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Lagrangian & Hamiltonian formulation

. . . — 1 2 3\ : -0 .
Classical mechanics, Given =’ (z*,z<,2>) in K and z system is char-
acterized by a Lagrangian: L£(z% 4% t). The action

t ) .
A= [ 2L, 3 )t (1)
t1

is a functional of Z'(t), VZ (t) defined for t € [t1,to].

The least action principle states that A is a stationary function for
any small variation § 2 (t) verifying §2 (t1) = 6z (to) = 0.

The equation of motion then follow from Euler-Lagrange equations:

Pl = 0L |
| Ot
dP" oL

dt ox’



Case of a free relativistic particle

Equation of motion must be referential-invariant = the least action
princple 44 = 0 must have the same form in different referential
= A must be a scalar invariant.

A is a sum of infinitesimal elements along a universe line z*(t)

= Ldt associated to a small displacement must be a scalar invariant.

= Ldt = ads = ay/1 — ‘C/—det also,

1 V2
im £=-mV?+const=a|1—- -4+ 0((V/c)} (2)
Ve 2 c2
SO o« = —me, and the relativistic Lagrangian of a free particle is

/ & mc [,
,Cfree — —m02 1 — 0—2 = —7 uaua, (3)

where u® = (v¢,y') is the four-velocity. One can check:
d 0L

d —
dto & dt(m’yw)



Lagrangian of a relativistic particle in e.m. field

The Lagrangian now takes the form £ = Ly.ce + Lint, Where L, is
the interaction potential.

In the nonrelativistic limit LY/ = —ed = —eAY so let's try

yC
(&

— __gaﬁuﬁAa
yC
e — —

= — (")/C(D — f)/V.A)
~ve

Ling = —eCD—I-eﬁZ. (4)



The total Lagrangian is

> V2 e— — .
L = —mc 1—0—2+EV.A($)—6¢($). (5)

Let’s check this gives the equation of motion, by calculating

d

8_£__8_£:O (6)

ox dtyy
i@_i = i(fymV—I-EA>
dtov dt C

— N5t a4 = “|—=—+(V.V)A
dt +c(8t+8tﬁxz ) dt T 8t+( )

0 e

L ="V.(V.A) —eVo = g (VI)A+V x(VxA)|-eVo



With B = V x A, one finally has:

d 0L oL 6(9
_ — - VCD——V B =0
dta‘—/g 8? (’ym ) + . ot + e X

which gives the Lorentz force equation (in Gauss units!):

i(fym‘_;) —eE +5(V x B) (7)
dt C

Let's check the Lagrangian verifies the “least action principle”
The total Lagrangian can be written

— " S, — iuaAa(xﬁ). (8)



least action principle §.A = 0.

T 2 ~
SA =6 [/ dT,C] =/ dr61 (9)
T1 T
— 0L = meg—= — [ 57 ]5u + gAqou” + qu® W(Sa: (10)
One has ju® = 5(85”; = aT(cSa:O‘) and
0(u®ua) o(u®u”) a A N a)
) = 0o 2O = g (s + ) =20 (D)
o __ d(dz®

using 5‘%}; 7 ) (commutation of § and d operators), one gets:
5P

— Sl = (mcug + qAﬁ)d( ) - quo‘ﬁﬁAaéwﬁ. (12)




Evaluating the integral by part and noting that éz°(r1) = 62P(m) =
O gives:

T2 du
0A = —/ dr !—mcd—f — q(0aAg)u” + qu0gAn 5P, (13)

71
and 64 = 0 = [...] = 0 (linear independence argument) gives the

equation of motion m%uﬁ = 1F, gu”

The canonical momentum ? conjugate to ¥ is, by definition,

oL
C
P = 7+54 (14)
C

and the hamiltonian is defined as:

H=PV —-_ (15)



Relativistic Hamiltonian

— N e %
Use P = fymfv -+ EA and calculate 'H then express H only as a

function of P and 7. On can do the algebra (namely explicit ¥ as

a function P and replace in the expression of H.

1
H = W. (Wmﬁ -+ EZ) + yme?= + ed — AT (16)
C Y C
2
= ’ymvz —+ me + ed = fymCQ + ed. (17)
Y

We note that the relation between ]_5 A and 'H —ed is the same
as between H and 7 for the case of zero field so we have:

2
(H — ed)? = (P ——A) c® + m?2c? (18)
So finally,

H = \/(?C—«@Z)Q—I—chéL—l—eCD (19)
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Motion of a particle in a constant uniform E-field

Let £ be the total energy: & = \/(pc)2 + (mc?)2 = ymc?

= v = % Thus,

E 2
P =ymv =27 =7 =_P. (20)
c2 E

Let's consider the case of a particle of charge g interacting with the
_>

field & = FEZxz, and with initial conditions p(t = 0) = pgy. Lorentz

Force gives:

which vyields:
pz = qEt, and, py = po (22)
and p? = (¢Et)? + p§.
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So the total energy at time t is:

E2(1) = 2 [(¢B1)* + pp| +m>c* = (cqBt)* + & (23)
where &y = E(t = 0). The velocity is:
E
Vyr — d—x — C cd ¢ (24)
dt \/(cht)2 + &3

note that lim;_~ = ¢. Performing a time integration yields:

1
2(t) = q—E\/(cht)2 + 2. (25)
For y-axis we have:

dy _ c*po
dt \/(cht)2 + 88’

(26)

and lim;_.0c % = 0.
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A time integration gives:

Et
y:@sinh_l « : (27)
qE €0
remember: fgggl% = sinh—1(¢). Expliciting ¢ as a function of y:
E
cqEt = sinh (q y) | (28)
poc

and substituting in z, we have the trajectory equation in (x,vy) plane:

E E
r = 9 sinh2<q y>+1
qb poc
E E
= 9 cosh (q y) (29)
qb poc
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The nonrelativistic limit (v < ¢) is given by setting &y = mc?, pg =
maug.

2 E E
r = % cosh | I2L ) ~ 4 2yz—l—const. (30)
qF mugc 2mug

the familiar parabola. The expansion cosh(z) = 1 + a:2/2! + O(z*)
was used.

T | 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(9E)/(p,c)y
Trajectories (in normalized coordinate) in uniform constant E-field: 7 = cosh(ky), with

k =1,2,3,4. dashed are corresponding parabolic approximation x = 1 + %(ngj)Q.
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Motion of a particle in a constant uniform B-field

H
Lorentz force gives (CGS!): p =20 x B; p = > =4V x
%
B.
H

B changes the direction of @ but not its magnitude so W, and vy
é
are constants. Consider for simplicity B = Bz, then

_>_>

v X B = vyBr — vz By,

which gives

_ cqB
Ve — T'Uy,
o cqB

Vy = — < Vg,

v, = O. (31)

14



So we have to solve a system of coupled ODE of the form:
'l.)m — wvy, Uy — —WUg, ?.}Z = 0. (32)

where w = %. Let’'s cast the transverse equation of motions:

d
—(ve Fivy) = —iw(vx +ivy), (33)

the solution is of the form vy +1ivy = fuLe_i(wHO‘). Let V|| = Vz- With
these notations we can write:

Vg v cos(wt + «)
vy | = —visin(wt+a) |; with v = v§—|—fu§, and, (34)
Uz Y
x xo + Rsin(wt + «) o E
v | = yo+ Rcos(wt+a) |: with r="L =" (35)
w cqB

z 20 + ’U”t
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So the trajectory is a helix whose axis is along z, with radius R.
The frequency w is the rotation frequency of the trajectory when
projected in a plan orthogonal to the helix axis.

v pLcC _ qcB _ qcB N qB

R is called the gyroradius, R = B — ¢B- W= ¢ mo—. e IS

the gyrofrequency (4).

T he gyroradius and gyrofrequency arise in all calculations involving
particle motion in magnetic fields. Note that in SI units:

B
w=2" and R =1L (36)

ym qB
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Motion of a particle in a constant uniform magnetic and electric field

We now consider the case where both ﬁ and § fields are present in
some arbitrary orientation. The idea is to directly solve the equation
of motion

du®
— QB 37
dr ﬁ (37)
the treatment follows G. I\/Iunoz, Am. J. Phys. 65, 429 (1997).

Let 6 = q—TC, and rewrite the equation of motion in matrix form:

dU

= Fu with solution u = ¢/ (0), (38)
where,
o0 97’2,

|
n=0 n:
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Now, recall the identity (see handout end of part II) F?2 = F2 —
2711. Because of this, every power of F' can be written as a linear
combination of I, F, F, and F2, e.q.:

FF? = FF? - 271F = —I,F — 214 F;
F4 = —I>FF — QIlFQ = I%I — 21'1F2;

By
w
|

F° = I3F —2I1F3 = (417 + I3)F + 2111 F;
etc.
(40)
This means,
/' = ol + BF + ~F 4+ §F2. (41)

To find the constants «, B, v, and §, consider the following traces
(note that the trace of odd power of F' and F are zero:
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1_ .
to = ZTF _GOF] = a — 110,
1_ .
tp = T Feft) = —T18 — To,
1_ .
tp = Tr F2e97 = —Tya 4 (277 + 73)6,

1
ts = JTr(F2e" ] =2(2F + I3)6 + TaTov.

Solving this system of equation for «, 3, v, and ¢, yields:

_ (2I3+I9)to+I1ts. 5= t3 +Z1t1
It+73 12 413"
_ 410+t o t2 T+ 11lg

(I3+13) ' 12413
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. . . /
The traces are found upon diagnonalization of e/f — e/f":

4
Tr[e?F] = Tr[efT ] = 3 &, (42)
i=1
where )\; are the eigenvalues of F': A\{ = —XAo = A_, and A3 = —)\g =
iy where Ay = \/ﬁf + 73 +1;.
Thus
1 op 1
to = ZTr[e | = E[cosh(e)\_) + cos(0X4)]
1 K ory _ 0"t
t. = —Tr|F = —
e= g T =

(43)
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So

1.

t1 = E)\_Sinh(w\_)—>\_|_sin(9>\_|_)]
1

tr = §>\ cosh(6X_ )—)\ cos(6A4)]
1. 3 3 .

t3 = E_A_cosh(eA_)—|—>\+sm(0>\_|_)]

Substitute and simplify to finally obtain the values:

A3 cosh(OA-)+A2 cos(OA4) | 5= A_sinh(OA_) + A ¢ Sln(<9>\_|_)

2,/T24+12 ' N 2\/12 + 73

| Zo| A=sin(@A )=y sinh(OA— ) 5 — cosh(6X_ )—cos(@)\_|_)

TR L nn e

(8 pr—
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Substitute into the power expansion for et to find:

1 _
w(0) = (AT 4 F?) cosh(OA_) + (A\21 — F?) cos(OA
217 + 13 " )y costOr)
n (A_F _ |§—2)\_|_]—‘> sinh(0A_) + <A+F n |§—2|>\_]—‘> sin(9>\_|_)] u(0).
2 2

Note that w(0) = %?Tg' so integrate over 6 € [0,0) to get

L mc mc >\?|_
2 N2 T+ F? 2] — F2
— (F + A—]—‘) cos(OAy) + T sinh(OA-) + AL F sin(9>\+)] 1(0).
I A At

which is the final result.
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Consider the special case of E = Ezx, B = By then E1LB= Iy =
0. Taking the limit Z» — 0 gives:

A — 0; Ay — /217, cosh(A_) — 1 and sinh(OX_)/ - — 6.
Consider the case 7y = 5(B? — E?) > 0 and let's take z(0) = 0.
Then:

271
= F——=F | — Fcos(6\ 44
() = = e [( Z ) (0r4)  (44)
1 5 .
mF sin(0+/27Z71)| u(0).
Define 2 = —L,/27; then
F2
x<’7') — (I + 2—1_1’11,(0)7' —I— E (1 — COS Q2T
F .
—msm Q7-> Fu(0) (45)
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0 & 0 1 B E(E — Bo.B)
_ L0 0 -B Boz | _ E—0(Bo.:B | .2 . —271 Box
F'U/(O) — 7ocC O O O O Boy — 7YocC O ! F U(O) — 7YocC O
0 B O O Bo= BoB B(E — f30.B)
and so:
2
__7Yomc .
r = 2 (E — BBp,)(1 —cosQ21) + /2718, Sin QT]
Yy — 70VoyT
2
Yock yomcesB E — By
— B —F 1 —cos sin Q21
. e (5 Bpo)r + 2% [ﬁox( - 220
Yomck E — B
t = B — FE 1 —cos2 sin 21
108 (5 - Bpo.)r + 22 [%( -2

Note

that the particle has a velocity perpendicular to ﬁ and §

fields. The so-called E x B drift. The drift velocity is vy = cE/B.
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Non uniform magnetic field and adiabatic invariance

Suppose the magnetic field is non uniform but changes ‘slowly”
compared to the "gyroperiod” of the charge particle (charge=q)
under its influence. This is a so-called "adiabatic change. The
action integral is conserved:

— —
J = j’{ P .di (46)
EZ iIs the line element along the particle trajectory. Expliciting P :
J = %(’Y?TL?J_ -+ QX)EZ
C

= (ymwpga)(2ma) + %/SE).ﬁdS (47)
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= J = 27rfymwBa2 — 47 Ba?
c

since B is anti-parallel to n. Also, ymwpg = %B so that:

J = ngaz.
C

This means the magnetic flux
—_— — 2
dp = /SB.dSZWBa

IS an adiabatic invariant.

(48)

(49)

(50)
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Non uniform magnetic field without adiabatic invariance: the solenoid

A B, component of magnetic field impart a py to a charge particle
_>
coming off a cathode immersed in a B-field. Let B(z = 0) = B..

d
’ q [° q [°
= pp = —/ Brv.dt = —/ Brdz (51)
c JO cJO
But
—— 2 o0
/BdSz O = —7r BC—|—27T7°/O Brdz

00 1
:>/O Brdz = EBC’I“. (52)
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Consequently the charge g picks-up a total angular momentum pg =
s-Bcr. Note that
Py _ quC r

= r=_— (53)
Pc 2 Ppcc 2p

where p_l = %—fg. This tells what fraction of initial momentum got
converted to angular momentum. p is the gyroradius the electron
would have had if it was orthogonal to §C.

Note that for a particle originating external to the solenoid, pg = 0

by symmetry.
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example of application: generation of “magnetized e- beam”

"1 solenoids i
W VA /
7]
B, (G)
| 110 2(.)0 4(.)0 690 8(?0
1 — 90} GC:0.97 +0.04 mm
i >
()
RS
2 70t
E
b(\l
b S0t
QN
N
A
v 30r weighted least-squares
linear fit: y=(0.98+
190 30 50 70
<L>=eB Oci (neVs)

0 05 1 15
o, (mm)

see http://prst-ab.aps.org/abstract/PRSTAB/v7/i12/e€123501
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