Northern Illinois University, PHY 571, Fall 2006

Part III: Particle Dynamics Electromagnetic Fields

Last updated on October 5, 2006 (report errors to piot@fnal.gov)

Lagrangian & Hamiltonian formulation

Classical mechanics, Given $\overrightarrow{x}(x^1, x^2, x^3)$ in K and \overrightarrow{x} system is characterized by a Lagrangian: $\mathcal{L}(x^i, \dot{x}^i, t)$. The action

$$\mathcal{A} \equiv \int_{t_1}^{t_2} \mathcal{L}(x^i, \dot{x}^i, t) dt \tag{1}$$

is a functional of $\overrightarrow{x}(t)$, $\forall \overrightarrow{x}(t)$ defined for $t \in [t_1, t_2]$.

The least action principle states that \mathcal{A} is a stationary function for any small variation $\delta \overrightarrow{x}(t)$ verifying $\delta \overrightarrow{x}(t_1) = \delta \overrightarrow{x}(t_2) = 0$.

The equation of motion then follow from Euler-Lagrange equations:

$$P^{i} = \frac{\partial \mathcal{L}}{\partial \dot{x}^{i}}$$
$$\frac{dP^{i}}{dt} = \frac{\partial \mathcal{L}}{\partial x^{i}}$$

Case of a free relativistic particle

Equation of motion must be referential-invariant \Rightarrow the least action princple $\delta A = 0$ must have the same form in different referential $\Rightarrow A$ must be a scalar invariant.

 \mathcal{A} is a sum of infinitesimal elements along a universe line $x^i(t)$

 $\Rightarrow \mathcal{L}dt$ associated to a small displacement must be a scalar invariant.

$$\Rightarrow \mathcal{L}dt = \alpha ds = \alpha \sqrt{1 - \frac{V^2}{c^2}} dt$$
 also,

$$\lim_{V \ll c} \mathcal{L} = \frac{1}{2} mV^2 + \text{const} = \alpha \left(1 - \frac{V^2}{c^2} + \mathcal{O}((V/c)^4) \right)$$
 (2)

so $\alpha = -mc$, and the relativistic Lagrangian of a free particle is

$$\mathcal{L}_{free} = -mc^2 \sqrt{1 - \frac{V^2}{c^2}} = -\frac{mc}{\gamma} \sqrt{u^\alpha u_\alpha},\tag{3}$$

where $u^{\alpha} = (\gamma c, \gamma \overrightarrow{v})$ is the four-velocity. One can check:

$$\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \overrightarrow{\dot{x}}} = \frac{d}{dt} (m\gamma \overrightarrow{\dot{x}}) = 0$$

Lagrangian of a relativistic particle in e.m. field

The Lagrangian now takes the form $\mathcal{L} = \mathcal{L}_{free} + \mathcal{L}_{int}$, where \mathcal{L}_{int} is the interaction potential.

In the nonrelativistic limit $\mathcal{L}_{int}^{NR} = -e\Phi = -eA^0$ so let's try

$$\mathcal{L}_{int} = -\frac{e}{\gamma c} u_{\alpha} A^{\alpha}$$

$$= -\frac{e}{\gamma c} g_{\alpha\beta} u^{\beta} A^{\alpha}$$

$$= -\frac{e}{\gamma c} \left(\gamma c \Phi - \gamma \overrightarrow{V} . \overrightarrow{A} \right)$$

$$\mathcal{L}_{int} = -e \Phi + e \overrightarrow{\beta} \overrightarrow{A}. \tag{4}$$

The total Lagrangian is

$$\mathcal{L} = -mc^2 \sqrt{1 - \frac{V^2}{c^2}} + \frac{e}{c} \overrightarrow{V} . \overrightarrow{A}(\overrightarrow{x}) - e\Phi(\overrightarrow{x}). \tag{5}$$

Let's check this gives the equation of motion, by calculating

$$\frac{\partial \mathcal{L}}{\partial \overrightarrow{x}} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \overrightarrow{x}} = 0 \tag{6}$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \overrightarrow{V}} = \frac{d}{dt}\left(\gamma m\overrightarrow{V} + \frac{e}{c}\overrightarrow{A}\right)$$

$$= \frac{d(\gamma m\overrightarrow{V})}{dt} + \frac{e}{c}\left(\frac{\partial \overrightarrow{A}}{\partial t} + \frac{\partial x_i}{\partial t}\frac{\partial}{\partial x_i}\overrightarrow{A}\right) = \frac{d(\gamma m\overrightarrow{V})}{dt} + \frac{e}{c}\left(\frac{\partial \overrightarrow{A}}{\partial t} + (\overrightarrow{V}.\overrightarrow{\nabla})\overrightarrow{A}\right)$$

$$\frac{\partial}{\partial \overrightarrow{x}} \mathcal{L} = \frac{e}{c} \overrightarrow{\nabla} \cdot (\overrightarrow{V} \cdot \overrightarrow{A}) - e \overrightarrow{\nabla} \Phi = \frac{e}{c} \left[(\overrightarrow{V} \cdot \overrightarrow{\nabla}) \overrightarrow{A} + \overrightarrow{V} \times (\overrightarrow{\nabla} \times \overrightarrow{A}) \right] - e \overrightarrow{\nabla} \Phi$$

With $\overrightarrow{B} = \overrightarrow{\nabla} \times \overrightarrow{A}$, one finally has:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \overrightarrow{V}} - \frac{\partial \mathcal{L}}{\partial \overrightarrow{x}} = \frac{d}{dt}(\gamma m\overrightarrow{V}) + \frac{e}{c}\frac{\partial \overrightarrow{A}}{\partial t} + e\overrightarrow{\nabla}\Phi - \frac{e}{c}\overrightarrow{V}\times\overrightarrow{B} = 0$$

which gives the Lorentz force equation (in Gauss units!):

$$\frac{d}{dt}(\gamma m\overrightarrow{V}) = e\overrightarrow{E} + \frac{e}{c}(\overrightarrow{V} \times \overrightarrow{B}) \tag{7}$$

Let's check the Lagrangian verifies the "least action principle"
The total Lagrangian can be written

$$\mathcal{L} = -\frac{mc}{\gamma} \sqrt{u^{\alpha} u_{\alpha}} - \frac{q}{\gamma c} u_{\alpha} A^{\alpha}(x^{\beta}). \tag{8}$$

define $\tilde{\mathcal{L}} \equiv \gamma \mathcal{L}$. The action is $\mathcal{A} = \int_{\tau_1}^{\tau_2} d\tau \tilde{\mathcal{L}}$.

least action principle $\delta A = 0$.

$$\delta \mathcal{A} = \delta \left[\int_{\tau_1}^{\tau_2} d\tau \tilde{\mathcal{L}} \right] = \int_{\tau_1}^{\tau_2} d\tau \delta \tilde{\mathcal{L}}$$
 (9)

$$-\delta \tilde{\mathcal{L}} = mc \frac{1}{2} \frac{1}{\sqrt{u^{\alpha} u_{\alpha}}} \left[\frac{\partial (u^{\alpha} u_{\alpha})}{\partial u^{\beta}} \right] \delta u^{\beta} + qA_{\alpha} \delta u^{\alpha} + qu^{\alpha} \frac{\partial A_{\alpha}}{\partial x^{\beta}} \delta x^{\beta}. \quad (10)$$

One has $\delta u^{\alpha} = \delta(\frac{\partial x^{\alpha}}{\partial \tau}) = \frac{\partial}{\partial \tau}(\delta x^{\alpha})$, and

$$\frac{\partial(u^{\alpha}u_{\alpha})}{\partial u^{\beta}} = g_{\alpha\gamma}\frac{\partial(u^{\alpha}u^{\gamma})}{\partial u^{\beta}} = g_{\alpha\gamma}\left(\delta^{\alpha}_{\beta}u^{\gamma} + \delta^{\gamma}_{\beta}u^{\alpha}\right) = 2u_{\beta}$$
 (11)

using $\delta \frac{dx^{\alpha}}{d\tau} = \frac{d(\delta x^{\alpha})}{d\tau}$ (commutation of δ and d operators), one gets:

$$-c\delta \tilde{\mathcal{L}} = (mcu_{\beta} + qA_{\beta})\frac{d(\delta x^{\beta})}{d\tau} + qu^{\alpha}\partial_{\beta}A_{\alpha}\delta x^{\beta}.$$
 (12)

Evaluating the integral by part and noting that $\delta x^{\beta}(\tau_1) = \delta x^{\beta}(\tau_2) = 0$ gives:

$$\delta \mathcal{A} = -\int_{\tau_1}^{\tau_2} d\tau \left[-mc \frac{du_\beta}{d\tau} - q(\partial_\alpha A_\beta) u^\alpha + q u^\alpha \partial_\beta A_\alpha \right] \delta x^\beta, \tag{13}$$

and $\delta \mathcal{A}=0 \Rightarrow [...]=0$ (linear independence argument) gives the equation of motion $m\frac{d}{d\tau}u_{\beta}=\frac{q}{c}F_{\alpha\beta}u^{\alpha}$

The canonical momentum \overrightarrow{P} conjugate to \overrightarrow{x} is, by definition,

$$\overrightarrow{P} = \frac{\partial \mathcal{L}}{\partial \overrightarrow{V}} = \gamma m \overrightarrow{\dot{x}} + \frac{e}{c} \overrightarrow{A}$$

$$\overrightarrow{P} = \overrightarrow{p} + \frac{e}{c} \overrightarrow{A}$$
(14)

and the hamiltonian is defined as:

$$\mathcal{H} \equiv \overrightarrow{P}.\overrightarrow{V} - \mathcal{L} \tag{15}$$

Relativistic Hamiltonian

Use $\overrightarrow{P} = \gamma m \overrightarrow{v} + \frac{e}{c} \overrightarrow{A}$ and calculate \mathcal{H} then express \mathcal{H} only as a function of \overrightarrow{P} and \overrightarrow{x} . On can do the algebra (namely explicit \overrightarrow{v} as a function \overrightarrow{P} and replace in the expression of \mathcal{H} .

$$\mathcal{H} = \overrightarrow{v} \cdot \left(\gamma m \overrightarrow{v} + \frac{e}{c} \overrightarrow{A} \right) + \gamma m c^2 \frac{1}{\gamma} + e \Phi - \frac{e}{c} \overrightarrow{A} \overrightarrow{v}$$
 (16)

$$= \gamma mv^2 + \frac{mc^2}{\gamma} + e\Phi = \gamma mc^2 + e\Phi. \tag{17}$$

We note that the relation between $\overrightarrow{P} - \frac{e}{c}\overrightarrow{A}$ and $\mathcal{H} - e\Phi$ is the same as between \mathcal{H} and \overrightarrow{p} for the case of zero-field so we have:

$$(\mathcal{H} - e\Phi)^2 = \left(\overrightarrow{P} - \frac{e}{c}\overrightarrow{A}\right)^2 c^2 + m^2 c^4 \tag{18}$$

So finally,

$$\mathcal{H} = \sqrt{\left(\overrightarrow{P}c - e\overrightarrow{A}\right)^2 + m^2c^4} + e\Phi \tag{19}$$

Motion of a particle in a constant uniform E-field

Let \mathcal{E} be the total energy: $\mathcal{E} = \sqrt{(pc)^2 + (mc^2)^2} = \gamma mc^2$ $\Rightarrow \gamma = \frac{\mathcal{E}}{mc^2}$. Thus,

$$\overrightarrow{p} = \gamma m \overrightarrow{v} = \frac{\mathcal{E}}{c^2} \overrightarrow{v} \Rightarrow \overrightarrow{v} = \frac{c^2}{\mathcal{E}} \overrightarrow{P}. \tag{20}$$

Let's consider the case of a particle of charge q interacting with the field $\overrightarrow{E} = E\widehat{x}$, and with initial conditions $p(t=0) = p_0\widehat{y}$. Lorentz Force gives:

$$\dot{p}_x = qE, \text{ and, } \dot{p}_y = 0 \tag{21}$$

which yields:

$$p_x = qEt, \text{ and, } p_y = p_0 \tag{22}$$

and $p^2 = (qEt)^2 + p_0^2$.

So the total energy at time t is:

$$\mathcal{E}^{2}(t) = c^{2} \left[(qEt)^{2} + p_{0}^{2} \right] + m^{2}c^{4} = (cqEt)^{2} + \mathcal{E}_{0}$$
 (23)

where $\mathcal{E}_0 \equiv \mathcal{E}(t=0)$. The velocity is:

$$v_x = \frac{dx}{dt} = c \frac{cqEt}{\sqrt{(cqEt)^2 + \mathcal{E}_0^2}}$$
 (24)

note that $\lim_{t\to\infty}=c$. Performing a time integration yields:

$$x(t) = \frac{1}{qE} \sqrt{(cqEt)^2 + \mathcal{E}_0^2}.$$
 (25)

For y-axis we have:

$$\frac{dy}{dt} = \frac{c^2 p_0}{\sqrt{(cqEt)^2 + \mathcal{E}_0^2}},\tag{26}$$

and $\lim_{t\to\infty}\frac{dy}{dt}=0$.

A time integration gives:

$$y = \frac{p_0 c}{qE} \sinh^{-1} \left(\frac{cqEt}{\mathcal{E}_0} \right). \tag{27}$$

remember: $\int_0^{\xi} \frac{d\tilde{\xi}}{\tilde{\xi}^2+1} = \sinh^{-1}(\xi)$. Expliciting t as a function of y:

$$cqEt = \sinh\left(\frac{qEy}{p_0c}\right),\tag{28}$$

and substituting in x, we have the trajectory equation in (x,y) plane:

$$x = \frac{\mathcal{E}_0}{qE} \sqrt{\sinh^2\left(\frac{qEy}{p_0c}\right) + 1}$$
$$= \frac{\mathcal{E}_0}{qE} \cosh\left(\frac{qEy}{p_0c}\right). \tag{29}$$

The nonrelativistic limit $(v \ll c)$ is given by setting $\mathcal{E}_0 = mc^2$, $p_0 = mv_0$:

$$x = \frac{mc^2}{qE} \cosh\left(\frac{qEy}{mv_0c}\right) \simeq \frac{qE}{2mv_0^2}y^2 + \text{const.}$$
 (30)

the familiar parabola. The expansion $\cosh(x) = 1 + x^2/2! + \mathcal{O}(x^4)$ was used.

Trajectories (in normalized coordinate) in uniform constant E-field: $\hat{x} = \cosh(\kappa \hat{y})$, with $\kappa = 1, 2, 3, 4$. dashed are corresponding parabolic approximation $\hat{x} = 1 + \frac{1}{2}(\kappa \hat{y})^2$.

Motion of a particle in a constant uniform B-field

Lorentz force gives (CGS!): $\overrightarrow{p} = \frac{q}{c}\overrightarrow{v} \times \overrightarrow{B}$; $\overrightarrow{p} = \frac{\mathcal{E}}{c^2}\overrightarrow{v} \Rightarrow \overrightarrow{v} = \frac{cq}{\mathcal{E}}\overrightarrow{v} \times \overrightarrow{B}$.

 \overrightarrow{B} changes the direction of \overrightarrow{v} but not its magnitude so W, and γ are constants. Consider for simplicity $\overrightarrow{B}=B\widehat{z}$, then

$$\overrightarrow{v} \times \overrightarrow{B} = v_y B \widehat{x} - v_x B \widehat{y},$$

which gives

$$\dot{v}_x = \frac{cqB}{\mathcal{E}}v_y,
\dot{v}_y = -\frac{cqB}{\mathcal{E}}v_x,
\dot{v}_z = 0.$$
(31)

So we have to solve a system of coupled ODE of the form:

$$\dot{v}_x = \omega v_y, \ \dot{v}_y = -\omega v_x, \ \dot{v}_z = 0.$$
 (32)

where $\omega \equiv \frac{cqB}{\mathcal{E}}$. Let's cast the transverse equation of motions:

$$\frac{d}{dt}(v_x + iv_y) = -i\omega(v_x + iv_y),\tag{33}$$

the solution is of the form $v_x + iv_y = v_{\perp}e^{-i(\omega t + \alpha)}$. Let $v_{\parallel} = v_z$. With these notations we can write:

$$\begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \begin{pmatrix} v_{\perp} \cos(\omega t + \alpha) \\ -v_{\perp} \sin(\omega t + \alpha) \\ v_{\parallel} \end{pmatrix}; \text{ with } v_{\perp} = \sqrt{v_x^2 + v_y^2}, \text{ and, } (34)$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 + R\sin(\omega t + \alpha) \\ y_0 + R\cos(\omega t + \alpha) \\ z_0 + v_{\parallel} t \end{pmatrix}; \text{ with } R \equiv \frac{v_{\perp}}{\omega} = \frac{v_{\parallel} \mathcal{E}}{cqB}.$$
 (35)

So the trajectory is a helix whose axis is along \hat{z} , with radius R. The frequency ω is the rotation frequency of the trajectory when projected in a plan orthogonal to the helix axis.

R is called the gyroradius, $R=\frac{v_\parallel\mathcal{E}}{cqB}=\frac{p_\perp c}{qB}$. $\omega=\frac{qcB}{\mathcal{E}}=\frac{qcB}{\gamma mc^2}\Rightarrow\frac{qB}{\gamma mc}$ is the gyrofrequency $(\frac{v_\perp}{R})$.

The gyroradius and gyrofrequency arise in all calculations involving particle motion in magnetic fields. Note that in SI units:

$$\omega = \frac{qB}{\gamma m}$$
, and $R = \frac{\gamma m v_{\perp}}{qB}$. (36)

Motion of a particle in a constant uniform magnetic and electric field

We now consider the case where both \overrightarrow{E} and \overrightarrow{B} fields are present in some arbitrary orientation. The idea is to directly solve the equation of motion

$$\frac{du^{\alpha}}{d\tau} = \frac{q}{mc} F^{\alpha}_{\beta} u^{\beta}; \tag{37}$$

the treatment follows G. Muñoz, *Am. J. Phys.* **65**, 429 (1997). Let $\theta \equiv \frac{q\tau}{mc}$, and rewrite the equation of motion in matrix form:

$$\frac{dU}{d\theta} = Fu \text{ with solution } u = e^{\theta F} u(0), \tag{38}$$

where,

$$e^{\theta F} = \sum_{n=0}^{\infty} \frac{\theta^n}{n!} F^n. \tag{39}$$

Now, recall the identity (see handout end of part II) $F^2 = \mathcal{F}^2 - 2\mathcal{I}_1I$. Because of this, every power of F can be written as a linear combination of I, F, \mathcal{F} , and F^2 , e.g.:

$$F^{3} = FF^{2} = F\mathcal{F}^{2} - 2\mathcal{I}_{1}F = -\mathcal{I}_{2}\mathcal{F} - 2\mathcal{I}_{1}F;$$

$$F^{4} = -\mathcal{I}_{2}F\mathcal{F} - 2\mathcal{I}_{1}F^{2} = \mathcal{I}_{2}^{2}I - 2\mathcal{I}_{1}F^{2};$$

$$F^{5} = \mathcal{I}_{2}^{2}F - 2\mathcal{I}_{1}F^{3} = (4\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2})F + 2\mathcal{I}_{1}\mathcal{I}_{2}\mathcal{F};$$
etc...

This means,

$$e^{\theta F} = \alpha I + \beta F + \gamma \mathcal{F} + \delta F^2. \tag{41}$$

To find the constants α , β , γ , and δ , consider the following traces (note that the trace of odd power of F and \mathcal{F} are zero:

(40)

$$t_{0} \equiv \frac{1}{4} \text{Tr}[e^{\theta F}] = \alpha - \mathcal{I}_{1} \delta,$$

$$t_{1} \equiv \frac{1}{4} \text{Tr}[Fe^{\theta F}] = -\mathcal{I}_{1} \beta - \mathcal{I}_{2} \gamma,$$

$$t_{2} \equiv \frac{1}{4} \text{Tr}[F^{2}e^{\theta F}] = -\mathcal{I}_{1} \alpha + (2\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2}) \delta,$$

$$t_{3} \equiv \frac{1}{4} \text{Tr}[F^{3}e^{\theta F}] = 2(\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2}) \beta + \mathcal{I}_{1} \mathcal{I}_{2} \gamma.$$

Solving this system of equation for α , β , γ , and δ , yields:

$$\alpha = \frac{(2\mathcal{I}_1^2 + \mathcal{I}_2^2)t_0 + \mathcal{I}_1 t_2}{\mathcal{I}_1^2 + \mathcal{I}_2^2}; \quad \beta = \frac{t_3 + \mathcal{I}_1 t_1}{\mathcal{I}_1^2 + \mathcal{I}_2^2};$$

$$\gamma = -\frac{(2\mathcal{I}_1^2 + \mathcal{I}_2^2)t_1 + \mathcal{I}_1 t_3}{\mathcal{I}_2(\mathcal{I}_1^2 + \mathcal{I}_2^2)}; \quad \delta = \frac{t_2 + \mathcal{I}_1 t_0}{\mathcal{I}_1^2 + \mathcal{I}_2^2}.$$

The traces are found upon diagnonalization of $e^{\theta F} \rightarrow e^{\theta F'}$:

$$Tr[e^{\theta F}] = Tr[e^{\theta F'}] = \sum_{i=1}^{4} e^{\theta \lambda_i},$$
 (42)

where λ_i are the eigenvalues of F: $\lambda_1 = -\lambda_2 = \lambda_-$, and $\lambda_3 = -\lambda_4 = i\lambda_+$ where $\lambda_\pm = \sqrt{\sqrt{\mathcal{I}_1^2 + \mathcal{I}_2^2} \pm \mathcal{I}_1}$.

Thus

$$t_{0} = \frac{1}{4} \operatorname{Tr}[e^{\theta F}] = \frac{1}{2} [\cosh(\theta \lambda_{-}) + \cos(\theta \lambda_{+})]$$

$$t_{k} = \frac{1}{4} \operatorname{Tr}[F^{k} e^{\theta F}] = \frac{\partial^{k} t_{0}}{\partial \theta^{k}}$$
(43)

So

$$t_1 = \frac{1}{2} [\lambda_- \sinh(\theta \lambda_-) - \lambda_+ \sin(\theta \lambda_+)]$$

$$t_2 = \frac{1}{2} [\lambda_-^2 \cosh(\theta \lambda_-) - \lambda_+^2 \cos(\theta \lambda_+)]$$

$$t_3 = \frac{1}{2} [\lambda_-^3 \cosh(\theta \lambda_-) + \lambda_+^3 \sin(\theta \lambda_+)]$$

Substitute and simplify to finally obtain the values:

$$\alpha = \frac{\lambda_{+}^{2} \cosh(\theta \lambda_{-}) + \lambda_{-}^{2} \cos(\theta \lambda_{+})}{2\sqrt{\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2}}}; \quad \beta = \frac{\lambda_{-} \sinh(\theta \lambda_{-}) + \lambda_{+} \sin(\theta \lambda_{+})}{2\sqrt{\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2}}};$$

$$\gamma = \frac{|\mathcal{I}_{2}|}{\mathcal{I}_{2}} \frac{\lambda_{-} \sin(\theta \lambda_{+}) - \lambda_{+} \sinh(\theta \lambda_{-})}{2\sqrt{\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2}}}; \quad \delta = \frac{\cosh(\theta \lambda_{-}) - \cos(\theta \lambda_{+})}{2\sqrt{\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2}}}.$$

Substitute into the power expansion for $e^{\theta F}$ to find:

$$u(\theta) = \frac{1}{2\sqrt{\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2}}} \left[(\lambda_{+}^{2}I + F^{2}) \cosh(\theta\lambda_{-}) + (\lambda_{-}^{2}I - F^{2}) \cos(\theta\lambda_{+}) + \left(\lambda_{-}F - \frac{|\mathcal{I}_{2}|}{\mathcal{I}_{2}} \lambda_{+}F \right) \sinh(\theta\lambda_{-}) + \left(\lambda_{+}F + \frac{|\mathcal{I}_{2}|}{\mathcal{I}_{2}} \lambda_{-}F \right) \sin(\theta\lambda_{+}) \right] u(0).$$

Note that $u(\theta) = \frac{2}{mc} \frac{dx}{d\theta}$, so integrate over $\theta \in [0, \theta)$ to get

$$x(\tau) = x(0) + \frac{mc}{q\mathcal{I}_{2}}\mathcal{F}u(0) + \frac{mc}{2q\sqrt{\mathcal{I}_{1}^{2} + \mathcal{I}_{2}^{2}}} \left[\left(F - \frac{\lambda_{+}^{2}}{\mathcal{I}_{2}} \mathcal{F} \right) \cosh(\theta \lambda_{-}) \right]$$

$$- \left(F + \frac{\lambda_{-}^{2}}{\mathcal{I}_{2}} \mathcal{F} \right) \cos(\theta \lambda_{+}) + \frac{\lambda_{+}^{2}I + F^{2}}{\lambda_{-}} \sinh(\theta \lambda_{-}) + \frac{\lambda_{-}^{2}I - F^{2}}{\lambda_{+}} \sin(\theta \lambda_{+}) \right] u(0).$$

which is the final result.

Consider the special case of $\overrightarrow{E} = E\widehat{x}$, $\overrightarrow{B} = B\widehat{y}$ then $\overrightarrow{E} \perp \overrightarrow{B} \Rightarrow \mathcal{I}_2 = 0$. Taking the limit $\mathcal{I}_2 \to 0$ gives:

 $\lambda_- \to 0$; $\lambda_+ \to \sqrt{2\mathcal{I}_1}$, $\cosh(\theta\lambda_-) \to 1$ and $\sinh(\theta\lambda_-)/\lambda_- \to \theta$. Consider the case $\mathcal{I}_1 = \frac{1}{2}(B^2 - E^2) > 0$ and let's take x(0) = 0. Then:

$$x(\tau) = \frac{mc}{q\mathcal{I}_2} \mathcal{F}u(0) + \frac{mc}{2q\mathcal{I}_1} \left[\left(F - \frac{2\mathcal{I}_1}{\mathcal{I}_2} \mathcal{F} \right) - F\cos(\theta\lambda_+) \right]$$

$$+ (2\mathcal{I}_1 I + F^2)\theta - \frac{1}{\sqrt{2\mathcal{I}_1}} F^2 \sin(\theta\sqrt{2\mathcal{I}_1}) \right] u(0).$$

$$(44)$$

Define $\Omega \equiv \frac{q}{mc}\sqrt{2\mathcal{I}_1}$ then

$$x(\tau) = \left(I + \frac{F^2}{2\mathcal{I}_1}u(0)\tau + \frac{mc}{2q\mathcal{I}_1}(1 - \cos\Omega\tau - \frac{F}{\sqrt{2\mathcal{I}_1}}\sin\Omega\tau\right)Fu(0)$$
(45)

$$Fu(0) = \gamma_0 c \begin{pmatrix} 0 & E & 0 & 0 \\ E & 0 & 0 & -B \\ 0 & 0 & 0 & 0 \\ 0 & B & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ \beta_{0x} \\ \beta_{0y} \\ \beta_{0z} \end{pmatrix} = \gamma_0 c \begin{pmatrix} E \\ E - \beta_{0z}B \\ 0 \\ \beta_{0x}B \end{pmatrix}; F^2 u(0) = \gamma_0 c \begin{pmatrix} E(E - \beta_{0z}B) \\ -2\mathcal{I}_1\beta_{0x} \\ 0 \\ B(E - \beta_{0z}B) \end{pmatrix}$$

and so:

$$x = \frac{\gamma_0 mc^2}{2q\mathcal{I}_1} \left[(E - B\beta_{0z})(1 - \cos\Omega\tau) + \sqrt{2\mathcal{I}_1}\beta_{0x}\sin\Omega\tau \right]$$

$$y = \gamma_0 v_{0y}\tau$$

$$z = \frac{\gamma_0 cE}{2\mathcal{I}_1} (B - E\beta_{0z})\tau + \frac{\gamma_0 mc^2 B}{2q\mathcal{I}_1} \left[\beta_{0x}(1 - \cos\Omega\tau) - \frac{E - B\beta_{0z}}{\sqrt{2\mathcal{I}_1}}\sin\Omega\tau \right]$$

$$t = \frac{\gamma_0 B}{2\mathcal{I}_1} (B - E\beta_{0z})\tau + \frac{\gamma_0 mcE}{2q\mathcal{I}_1} \left[\beta_{0x}(1 - \cos\Omega\tau) - \frac{E - B\beta_{0z}}{\sqrt{2\mathcal{I}_1}}\sin\Omega\tau \right]$$

Note that the particle has a velocity perpendicular to \overrightarrow{E} and \overrightarrow{B} fields. The so-called $E \times B$ drift. The drift velocity is $v_d = cE/B$.

Non uniform magnetic field and adiabatic invariance

Suppose the magnetic field is non uniform but changes "slowly" compared to the "gyroperiod" of the charge particle (charge=q) under its influence. This is a so-called "adiabatic change. The action integral is conserved:

$$J = \oint \overrightarrow{P}_{\perp} . \overrightarrow{dl} \tag{46}$$

 \overrightarrow{dl} is the line element along the particle trajectory. Expliciting P_{\perp} :

$$J = \oint (\gamma m \overrightarrow{v}_{\perp} + \frac{q}{c} \overrightarrow{A}) \cdot \overrightarrow{dl}$$
$$= (\gamma m \omega_B a)(2\pi a) + \frac{q}{c} \int_S \overrightarrow{B} \cdot \widehat{n} dS$$
(47)

$$\Rightarrow J = 2\pi\gamma m\omega_B a^2 - \frac{q}{c}\pi B a^2 \tag{48}$$

since B is anti-parallel to \widehat{n} . Also, $\gamma m\omega_B=\frac{q}{c}B$ so that:

$$J = -\frac{q}{c}\pi Ba^2. \tag{49}$$

This means the magnetic flux

$$\Phi_B = \int_S \overrightarrow{B} . \overrightarrow{dS} = \pi B a^2 \tag{50}$$

is an adiabatic invariant.

Non uniform magnetic field without adiabatic invariance: the solenoid

A B_r component of magnetic field impart a p_{θ} to a charge particle coming off a cathode immersed in a B-field. Let $\overrightarrow{B}(z=0) \equiv B_c$.

$$F_{\theta} = \frac{q}{c}v_{z}B_{r} = \frac{dp_{\theta}}{dt}; \quad p_{\theta}(t=0) = p_{\theta}(t=0) = 0$$

$$\Rightarrow p_{\theta} = \frac{q}{c}\int_{0}^{\infty}B_{r}v_{z}dt = \frac{q}{c}\int_{0}^{\infty}B_{r}dz \qquad (51)$$

But

$$\int \overrightarrow{B} d\overrightarrow{S} = 0 = -\pi r^2 B_c + 2\pi r \int_0^\infty Br dz$$

$$\Rightarrow \int_0^\infty B_r dz = \frac{1}{2} B_c r. \tag{52}$$

Consequently the charge q picks-up a total angular momentum $p_{\theta} = \frac{q}{2c}B_c r$. Note that

$$\frac{p_{\theta}}{p_c} = \frac{1}{2} \frac{qB_c}{p_c c} r = \frac{r}{2\rho} \tag{53}$$

where $\rho^{-1} \equiv \frac{qB_c}{p_cc}$. This tells what fraction of initial momentum got converted to angular momentum. ρ is the gyroradius the electron would have had if it was orthogonal to \overrightarrow{B}_c .

Note that for a particle originating external to the solenoid, $p_{\theta}=0$ by symmetry.

example of application: generation of "magnetized e- beam"

see http://prst-ab.aps.org/abstract/PRSTAB/v7/i12/e123501