4-current density

- Consider a system of particles with positions $\vec{x}_{n}(t)$ and charges q_{n}.

$$
\begin{aligned}
\vec{J}(\vec{x}, t) & =\sum_{n} q_{n} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right) \overrightarrow{x_{n}}(t), \\
\rho(\vec{x}, t) & =\sum_{n} q_{n} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right)
\end{aligned}
$$

- Let's suppose J^{α} is the 4-current density, let $J^{\alpha}=(c \rho, J)$
- So $J^{i}(\vec{x})=\sum_{n} q_{n} \delta^{3}\left(x^{i}-x_{n}^{i}(t)\right) d_{t} x_{n}^{i}(t)$
- Using the property $\int_{-\infty}^{\infty} f(\vec{x}) \delta^{3}(\vec{x}-\vec{y})=f(\vec{y})$

Smooth function
we can rewrite J^{α} as

$$
J^{\alpha}(x)=\int \sum_{n} q_{n} \delta^{4}\left(x^{\alpha}-x_{n}^{\alpha}(t)\right) d x^{0} \frac{d x_{n}^{\alpha}(t)}{d t}
$$

J^{α} is a function of $x^{\alpha} \rightarrow$ it is a Lorentz invariant:

Charge continuity equation

- Consider the divergence of J

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{J}(\vec{x}, t) & =\sum_{n} q_{n} \frac{\partial}{\partial x^{i}} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right) \frac{d x_{n}^{i}(t)}{d t} \\
& =-\sum_{n} q_{n} \frac{\partial}{\partial x_{n}^{i}} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right) \frac{d x_{n}^{i}(t)}{d t} \\
& =-\sum_{n} q_{n} \partial_{t} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right) \\
& =-\partial_{t} \rho(\vec{x}, t)=-\partial_{0}[c \rho(\vec{x}, t)] .
\end{aligned}
$$

- So charge continuity can be written as

$$
\partial^{\alpha} J_{\alpha}=0
$$

4-gradient

- In previous slide we introduce the 4-gradient operator

$$
\partial_{\alpha} \equiv \frac{\partial}{\partial x^{\alpha}} .
$$

- This operator transforms as

$$
\partial_{\mu}^{\prime}=\frac{\partial}{\partial x^{\mu}}=\frac{\partial}{\partial x^{\nu}} \frac{\partial x^{\nu}}{\partial x^{\mu}}=\left(\Lambda^{-1}\right)_{\mu}^{\nu} \frac{\partial}{\partial x^{\nu}}=\left(\Lambda^{-1}\right)_{\mu}^{\nu} \frac{\partial_{\nu}}{}
$$

- Note that $\partial_{\mu}=\left(\partial_{0}, \vec{\nabla}\right)$.
- Can define the covariant form $\quad \partial^{\mu}=g^{\mu \nu} \partial_{\nu}=\left(\partial_{0},-\vec{\nabla}\right)$
- The self-contraction yields the d'Alembertian: $\square \equiv \partial^{\alpha} \partial_{\alpha}$.

4-potential

- Define

$$
A^{\alpha} \equiv(\phi, \vec{A})
$$

Lorentz Gauge then write $\partial_{\alpha} A^{\alpha}=0$. We also have

$$
\square A^{\alpha}=\frac{4 \pi}{c} J^{\alpha},
$$

or in SI units

$$
\square A^{\alpha}=\mu_{0} J^{\alpha}, \quad[\mathrm{SI}]
$$

- This is precisely the equation we solved to get the field of a moving charge three lessons ago...
- In SI unit: $\phi \rightarrow c \phi$

Covariance of Maxwell equations

- Define the tensor of dimension 2

$$
F^{\alpha \beta} \equiv \partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}=g^{\alpha \delta} \partial_{\delta} A^{\beta}-g^{\beta \delta} \partial_{\delta} A^{\alpha} 4 \text { potential }
$$

- F, is the e.m. field tensor. It is easily found to be

$$
F^{\alpha \beta}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

- In SI units, F is obtained by $E \rightarrow E / c$
- The covariant form is

$$
F_{\gamma \delta}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

Inhomogeneous Maxwell's eqns

- Consider

$$
\begin{aligned}
\partial_{\alpha} F^{\alpha \beta}=\partial_{0} F^{0 \beta}+\partial_{1} F^{1 \beta}+\partial_{2} F^{2 \beta} & +\partial_{3} F^{3 \beta}: \\
\partial_{\alpha} F^{\alpha 0} & =\partial_{0} F^{00}+\partial_{1} F^{10}+\partial_{2} F^{20}+\partial_{3} F^{30} \\
& =\partial_{i} E^{i}=\vec{\nabla} \cdot \vec{E}=4 \pi \rho=\frac{4 \pi}{c} J^{0} .
\end{aligned}
$$

- Similarly

$$
\begin{aligned}
\partial_{\alpha} F^{\alpha 1} & =\partial_{0} F^{01}+\partial_{1} F^{11}+\partial_{2} F^{21}+\partial_{3} F^{31} \\
& =\frac{1}{c} \partial_{t}\left(-E_{x}\right)+\partial_{x}(0)+\partial_{y}\left(-B_{z}\right)-\partial_{z}\left(B_{y}\right)=-\frac{1}{c} \partial_{t}\left(E_{x}\right)+[\vec{\nabla} \times \vec{B}]_{x} \\
& =[\vec{\nabla} \times \vec{B}]_{x}-\frac{1}{c} \partial_{t} E_{x}=\frac{4 \pi}{c} J^{1}
\end{aligned}
$$

- The inhomogeneous Maxwell's equations can be caster under the equation

$$
\partial_{\alpha} F^{\alpha \beta}=\frac{4 \pi}{c} J^{\beta}
$$

Homogeneous Maxwell's eqns I

- Consider the Levi-Civita tensor (rank 4)

$$
\epsilon^{\alpha \beta \gamma \delta}=\left\{\begin{array}{cc}
+1 & \text { if } \alpha, \beta, \gamma, \delta \\
-1 & \text { if } \alpha, \beta, \gamma, \delta \\
0 & \text { are even permutation of } 0,1,2,3 \\
\text { othermise }
\end{array}\right.
$$

- And consider $\epsilon^{\alpha \beta \gamma \delta} \partial_{\beta} F_{\delta \gamma}$:

$$
\begin{aligned}
\epsilon^{0 \beta \gamma \delta} \partial_{\beta} F_{\gamma \delta}= & \epsilon^{0123} \partial_{1} F_{23}+\epsilon^{0132} \partial_{1} F_{32}+ \\
& \epsilon^{0213} \partial_{2} F_{13}+\epsilon^{0231} \partial_{2} F_{31}+\epsilon^{0312} \partial_{3} F_{12}+\epsilon^{0321} \partial_{3} F_{21} \\
= & \partial_{1} F_{23}-\partial_{1} F_{32}-\partial_{2} F_{13}+\partial_{2} F_{31}+\partial_{3} F_{12}-\partial_{3} F_{21} \\
= & \partial_{x}\left(-B_{x}\right)-\partial_{x}\left(B_{x}\right)-\partial_{y}\left(B_{y}\right)+\partial_{y}\left(-B_{y}\right)+\partial_{z}\left(-B_{z}\right)-\partial_{z}\left(B_{z}\right) \\
= & -2 \vec{\nabla} \cdot \vec{B}(=0)
\end{aligned}
$$

Homogeneous Maxwell's eqns II

- Consider the Levi-Civita tensor (rank 4)

$$
\begin{aligned}
\epsilon^{1 \beta \gamma \delta} \partial_{\beta} F_{\gamma \delta}= & \epsilon^{1023} \partial_{0} F_{23}+\epsilon^{1032} \partial_{0} F_{32}+\epsilon^{1302} \partial_{3} F_{02}+\epsilon^{1320} \partial_{3} F_{20} \\
& +\epsilon^{1203} \partial_{2} F_{03}+\epsilon^{1230} \partial_{2} F_{30} \\
= & -\partial_{0} F_{23}+\partial_{0} F_{32}-\partial_{3} F_{02}+\partial_{3} F_{20}+\partial_{2} F_{03}-\partial_{2} F_{30} \\
= & 2\left(D_{0} F_{32}+\partial_{2} F_{03}+\partial_{3} F_{20}\right) \\
= & 2\left(\frac{1}{c} \partial_{t} B_{x}-\partial_{z} E_{y}+\partial_{y} E_{z}\right) \\
= & 2\left[(\vec{\nabla} \times \vec{E})_{x}+\frac{1}{c} \partial_{t} B_{x}\right](=0)
\end{aligned}
$$

- The homogeneous Maxwell's equations can be caster under the equation

$$
\partial_{\alpha} \mathcal{F}^{\alpha \beta}=0 .
$$

With the Dual field tensor defined as $\mathcal{F}^{\alpha \beta} \equiv \frac{1}{2} \epsilon^{\alpha \beta \gamma \delta} F_{\gamma \delta}$.

$$
\text { Note: } \mathcal{F}_{\alpha \beta}=F_{\alpha \beta}(\vec{E} \rightarrow \vec{B}, \vec{B} \rightarrow-\vec{E}) \text {. }
$$

Covariant form of Maxwell's equation

- To introduce H and D field introduce the rank 2 tensor:

$$
G^{\alpha \beta}=F^{\alpha \beta}(\vec{E} \rightarrow \vec{D}, \vec{B} \rightarrow \vec{H})
$$

- Then Maxwell's equation writes

$$
\partial_{\alpha} G^{\alpha \beta}=\frac{4 \pi}{c} J^{\beta}, \text { and } \partial_{\alpha} \mathcal{F}^{\alpha \beta}=0 .
$$

- F is a rank 2 tensor that conforms to Lorentz transformation so the (E,B) field can be computed in an other frame by

$$
\begin{aligned}
& F^{\prime \alpha \beta}=\frac{\partial x^{\prime \alpha}}{\partial x^{\gamma}} \frac{\partial x^{\prime \beta}}{\partial x^{\delta}} F^{\gamma \delta} . \text { or, in matrix notation } \\
& \qquad F^{\prime}=\tilde{\Lambda} F \Lambda=\Lambda F \Lambda
\end{aligned}
$$

Covariant form of Maxwell's equation

- Example consider the Lorentz boost along z-axis

$$
\Lambda=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\beta \gamma \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)
$$

- Then from

$$
F^{\prime}=\tilde{\Lambda} F \Lambda=\Lambda F \Lambda
$$

- We get the same matrix as [JDJ 11.148]

$$
F^{\gamma \gamma}=\left(\begin{array}{cccc}
0 & \gamma\left(E_{x}-\beta B_{y}\right) & \gamma\left(E_{y}+\beta B_{x}\right) & E_{z} \\
-\gamma\left(E_{x}-\beta B_{y}\right) & 0 & B_{z} & -\gamma\left(B_{y}-\beta E_{x}\right) \\
-\gamma\left(E_{y}+\beta B_{x}\right) & -B_{z} & 0 & \gamma\left(B_{x}+\beta E_{y}\right) \\
-E_{z} & \gamma\left(B_{y}-\beta E_{x}\right) & -\gamma\left(B_{x}+\beta E_{y}\right) & 0
\end{array}\right)
$$

Invariant of the e.m. field tensor

- Consider the following invariant quantities

$$
F^{\mu \nu} F_{\mu \nu}=2\left(E^{2}-B^{2}\right), \text { and } F^{\mu \nu} \mathcal{F}_{\mu \nu}=4 \vec{E} \cdot \vec{B}
$$

- Usually one redefine these invariants as

$$
\mathcal{I}_{1} \equiv-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}=\frac{1}{2}\left(B^{2}-E^{2}\right), \text { and } \mathcal{I}_{2} \equiv-\frac{1}{4} F^{\mu \nu} \mathcal{F}_{\mu \nu}=-\vec{E} \cdot \vec{B} .
$$

- Which can be rewritten as $\mathcal{I}_{1} \equiv-\frac{1}{4} \operatorname{tr}\left(F^{2}\right)$ and $\mathcal{I}_{2} \equiv-\frac{1}{4} \operatorname{tr}(F \mathcal{F})$
where $F \equiv F_{\mu}^{\nu}=F^{\mu \alpha} g_{\alpha \nu}$ and $\mathcal{F} \equiv \mathcal{F}_{\mu}^{\nu}=\mathcal{F}^{\mu \alpha} g_{\alpha \nu}$.
- Finally note the identities

$$
F \mathcal{F}=\mathcal{F} F=-\mathcal{I}_{2} I, \text { and } F^{2}-\mathcal{F}^{2}=-2 \mathcal{I}_{1} I
$$

Eigenvalues of the e.m. field tensor

- The eigenvalues are qiven bv

$$
\begin{gathered}
F \Psi=\lambda \Psi \Rightarrow \mathcal{F} F \Psi=\lambda \mathcal{F} \Psi \Rightarrow \mathcal{F} \Psi=-\frac{\mathcal{I}_{2}}{\lambda} \Psi \\
\left(F^{2}-\mathcal{F}^{2}\right) \Psi=-2 I \mathcal{I}_{1} \Psi=\left[\lambda^{2}-\left(\mathcal{I}_{2} / \lambda\right)^{2}\right] \Psi
\end{gathered}
$$

- Characteristic polynomial $\lambda^{4}+2 \mathcal{I}_{1} \lambda^{2}-\mathcal{I}_{2}^{2}=0$.
- With solutions

$$
\begin{array}{r}
\lambda_{ \pm}=\sqrt{\sqrt{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}} \pm \mathcal{I}_{1}} \\
\lambda_{1}=-\lambda_{2}=\lambda_{-}, \lambda_{3}=-\lambda_{4}=i \lambda_{+}
\end{array}
$$

Equation of motion

- The equation of motion (EOM) can be written

$$
\frac{d u^{\alpha}}{d \tau}=\frac{q}{m c} F_{\beta}^{\alpha} u^{\beta}
$$

where $u^{\alpha}=(\gamma c, \gamma \vec{v})$.

- This is equivalent to defining a 4-force:

$$
f^{\mu}=F^{\mu \nu} u_{\nu}
$$

- We need to solve EOM once we have specified the external e.m. tensor (assuming no other fields)

