→̇
β ]

κ3




ret

eiωt (67)

since the quantity [...] must be evaluated at the retarded time, let

dt = κ(t′)dt′ and t = t′ + R(t′)
c then the integral becomes:

−→
A(ω) =

q

2π
√

2c

∫ +∞
−∞

dt′n̂× [(n̂−−→β )×
−→̇
β ]

κ2
eiω(t′+R(t′)

c ) (68)

In the far-field regime (large |−→x |) we have: n̂ =
−→x−−→r (t′)
|−→x−−→r (t′)| ' x̂ con-

stant in time. And R = x−−→r .n̂ +O(1/x).
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In the far-field regime the argument of the exponential rewrites:

Ξ = iω[t′ + R(t)

c
] = iωx + iω[t′ − n̂.−→r (t′)

c
] (69)

we henceforth ignore the term iωx since it has no contribution (the

final result is ∝ |A(ω|2) and define

Ξ(t′) = iω[t′ − n̂.−→r (t′)
c

], (70)

we have

−→
A(ω) =

q

2π
√

2c

∫ +∞
−∞

dt
n̂× [(n̂−−→β )×

−→̇
β ]

κ2
eΞ(t), (71)

and the intensity distribution takes the form

d2I(n̂, ω)

dΩdω
= 2A2(ω) =

q2

4π2c

∣∣∣∣∣
∫ +∞
−∞

dt
n̂× [(n̂−−→β )×

−→̇
β ]

κ2
eΞ(t)

∣∣∣∣∣
2

. (72)
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To follow JDJ, let’s show that the vectorial quantity in the integral

can be written as a time-derivative, in the far-field approximation.

Consider

n̂× (n̂×−→β )

κ
, (73)

and let’s compute

d

dt


n̂× (n̂×−→β )

κ


 =

(−κ̇n̂ + (1− κ)ˆ̇n−
−→̇
β )κ− κ̇[(1− κ)n̂−−→β ]

κ2
(74)

It is straightforward (see Eq. 37) to show that ˆ̇n ∝ 1/R and κ̇ =

−
−→̇
β .n̂−−→β .ˆ̇n = −

−→̇
β .n̂ +O(1/R). So

d

dt
[...] =

1

κ2

{
[(
−→̇
β .n̂)n̂− 0−

−→̇
β ]κ + (

−→̇
β .n̂)[(1− κ)n̂−−→β ]

}

=
1

κ2

{
−
−→̇
β κ + (

−→̇
β .n̂)(n̂−−→β )

}
+O(1/R) =

1

κ2

{
n̂× [(n̂−−→β )×

−→̇
β ]

}
.
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So the vectorial quantity is a time-derivative and we can write:

−→
A(ω) =

q

2π
√

2c

∫ +∞
−∞

dt
d

dt


n̂× (n̂×−→β )

κ


 eΞ(t)

=
q

2π
√

2c





∣∣∣∣∣


n̂× (n̂×−→β )

κ


 eΞ(t)

∣∣∣∣∣
+∞

−∞
− iω

∫ +∞
−∞

dt
[
n̂× (n̂×−→β )

]
eΞ(t)





The first integral is zero (in principle on should introduce a decay

term e−ε|t|, with ε > 0, perform the integral and take the limit

ε → 0).We finally have:

d2I(n̂, ω)

dΩdω
=

q2ω2

4π2c

∣∣∣∣∣
∫ +∞
−∞

dt[n̂× (n̂×−→β )]eiω[t′−n̂.−→r (t)
c ]

∣∣∣∣∣
2

(75)

Nota: [n̂× (n̂×−→β )] = β sin θ = |n̂×−→β | where θ = ∠(n̂,
−→
β ).
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Case of circular motion

n̂ = sin θŷ + cos θẑ, (76)
−→
β = β[sin(ω0t′)x̂ + cos(ω0t′)ẑ], (77)

ε̂‖ = x̂, (78)

ε̂⊥ = n̂× x̂ = − sin θẑ + cos θŷ. (79)
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n̂× (n̂×−→β ) = (n̂.
−→
β )n̂−−→β

= β[cω0tcθŷ + cω0t(c
2
θ − 1)ẑ − cω0tx̂

= β[−sω0tε̂‖ + cω0tsθε̂⊥] (80)

Let’s now consider the argument of the exponential function Ξ.

First we note that n̂.−→r = r cos θ cos(π/2 − ω0t′) = r sin(ω0t′) cos θ

and

Ξ = iω(t′ − n̂.−→r
c

) = ω[t′ − r

c
sin(ω0t′) cos θ] (81)

Also if P catch an impulse of radiation from q: q’s radiation is

confined in forward direction, θ is small, and the pulse originated

near ω0t ' 0. Under these approximations:

lim
θ¿1,ω0t¿1

n̂× (n̂×−→β ) = β(−ω0tε̂‖ + θε̂⊥) (82)
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and,

lim
θ¿1,ω0t¿1

1

i
Ξ = ω

{
t′ − r

c
[ω0t′ − 1

6
(ω0t′)3](1− θ2

2
)

}

= ω

{
(1− β)t′ + βt′

2
θ2 +

1

6

r

c
(ω0t′)3

}

=
ωt′

2
(γ−2 + βθ2) +

ωβ

6ω0
(ω0t′)3. (83)

The spectral energy density is:

d2I

dΩdω
=

q2ω2

4π2c

∣∣∣∣∣
∫ +∞
−∞

dtβ(−ω0tε̂‖ + θε̂⊥)eΞ
∣∣∣∣∣
2

=

∣∣∣∣∣−A‖(ω)ε̂‖ + A⊥(ω)ε̂⊥

∣∣∣∣∣
2

(84)

This displays the two polarization associated to the radiation. Nota:

‖ and ⊥ polarizations are also respectively refer to as σ and π-

polarizations.
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where
(

A‖
A⊥

)
=

qω

2π
√

c

∫ +∞
−∞

dt

(
ω0t
θ

)
e
iω
2[(γ−2+θ2)t+ 1

3ω0
(ω0t′)3]

. (85)

let x = ω0t√
γ−2+θ2

, dt = 1
ω0

√
γ−2 + θ2dx; and let ξ ≡ 1

3
ω
ω0

[γ−2 + θ2]3/2,

then
(

A‖(ω)

A⊥(ω)

)
=

qω

2π
√

c

∫ +∞
−∞

dx


 (γ−2 + θ2)x 1

ω0

(γ−2 + θ2)1/2θ 1
ω0


 ei32ξ[x+1

3x3]. (86)

we have the identity:
∫ +∞
−∞

dtei(xt+at3) =
2π

(2a)1/3
Ai

(
x

(3a)1/3

)
,

where Ai is the Airy function, Note also that Ai(x) = 1
π

√
1
3xK1/3

(
2
3x3/2

)
.

Thus:
∫ +∞
−∞

dxei32ξ[x+1
3x3] =

2π

(3ξ/2)1/3
Ai




(
3ξ

2

)2/3

 =

2√
3

K1/3(ξ). (87)
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For the other integral. Note that
∫ +∞
−∞

dttei(xt+at3) =
1

i

d

dx

∫ +∞
−∞

tei(xt+at3)dt =
2π

(2a)1/3
A′i

(
x

(3a)1/3

)
,

The prime denote the differentiation w.r.t. total argument of Ai.

Inserting a = ξ/2, and x = 3ξ/2 we get:

∫ +∞
−∞

xei32ξ[x+1
3x3]dx =

2π

(3ξ/2)1/3
A′i




(
3ξ

2

)2/3

 = −1

i

2√
3

K2/3(ξ).(88)

where we have used: A′i(x) = −1
π

√
1
3xK2/3

(
2
3x3/2

)
. So the spectral

intensity per unit of solid angle takes the form:

d2I

dΩdω
= |A‖(ω)|2 + |A⊥(ω)|2

=
q2

3π2c

(
ω

ω0

)2

(γ−2 + θ2)2
[
K2

2/3(ξ) +
θ2

γ−2 + θ2
K2

1/3(ξ)

]
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or, introducing ξ = 1
3

ω
ω0

[γ−2 + θ2]3/2 ≡ 1
2

ω
ωc

[1 + γ2θ2]3/2:

d2I

dΩdω
=

3q2

π2c
ξ2

1

γ−2 + θ2

[
K2

2/3(ξ) +
θ2

γ−2 + θ2
K2

1/3(ξ)

]

γθ

ω
/ω

c

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

γθ

ω
/ω

c

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

γθ

d2 I/(
dΩ

dω
)
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0

0.1

0.2
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0.4

0.5

γθ

d2 I/(
dΩ

dω
)
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−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

γθ

d2 I/(
dΩ

dω
)

ω/ω
c
=0.1

ω/ω
c
=1

ω/ω
c
=5

High frequency radiation occupies θ < γ−1 (¿ γ−1 for ω À ωc) and

low frequency radiation occupies θ > γ−1. It is usual to also define

a critical angle as θc = 1
γ

(
2ωc
ω

)
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For low frequency ω ¿ ωc, the frequency spectrum integrated over

the solid angle is:

dI

dω
' 2πθc

[
d2I

dωdΩ

]

θ=0

=
2π

γ

(
2ωc

ω

)1/3 3

π2

q2

c
γ2[ξ2K2

2/3(ξ)]θ=0. (89)

ξ(0) = ω
2ωc

¿ 1 so that

[ξK2/3(ξ)]
2
θ=0 '

[
Γ(2/3)

21/3

]2

[ξ(0)]2/3 '
(

ω

2ωc

)2/3
. (90)

So

dI

dω
' 6

π

q2

c
γ

(
ω

2ωc

)1/3
=

6

π

q2

c
γ

(
ω

3γ3ω0

)1/3

∝ ω1/3 (91)

for ω ¿ ωc, so it is very broad γ-independent spectrum.
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Angular distribution:

we need to calculate
∫∞
0 dω d2I

dωdΩ. Do the variable change ξ =
1
3

ω
ω0

[γ−2 + θ2]3/2 then:

dI

dΩ
=

3q2

π2c

3ω0

[γ−2 + θ2]5/2

∫ ∞
0

ξ2
{

K2
2/3(ξ) +

θ2

γ−2 + θ2
K2

1/3(ξ)

}
dξ

=
9

π2

q2

c

γ5ω0

[1 + (γθ)2]5/2

[
7π2

144
+

5π2

144

γ2θ2

(1 + γ2θ2)

]
(92)

where we have used the identity:

∫ ∞
0

ω2K2
µ(aω)dω =

π2

32a3

1− 4µ2

cos(πµ)

Thus we finally have:

dI

dΩ
=

7

16

q2

c

γ5ω0

[γ−2 + θ2]5/2

[
1 +

5

7

γ2θ2

(1 + γ2θ2)

]
[JDJ, Eq.(14.80)]
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The total energy radiated is ∆W =
∫

dΩ dI
dΩ = 2π

∫
dθdI

dθ the integral

on θ should be within [−π, π] however because we did a small angle

approximation and since dI/dΩ is significant only for γθ < 1 we do

this integral from [−∞,∞]:

∆W = 2π
∫ ∞
0

dθ
dI

dθ

=
7π

8

q2

c
γ5ω0

∫ +∞
−∞

[
1

(1 + γ2θ2)5/2
+

5

7

γ2θ2

(1 + γ2θ2)7/2

]

=
7π

8

q2

c
γ5ω0

[
4

3γ
+

4

15γ

]
=

7π

6

q2

c
γ4ω0

[
1 +

1

7

]
(93)

There is 7 times more energy radiated in the ‖-polarization than in

the ⊥-polarization. The total energy radiated is

∆W =
4π

3

q2

c
γ4ω0

where ω0 = c/r.
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Let show that the previous result is in agreement with the radiated

power associated to circular motion we computed earlier in this

chapter.

∆Wcirc = Pcirc
2π

ω0
=

(
2

3

q2

m2c3
γ2ṗ2

)
2π

ω0

=
2

3

q2

m2c3
γ2(γmrω2

0)
22π

ω0
=

4π

3

q2

c3
γ4r2ω3

0

=
4π

3

q2

r
γ4. (94)
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The dI/dω angular-integrated spectrum was derived by Schwinger ∗
to be:

dI

dω
=
√

3
q2

c
γ

ω

ωc

∫ +∞
ω/ωc

dxK5/3(x). (95)
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∗Phys. Rev. Lett. 75, 1912 (1949)

58



Case of periodic circular motion:

The results derived in the previous pages pertains to instantaneous

circular motion, for which the spectrum is a continuum. If the

motion is periodic, the associated spectrum is discrete. The tool

for analyzing this type of motion are the Fourier series. First we

note that the period measured by an observed in the far field (T ) is

the same as the period of the particle motion (T ′). We now have

to introduce the Fourier series decomposition:

−→
A(t) =

√
c

4π
[E
−→
E ]ext =

n=+∞∑

n=−∞

−→
Ane−inω0t,

where,

−→
An =

ω0

2π

∫ 2π/ω0

0

−→
A(t)einω0t
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Following what we did previously we can show:

−→
An =

√
2π

q

2π
√

2c

ω0

2π
(−inω0)

∫ 2π/ω0

0
dtn̂× (n̂×−→β )einω0(t−n̂.−→r )

where the
√

2π come from the difference in normalization factor

between the Fourier integral transform and series.

The spectrum is now discrete ω = nω with n ∈ N.
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Thomson & Compton Scattering

“Scattering” of an e.m. wave by a charged particle (say e-). But
e- has no surface → radiation is not really scattered. Radiation
emitted by the e- as it oscillates in the incoming radiation field is
the “scattered” radiation.
In term of photon: photon with wavelength λ strikes a stationary e-
and bounce off with wavelength λ′.

Pα
γ + Pα

γ = Pα
γ′ + Pα

e−′ (96)

Pα
e−′ = Pα

e− + Pα
γ − Pα

γ′ (97)

So the norm is:

m2c2 = (Pα
e− + Pα

γ − Pα
γ′)(Pe−,α + Pγ,α − Pγ′,α) (98)

remembering that for a photon PµPµ = 0 we finally end up with

Pα
γ′Pe−,α − Pα

γ′Pe−,α − Pα
γ′Pe−,α = 0 (99)
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we have:

Pe−,α = mc(Eγ/2)−−→p e−.−→p γ = mEγ (100)

Pα
γ′Pγ,α =

Eγ

c

Eγ′

c
−−→p γ.−→p γ′ = −pγpγ′ cos θ +

EγEγ′

c2
(101)

Pe−,αPα
γ′ = mEγ. (102)

Taking Eγ ≡ hc
λ (and similarly for γ′) we finally obtain:

λ− λ′ = h

mc
(1− cos θ). (103)

This is the usual Compton scattering. Thomson scattering is the

non relativistic limit of Compton scattering (so take c → ∞) so

λ = λ′.
Cross section for Thomson scattering:

The cross-section is defined as:

σ ≡ E radiated/time/solid angle

incident flux/unit area/time
. (104)
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e- is at rest
−→
β = 0, and

dP (t′)
dΩ

=
e2

4πc

∣∣∣n̂× [(n̂−−→β )×
−→̇
β ]

∣∣∣2

κ5
(105)

β→0−→ e2

4πc

∣∣∣n̂× [n̂×
−→̇
β ]

κ5
=

e2

4πc
β̇2 sin2 Θ (106)

where Θ∠(n̂,
−→̇
β ). Introducing the acceleration −→a ≡ c

−→̇
β we have:

dP (t′)
dΩ

=
e2

4πc3
sin2 Θ. (107)

Also note that in the NR limit t → t′ so dP (t)
dΩ = dP (t′)

dΩ . We now need

to find −→a .



Let’s consider an incoming plane e.m. wave of the form
−→
E (−→x , t) =

ε̂E0ei(
−→
k .−→x−ωt) then we have

−→a (t) =
e

m
ε̂E0ei(

−→
k .−→x−ωt) (108)

we only consider the E-field contribution since β = 0. Let
−→
k = kẑ.

y

f

q

z

y

x

a

n

e
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From the figure we have:

ε̂ = cosψx̂ + sinψŷ (109)

n̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ (110)

n̂.−→a = asθ(cψcφ + sψsφ) = asθcψ−φ (111)

= a sin θ cos(ψ − φ) = a cosΘ. (112)

Thus

sin2 Θ = 1− sin2 θ cos2(ψ − φ). (113)

t-averaged emitted power scales as 〈a2(t)〉t.

〈a2 sin2 Θ〉t =
1

2

(
eE0

m

)2
[1− sin2 θ cos2(ψ − φ)]. (114)

If incident radiation is not polarized:

〈cos2(ψ − φ) sin2 θ〉ψ =
1

2
sin2 θ. (115)
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So

〈a2 sin2 Θ〉t,ψ =
1

2

(
eE0

m

)2
[1− 1

2
sin2 θ] (116)

So finally the radiated power per unit of solid angle takes the form:

〈dP

dΩ
〉t,ψ =

cE2
0

16π

(
e2

mc2

)2

[1 + cos2 θ] =
c

16π
re(1 + cos2 θ). (117)

The incoming Poyinting flux is:

S =
c

8π

−→
E ×−→H ∗ (118)

the time average power per unit area is:

dP

dσ
= S =

c

8π
E2

0. (119)
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So the cross-section is:

dσ

dΩ
=

dσ

dP

dP

dΩ
=

cr2e
16πE2

0
c
8πE2

0

[1 + cos2 θ] (120)

=
1

2
r2e (1 + cos2 θ) (121)

This is Thomson scattering formula. The integrated cross-section

is:

σ =
∫ 2π

0
dφ

∫ π

0
dθ sin θ

dσ

dΩ
=

16π

3

1

2
r2e (122)

=
8π

3
r2e . (123)
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Thomson and Compton scattering apply to a free-electron. Let’s
now consider a bounded electron whose dynamics is described as a
damped oscillator model:

−→a + Γ−→v + ω2
0
−→x =

q

m

−→
E . (124)

As before consider
−→
E = ε̂E0ei(

−→
k .−→x−ωt), Take −→x = −→x 0e−iωt. We

then have:

(−ω2 − iωΓ + ω2
0)
−→x 0 = ε̂

q

m
E0ei

−→
k .−→x (125)

assume
−→
k .−→x = 0, that is |x| ¿ λ (e- orbit is small compared to

radiation wavelength). Then

−→x 0 '
e
mE0

ω2
0 − ω2 − iωΓ

ε̂, (126)

and

−→a = −ω2−→x ⇒ |a2| =
(

e

m
E0

)2 ω4

(ω2
0 − ω2)2 + ω2Γ2

. (127)
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|a2| =
(

e
mE0

)2

(
ω0
ω

)2
+

[(
Γ
ω

)2 − 1
]2. (128)

Same as before but modified to include −→a ’s denominator. So finally

for a bounded e-, we get:

〈dP

dΩ
〉 =

c

16π
r2e E2

0
1 + cos2 θ

[(
ω0
ω

)2 − 1
]2

+
(
Γ
ω

)2
, (129)

and the cross section is

dσ

dΩ
=

1

2
r2e

1 + cos2 θ
[(

ω0
ω

)2 − 1
]2

+
(
Γ
ω

)2
, (130)
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The limit ω À ω0, ω À Γ corresponds to Thomson scattering, while

the limit ω ¿ ω0, ω À Γ gives the Rayleigh formula:

dσ

dΩ
=

1

2
r2e

(
ω

ω0

)4

[1 + cos2 θ] ∝ ω4 (131)

So high frequencies are scattered more preferably than low frequen-

cies. This explains why the sky is blue...
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