Special relativity

- Squashing of the E-field line associated to a moving charge is suggestive of Lorentz contraction
- e.m. law and eqn of motion should be invariant with respect to Lorentz transformations
- Let's refresh our memory with some basic concepts of special relativity (SR in short)

Proper time

- Consider two spherical waves

$$
\begin{aligned}
& \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}=c^{2} \\
& \left(\frac{d x^{\prime}}{d t^{\prime}}\right)^{2}+\left(\frac{d y^{\prime}}{d t^{\prime}}\right)^{2}+\left(\frac{d z^{\prime}}{d t^{\prime}}\right)^{2}=c^{2}
\end{aligned}
$$

- So for photons we can write

$$
c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}=0
$$

- This holds true for any inertial frames, and one generally define the proper time which is an invariant (it is a scalar)

$$
d \tau^{2} \equiv d t^{2}-\frac{1}{c^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

Proper time

- In SR proper time is an invariant.
- Note that

$$
d \tau^{2}=d t^{2}\left(1-\beta^{2}\right)=\frac{1}{\gamma^{2}} d t^{2}
$$

all inertial observers measure the same $d \tau$

$\vec{\beta} \equiv \frac{1}{c} \vec{v} ; \vec{v}=$ velocity measured in lab frame $(\mathcal{O}), d t=$ period between "ticks" of clock in lab frame.
When $\vec{v}=0, d \tau=d t \Rightarrow d \tau=$ period between "ticks" of clock comoving with \mathcal{O}^{\prime}. Every inertial observer measure the same value for this time interval: it is a scalar - a fixed physical quantity!
If δt represents the period between ticks of $\mathcal{O}^{\prime \prime}$ s clock, then \mathcal{O} sees it ticks with period $d t=\gamma \delta t \quad$ This is "time dilatation": \mathcal{O} thinks \mathcal{O}^{\prime} 's clock runs slow.

Proper time

- Proper time defined as

$$
d \tau^{2} \equiv d t^{2}-\frac{1}{c^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

- This holds true for any inertial frames, and one generally define the proper time which is an invariant (it is a scalar)

$$
\begin{aligned}
& {[A B] \text { is time-like }} \\
& {[A C] \text { is space-like. }}
\end{aligned}
$$

3+1 dimension space \& Minkowski's metric

- Let

$$
x^{0} \equiv c t, x^{1} \equiv x, x^{2} \equiv y, x^{3} \equiv z\left[\text { so } \vec{x}^{i} \equiv \vec{X}(\mathrm{i}=1,2,3)\right]
$$

- Then we can write
contravariant

$$
d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}
$$

with $\alpha, \beta=0,1,2,3$ and

$$
g_{\alpha \beta}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is the Minkowski's metric.

3+1 dimension space -- some properties

- Some useful properties

$$
\begin{aligned}
& \text { contravariant } x^{\alpha}=g^{\alpha \beta} x_{\beta_{k}} \\
& \text { covariant }
\end{aligned}
$$

$$
x^{\alpha} . x_{\alpha}=g_{\alpha \beta} x^{\alpha} x^{\beta}=g^{\alpha \beta} x_{\alpha} x_{\beta}
$$

- Contravariant and covariant form of the metric are equal

$$
g_{\gamma \delta}=g_{\gamma \alpha} g_{\delta \beta} g^{\alpha \beta}
$$

mixed form is the Kroenecker delta function

$$
g_{\gamma}^{\beta}=g_{\gamma \alpha} g^{\alpha \beta}=\delta_{\gamma}^{\beta}
$$

Lorentz transformation (LT) I

- Derived to in sure Laws of Physics have the same form in inertial frames
- Many proofs ...
- The transformation must let $\mathrm{d} \tau$ invariant. A possible transformation is

$$
\left\{\begin{array}{l}
x=x^{\prime} \cosh \varphi+c t^{\prime} \sinh \varphi \\
c t=x^{\prime} \sinh \varphi-c t^{\prime} \cosh \varphi
\end{array}\right.
$$

Consider the coordinate in 0 corresponding to the origin $\left(x^{\prime}=0\right)$ in 0^{\prime}

$$
\left\{\begin{array}{l}
x=c t^{\prime} \sinh \varphi \\
c t=c t^{\prime} \sinh \varphi
\end{array} \Rightarrow \tanh \varphi=\frac{x}{V t}=\beta \quad \Rightarrow\left\{\begin{array}{l}
\sinh \varphi=\gamma \beta \\
\cosh \varphi=\gamma
\end{array}\right.\right.
$$

Rapidity (additive for LT compositions)

- Which gives (in $1+1$ dim) the usual Lorentz transform (LT).
- If e.m. only is considered other transformation can let Maxwell's equation invariant (e.g. just dilations) but LT are universal.

Lorentz transformation II

- The Lorentz transform from 0 to 0^{\prime} (two aligned inertial frames) is given by the boost matrix [see JDJ eqn (11.98)]

$$
\Lambda_{\mu}^{\nu}=\left(\begin{array}{cccc}
\gamma & -\gamma \beta_{x} & -\gamma \beta_{y} & -\gamma \beta_{z} \\
-\gamma \beta_{x} & 1+\left(\frac{\beta_{z}}{\beta}\right)^{2}(\gamma-1) & \frac{\beta_{z} \beta_{y}}{\beta^{2}}(\gamma-1) & \frac{\beta_{z} \beta_{z}}{\beta^{2}}(\gamma-1) \\
-\gamma \beta_{y} & \frac{\beta_{z} \beta_{3}}{\beta^{2}}(\gamma-1) & 1+\left(\frac{\beta_{y}}{\beta}\right)^{2}(\gamma-1) & \frac{\beta_{2} \beta_{z}}{\beta^{2}}(\gamma-1) \\
-\gamma \beta_{z} & \frac{\beta_{x} \beta_{z}}{\beta^{2}}(\gamma-1) & \frac{\beta_{y} \beta_{z}}{\beta^{2}}(\gamma-1) & 1+\left(\frac{\beta_{z}}{\beta}\right)^{2}(\gamma-1)
\end{array}\right)
$$

- Note that

$$
\Lambda_{\gamma}^{\alpha} \Lambda_{\delta}^{\beta} g_{\alpha \beta}=g_{\gamma \delta}
$$

- The Lorentz transformation is $x^{\alpha \alpha}=\Lambda_{\beta}^{\alpha} x^{\beta}$.
- Formally $\Lambda_{\beta}^{\alpha}=\frac{\partial x^{\prime \alpha}}{\partial x^{\beta}}$
- If σ and σ^{\prime} not aligned Lorentz transformation would be $\Lambda^{\alpha}{ }_{\beta}$ multiplied by a rotation matrix

Particle dynamics in SR

- The principle of SR is :

-All laws of physics must be invariant under Lorentz transformations.
-"Invariant" \Leftrightarrow Physics laws retain the same mathematical forms and numerical constants (scalars) keep the same value.

Particle dynamics in SR: 4- velocity

- define

$$
u^{\alpha} \equiv \frac{d x^{\alpha}}{d \tau}=c \frac{d x^{\alpha}}{d s}
$$

- Then $u^{0}=c \frac{d t}{d \tau}=\gamma c$ and $u^{i}=\frac{1}{c} \frac{d x^{i}}{d \tau}=c \frac{d t}{d \tau} \frac{d x^{i}}{d t}=c \gamma \beta^{i}$
- An invariant can be form via the scalar product

$$
u_{\alpha} u^{\alpha}=g_{\alpha \beta} u^{\beta} u^{\alpha}=\gamma^{2}-\gamma^{2} \beta^{2}=c^{2}
$$

- Moreover since $\mathrm{d} \tau$ is an invariant and $x^{\prime \alpha}=\Lambda_{\beta}^{\alpha} x^{\beta}$. then

$$
u^{\prime \alpha}=\Lambda_{\beta}^{\alpha} u^{\beta}
$$

u conforms to Lorentz transformation i.e. satisfies the principle of SR!

Particle dynamics in SR: 4- momentum

- Define $P_{\alpha} \equiv m u^{\alpha} \quad E=$ total energy

$$
\Rightarrow P^{0}=\gamma m c=E / c, P^{i}=p^{i}
$$

- Then

$$
P_{\alpha} P^{\alpha}=m^{2} u_{\alpha} u^{\alpha}=m^{2} c^{2}=E / c^{2} \quad \text { and } P^{\alpha}=\Lambda_{\beta}^{\alpha} P^{\beta}
$$

- The fundamental dynamical law for particle interactions in SR is that 4-momentum is conserved in any Lorentz frame.
- So $P_{\alpha} P^{\alpha}=g_{\alpha \beta} P^{\beta} P^{\alpha}=E^{2} / c^{2}-p^{2}$

$$
\begin{aligned}
& E^{2} / c^{2}-p^{2}=(m c)^{2} \\
\Rightarrow & E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}} . \Rightarrow T=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}-m c^{2}
\end{aligned}
$$

Particle dynamics in SR: example

- Consider $n+n \rightarrow n+n+n+\bar{n}$ w one incident n at rest

Question: Minimum required energy for the incoming n to enable the reaction?
Answer: At threshold the 4 final neutrons are at rest in the lab frame

$$
\begin{aligned}
& P_{1}^{\alpha}+P_{2}^{\alpha}=P_{f}^{\alpha} \\
\Rightarrow & \left(P_{1}^{\alpha}+P_{2}^{\alpha}\right)\left(P_{1 \alpha}+P_{2 \alpha}\right)=P_{f}^{\alpha} P_{f \alpha}=16\left(m_{n} c\right)^{2} \\
& P_{1}^{\alpha} P_{1 \alpha}+2 P_{1}^{\alpha} P_{2 \alpha}+P_{2}^{\alpha} P_{2 \alpha}=2\left(m_{n} c\right)^{2}+2 P_{1}^{\alpha} P_{2 \alpha} \\
& \Rightarrow P_{1}^{\alpha} P_{2 \alpha}=7\left(m_{n} c\right)^{2} .
\end{aligned}
$$

with $P_{1}^{\alpha} P_{2 \alpha}=g_{\alpha \beta} P_{1}^{\alpha} P_{2}^{\beta}=g_{00} P_{1}^{0} P_{2}^{0}=m_{n} c \frac{E}{c}$
we finally get the threshold energy

$$
E=7 m_{n} c^{2}
$$

