Summary of TM mode

$$
\omega_{m n p}^{T M}=\frac{1}{\sqrt{\mu t}} \sqrt{\left(\frac{x_{m n}}{R}\right)^{2}+\left(\frac{p \pi}{L}\right)^{2}} ;\left\{\begin{array} { l }
{ m = 0 , 1 , 2 , \ldots } \\
{ n = 1 , 2 , 3 , \ldots } \\
{ p = 0 , 1 , 2 , \ldots }
\end{array} \rightarrow \left\{\begin{array}{l}
x_{0 n}=2.405,5.520,8.564, \ldots \\
x_{1 n}=3.832,7.016,10.714, \ldots \\
x_{2 n}=5.136,8.417,11.620, \ldots
\end{array} .\right.\right.
$$

$$
\begin{aligned}
& E_{r}(r, \phi, z, t)=-E_{0}\left(\frac{p \pi}{x_{m n}} \frac{R}{L}\right)\left[\left(\frac{m}{x_{m n}} \frac{R}{r}\right) J_{m}\left(x_{m n} \frac{r}{R}\right)-J_{m+1}\left(x_{m n} \frac{r}{R}\right)\right] \cos (m \phi) \sin \left(p \pi \frac{z}{L}\right) \cos \left(\omega_{m n p}^{T M} t\right) \\
& E_{\phi}(r, \phi, z, t)=E_{0}\left(\frac{p \pi}{x_{m n}} \frac{R}{L}\right)\left(\frac{m}{x_{m n}} \frac{R}{r}\right) J_{m}\left(x_{m n} \frac{r}{R}\right) \sin (m \phi) \sin \left(p \pi \frac{z}{L}\right) \cos \left(\omega_{m n p}^{T M} t\right) \\
& E_{z}(r, \phi, z, t)=E_{0} J_{m}\left(x_{m n} \frac{r}{R}\right) \cos (m \phi) \cos \left(p \pi \frac{z}{L}\right) \cos \left(\omega_{m n p}^{T M} t\right) \\
& B_{r}(r, \phi, z, t)=E_{0} \sqrt{\mu \epsilon}\left(\frac{R}{x_{m n}} \sqrt{\left.\mu \epsilon \omega_{m n p}^{T M}\right)\left(\frac{m}{x_{m n}} \frac{R}{r}\right) J_{m}\left(x_{m n} \frac{r}{R}\right) \sin (m \phi) \cos \left(p \pi \frac{z}{L}\right) \sin \left(\omega_{m n p}^{T M} t\right)}\right. \\
& B_{\phi}(r, \phi, z, t)=E_{0} \sqrt{\mu \epsilon}\left(\frac{R}{x_{m n}} \sqrt{\left.\mu \epsilon \omega_{m n p}^{T M}\right)}\left[\left(\frac{m}{x_{m n}} \frac{R}{r}\right) J_{m}\left(x_{m n} \frac{r}{R}\right)-J_{m+1}\left(x_{m n} \frac{r}{R}\right)\right] \cos (m \phi) \cos \left(p \pi \frac{z}{L}\right) \sin \left(\omega_{m n p}^{T M} t\right)\right. \\
& B_{z}(r, \phi, z, t)=0
\end{aligned}
$$

脂: U N I V E R S I T Y

Summary of TE mode

$$
\omega_{m n p}^{T E}=\frac{1}{\sqrt{\mu c}} \sqrt{\left(\frac{x_{m n}^{\prime}}{R}\right)^{2}+\left(\frac{p \pi}{L}\right)^{2}} ;\left\{\begin{array} { l }
{ m = 0 , 1 , 2 , \ldots } \\
{ n = 1 , 2 , 3 , \ldots } \\
{ p = 1 , 2 , 3 , \ldots }
\end{array} \rightarrow \left\{\begin{array}{l}
x_{0 n}^{\prime}=3.832,7.016,10.714, \ldots \\
x_{1 n}^{\prime}=1.841,5.331,8.536, \ldots \\
x_{2 n}=3.054,6.706,9.970, \ldots
\end{array} .\right.\right.
$$

$$
\begin{aligned}
E_{r}(r, \phi, z, t) & =E_{0}\left(\frac{R}{x_{m n}^{\prime}} \sqrt{\mu \epsilon} \omega_{m n p}^{T E}\right)\left(\frac{m}{x_{m n}^{\prime}} \frac{R}{r}\right) J_{m}\left(x_{m n}^{\prime} \frac{r}{R}\right) \sin (m \phi) \sin \left(p \pi \frac{z}{L}\right) \cos \left(\omega_{m n p}^{T E} t\right) \\
E_{\phi}(r, \phi, z, t) & =E_{0}\left(\frac{R}{x_{m n}^{\prime}} \sqrt{\mu \epsilon} \omega_{m n p}^{T E}\right)\left[\left(\frac{m}{x_{m n}^{\prime}} \frac{R}{r}\right) J_{m}\left(x_{m n}^{\prime} \frac{r}{R}\right)-J_{m+1}\left(x_{m n}^{\prime} \frac{r}{R}\right)\right] \cos (m \phi) \sin \left(p \pi \frac{z}{L}\right) \cos \left(\omega_{m n p}^{T E} t\right) \\
E_{z}(r, \phi, z, t) & =0 \\
B_{r}(r, \phi, z, t) & =E_{0} \sqrt{\mu \epsilon}\left(\frac{p \pi}{x_{m n}^{\prime}} \frac{R}{L}\right)\left[\left(\frac{m}{x_{m n}^{\prime}} \frac{R}{r}\right) J_{m}\left(x_{m n}^{\prime} \frac{r}{R}\right)-J_{m+1}\left(x_{m n}^{\prime} \frac{r}{R}\right)\right] \cos (m \phi) \cos \left(p \pi \frac{z}{L}\right) \sin \left(\omega_{m n p}^{T E} t\right) \\
B_{\phi}(r, \phi, z, t) & =-E_{0} \sqrt{\mu \epsilon}\left(\frac{p \pi}{x_{m n}^{\prime}} \frac{R}{L}\right)\left[\left(\frac{m}{x_{m n}^{\prime}} \frac{R}{r}\right) J_{m}\left(x_{m n}^{\prime} \frac{r}{R}\right) \sin (m \phi) \cos \left(p \pi \frac{z}{L}\right) \sin \left(\omega_{m n p}^{T E} t\right)\right. \\
B_{z}(r, \phi, z, t) & =E_{0 \sqrt{\mu \epsilon} J_{m}\left(x_{m n}^{\prime} \frac{r}{R}\right) \cos (m \phi) \sin \left(p \pi \frac{z}{L}\right) \sin \left(\omega_{m n p}^{T E} t\right)}
\end{aligned}
$$

Comment on cavity geometry

- Resonant frequency

$$
\omega_{m n p}=\frac{1}{\sqrt{\mu \epsilon}} \frac{1}{R} \sqrt{\left(x_{m n}^{\prime}\right)^{2}+(p \pi)^{2}(R / L)^{2}}
$$

- not interested in large p or R : $\lim _{R \rightarrow \infty, p \rightarrow \infty} \omega_{m n p}=\frac{1}{\sqrt{\mu}} \frac{p \pi}{L} \Rightarrow R$-independent.
- not interested in large m or n (and/or large L): $\omega_{m n p} \rightarrow \frac{1}{\sqrt{\mu t}} \frac{x_{m n}}{R}$ for large m or n and $R / L \sim 1 L$-independent.
\Rightarrow The most interesting modes in practical applications should be low order modes with $R / L \sim 1$.

Some convenient Formulae

- Let's write the axial field for TM and TE mode as

$$
\begin{array}{ll}
\mathrm{TM}: & E_{z}(r, \phi)=E_{0} \psi(r, \phi), B_{z}(r, \phi)=0 \\
\mathrm{TE}: & B_{z}(r, \phi)=-E_{0} \sqrt{\mu \epsilon} \psi(r, \phi), E_{z}(r, \phi)=0
\end{array}
$$

[note: here we introduce ψ not to be confused with the Ψ previously used]

- For both mode with therefore have

$$
E_{z}^{2}(r, \phi)+\frac{1}{\mu \epsilon} B_{z}^{2}(r, \phi)=E_{0}^{2} \psi^{2}
$$

Some convenient Formulae

- From last lesson we have, for TM and TE mode

$$
\begin{aligned}
& {\left[\begin{array}{c}
\vec{E}_{t}(r, \phi) \\
\vec{B}_{t}(r, \phi)
\end{array}\right]=\frac{i E_{0}}{\gamma^{2}}\left[\begin{array}{c}
\pm k \vec{\nabla}_{t} \\
\mu \epsilon \omega \hat{z} \times \vec{\nabla}_{t}
\end{array}\right] \psi(r, \phi) ;} \\
& {\left[\begin{array}{c}
\vec{E}_{t}(r, \phi) \\
\vec{B}_{t}(r, \phi)
\end{array}\right]=\frac{i \sqrt{\mu \epsilon} E_{0}}{\gamma^{2}}\left[\begin{array}{c}
-\omega \hat{z} \times \vec{\nabla}_{t} \\
\pm k \vec{\nabla}_{t}
\end{array}\right] \psi(r, \phi) ;}
\end{aligned}
$$

- So for both mode we

$$
E_{t}^{2}+\frac{1}{\mu \epsilon} B_{t}^{2}=\frac{E_{0}^{2}}{\gamma^{4}}\left(k^{2}+\mu \epsilon \omega^{2}\right)\left(\nabla_{t} \psi\right)^{2} .
$$

Computing U

- The stored energy in the resonant cavity is

$$
U=\frac{1}{2} \int_{V} d \vec{x}^{3}(E D+B H)=\frac{\epsilon}{2} \int_{V} d \vec{x}^{3}\left(E^{2}+\frac{B^{2}}{\mu \epsilon}\right)
$$

- Note the convenient formulae
- $\quad \int d z \sin ^{2}(k z)=L / 2$
- $\quad \int d z \cos ^{2}(k z)=L / 2\left(1+\delta_{0 p}\right)$
- Time averaging $\sin ^{2}(\omega t)$ or $\cos ^{2}(\omega t)$ gives $1 / 2$

Computing U

- We also have

$$
\begin{aligned}
\frac{k^{2}+\mu \epsilon \omega^{2}}{\gamma^{4}} & =\frac{2 k^{2}+(x / R)^{2}}{(x / R)^{4}}=\left(\frac{R}{x}\right)^{2}\left[1+2\left(\frac{k R}{x}\right)^{2}\right] \\
& =\left(\frac{R}{x}\right)^{2}\left[1+2 \xi^{2}\right] \text { where } \xi \equiv \frac{p \pi R}{x L}
\end{aligned}
$$

- So integrating (by head) over z and t-averaging gives

$$
U=\frac{1+\delta_{0 p}}{8} \epsilon E_{0}^{2} L \int_{A} d A\left\{\left(\frac{R}{x}\right)^{2}\left[1+2 \xi^{2}\right]\left(\nabla_{t} \psi\right)^{2}+\psi^{2}\right\}
$$

Computing U

- Consider $\int_{A} d A\left(\nabla_{t} \psi\right)^{2}$
- We have

$$
\begin{aligned}
\int_{A} d A\left(\nabla_{t} \psi\right)^{2} & =\int_{A} d A \vec{\nabla}_{t} \cdot\left(\psi \vec{\nabla}_{t} \psi\right)-\int_{A} \psi \nabla_{t}^{2} \psi \\
& =\oint_{C} d l \psi \hat{n} \cdot \vec{\nabla}_{t} \psi-\int_{A} d A \psi \nabla_{t}^{2} \psi
\end{aligned}
$$

- But the boundary conditions gives

$$
\oint_{C} d l \psi \hat{n} \cdot \vec{\nabla}_{t} \psi=0\left\{\begin{array}{c}
\psi^{T M}(r=R)=0 \\
\partial_{r} \psi^{T E}(r=R)=0
\end{array}\right.
$$

- And from wave eqn. $\nabla_{t}^{2} \psi=-\left(k^{2}-\mu \epsilon \omega^{2}\right) \psi=(x / R)^{2} \psi$
- So finally

$$
\int_{A} d A\left(\nabla_{t}\right)^{2}=\left(\frac{x}{R}\right)^{2} \int_{A} d A \psi^{2}
$$

程性 NORTHERN ILLINOIS

Computing U

- So we end-up with JDJ Eq. 8.92

$$
U=\frac{\epsilon L}{4} E_{0}^{2}\left(1+\delta_{0 p}\right)\left[1+\xi^{2}\right] \int_{A} d A \psi^{2}
$$

- To perform the integral consider $\psi^{2} \propto \cos ^{2}(m \phi)$ so that

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \phi \psi^{2} \rightarrow \pi\left(1+\delta_{0 m}\right) J^{2} \text { and } \\
& \qquad U=\frac{\pi}{4} \epsilon L E_{0}^{2}\left(1+\delta_{0 m}\right)\left(1+\delta_{0 p}\right)\left[1+\xi^{2}\right] \int_{0}^{R} d r r J_{m}^{2}\left(x \frac{r}{R}\right) .
\end{aligned}
$$

- To continue we now need to specialize to either TM or TE modes...

U for TM mode

- The integral is straightforward

$$
\int_{0}^{R} d r r J_{m}^{2}\left(\frac{x r}{R}\right)=\frac{1}{2} R^{2} J_{m+1}^{2}\left(x_{m n}\right)
$$

the identity $\int_{0}^{1} d x x J_{\nu}^{2}(\alpha x)=\frac{1}{2} J_{\nu+1}^{2}$ if $J_{\nu}(\alpha)=0$ was used

- And finally the stored energy associated to the TM mode is

$$
U_{m n p}^{T M}=\frac{1}{8} V \epsilon E_{0}^{2}\left(1+\delta_{0 m}\right)\left(1+\delta_{0 p}\right)\left[1+\xi^{2}\right] J_{m+1}^{2}\left(x_{m n}\right)
$$

$$
\text { wherein } V \equiv \pi R^{2} L
$$

U for TE mode

- Consider the identity

$$
\int_{0}^{x} d \rho \rho J_{m}^{2}(\rho)=\frac{1}{2} x^{2}\left[J_{m}^{2}(x)+J_{m-1}^{2}(x)\right]-m x J_{m}(x) J_{m-1}(x)
$$

- Applied to our radial integral this gives

$$
\begin{array}{r}
\Rightarrow \int_{0}^{R} d r r J_{m}^{2}\left(x \frac{r}{R}\right)=\frac{R^{2}}{x^{2}}\left\{\frac{1}{2} x^{2}[\ldots]-m \ldots\right\} \\
=\frac{1}{2} R^{2}\left[J_{m}^{2}\left(x_{m n}^{\prime}\right)+J_{m-1}^{2}\left(x_{m n}^{\prime}\right)\right]-\frac{m}{x_{m n}^{\prime}} R^{2} J_{m}\left(x_{m n}^{\prime}\right) J_{m-1}\left(x_{m n}^{\prime}\right)
\end{array}
$$

the identity $\frac{m}{x^{\prime}} J_{m}\left(x^{\prime}\right)=J_{m+1}\left(x^{\prime}\right)=J_{m-1}\left(x^{\prime}\right)$ is then used

$$
\begin{aligned}
\int_{0}^{R} d r r J_{m}^{2}\left(x \frac{r}{R}\right) & =\frac{1}{2} R^{2}\left[1+\left(\frac{m}{x^{\prime}}\right)^{2}\right] J_{m}^{2}\left(x^{\prime}\right)-R^{2}\left(\frac{m}{x^{\prime}}\right)^{2} J_{m}^{2}\left(x^{\prime}\right) \\
& =\frac{1}{2} R^{2}\left[1-\left(\frac{m}{x^{\prime}}\right)^{2}\right] J_{m}^{2}\left(x^{\prime}\right)
\end{aligned}
$$

U for TE mode

- So finally the store energy associated to TE mode is $\left(\delta_{0 p}=0(p \neq 0)\right)$

$$
\begin{gathered}
U_{m n p}^{T E}=\frac{1}{8} V \epsilon E_{0}^{2}\left(1+\delta_{0 m}\right)\left[1-\left(\frac{m}{x^{\prime}}\right)^{2}\right]\left[1+\xi^{\prime 2}\right] J_{m}^{2}\left(x_{m n}^{\prime}\right) \\
\delta_{0 p}=0(p \neq 0) \text { for TE-modes }
\end{gathered}
$$

where in $\quad V \equiv \pi R^{2} L$

$$
\xi^{\prime}=\frac{p \pi R}{x_{m n}^{\prime} L}
$$

Dissipated Power

- Let's define the dissipated power per surface area

- For a pillbox cavity

$$
P=\frac{R_{s}}{2 \mu^{2}}\left[\int_{\text {side }} d A B_{\|}^{2}+2 \int_{\text {end }} d A B_{\|}^{2}\right] .
$$

P for TM mode

- For the sides of the cavity

$$
\begin{aligned}
& \int_{\text {side }} d A B_{\|}^{2}=\int_{0}^{L} d z \int_{0}^{2 \pi} d \phi R B_{\phi}^{2}(r, \phi, z) \\
= & \frac{L}{2}\left(1+\delta_{0 p}\right) \pi\left(1+\delta_{0 m}\right) \mu \epsilon E_{0}^{2}\left[1+\xi^{2}\right] R\left[\frac{m}{x} J_{m}(x)-J_{m+1}(x)\right]^{2}
\end{aligned}
$$

but $J_{m}(x)=0$ so
$\int_{\text {side }} d A B_{\|}^{2}=\frac{1}{2} \mu \epsilon E_{0}^{2}(\pi L R)\left(1+\delta_{0 p}\right)\left(1+\delta_{0 m}\right)\left[1+\xi^{2}\right] J_{m+1}^{2}(x)$
and again $\xi \equiv \frac{\pi p R}{x_{m n} L}$.

P for TM mode

- For the ends plate

$$
\begin{aligned}
& \int_{\text {end }} d A B_{\|}^{2}=\int_{0}^{2 \pi} d \phi \int_{0}^{R} d r r B_{t}^{2} \\
= & \frac{E_{0}^{2} \mu^{2} \epsilon^{2} \omega^{2}}{(x / R)^{4}} \int_{A} d A(\nabla \psi)^{2}=\frac{E_{0}^{2} \mu^{2} \epsilon^{2} \omega^{2}}{(x / R)^{2}} \int_{A} d A \psi^{2} \\
= & \mu \epsilon E_{0}^{2}\left[1+\xi^{2}\right] \frac{\pi}{2}\left(1+\delta_{0 m}\right) R^{2} J_{m+1}^{2}(x)
\end{aligned}
$$

So

$$
\int_{\text {end }} d A B_{\|}^{2}=\frac{1}{2} \mu \epsilon E_{0}^{2}\left(\pi R^{2}\right)\left(1+\delta_{0 m}\right)\left[1+\xi^{2}\right] J_{m+1}^{2}\left(x_{m n}\right)
$$

P for TM mode

- In summary

$$
\begin{aligned}
& \int_{\text {side }} d A B_{\|}^{2}=\frac{1}{2} \mu \epsilon E_{0}^{2}(\pi L R)\left(1+\delta_{0 p}\right)\left(1+\delta_{0 m}\right)\left[1+\xi^{2}\right] J_{m+1}^{2}(x) \\
& \int_{\text {end }} d A B_{\|}^{2}=\frac{1}{2} \mu \epsilon E_{0}^{2}\left(\pi R^{2}\right)\left(1+\delta_{0 m}\right)\left[1+\xi^{2}\right] J_{m+1}^{2}\left(x_{m n}\right)
\end{aligned}
$$

- So the total power loss is (with $A_{s} \equiv 2 \pi R L$)

$$
P_{m n p}^{T M}=\frac{R_{s}}{2 \mu^{2}} \mu \epsilon E_{0}^{2} \frac{1}{4} A_{S}\left(1+\delta_{0 m}\right)\left[1+\xi^{2}\right]\left[1+\delta_{0 p}+2 \frac{R}{L}\right] J_{m+1}^{2}\left(x_{m n}\right) .
$$

P for TE mode

- Consider the side wall:

$$
\begin{aligned}
& \int_{\text {side }} d A B_{\|}^{2}=\int_{0}^{L} d z \int_{0}^{2 \pi} d \phi R\left[B_{\phi}^{2}(R, \phi, z)+B_{z}^{2}(R, \phi, z)\right] \\
= & \mu \epsilon E_{0}^{2} \frac{L}{2} \pi\left(1+\delta_{0 m}\right) R\left\{\left(\frac{m}{x^{\prime}}\right)^{2} J_{m}^{2}\left(x^{\prime}\right) \xi^{\prime 2}+J_{m}^{2}\left(x^{\prime}\right)\right\} \\
\Rightarrow & \int_{\text {side }} d A B_{\|}^{2}=\mu \epsilon E_{0}^{2} \frac{\pi}{2} L R\left(1+\delta_{0 m}\right)\left[1+\left(\frac{R m p \pi}{x^{\prime 2} L}\right)^{2}\right] J_{m}^{2}\left(x^{\prime}\right)
\end{aligned}
$$

- Consider the end

$$
\int_{\text {end }} d A B_{\|}^{2}=\int_{0}^{2 \pi} d \phi \int_{0}^{R} d r r B_{t}^{2}(r, \phi, 0)
$$

plates

$$
\begin{aligned}
& =\mu \epsilon E_{0}^{2} \xi^{\prime 2}\left(\frac{R}{x^{\prime}}\right)^{2} \int_{A} d A(\vec{\nabla} \psi)^{2} \\
& =\mu \epsilon E_{0}^{2} \xi^{2} \int_{A} d A \psi^{2}
\end{aligned}
$$

P for TE mode

$$
\begin{aligned}
& \int_{A} d A \psi^{2}=\pi\left(1+\delta_{0 m}\right) \int_{0}^{R} d r r J_{m}^{2}\left(x^{\prime} \frac{r}{R}\right) \\
&=\frac{\pi}{2} R^{2}\left(1+\delta_{0 m}\right)\left[1-\left(\frac{m}{x^{\prime}}\right)^{2}\right] J_{m}^{2}\left(x^{\prime}\right) \\
& \Rightarrow \int_{A} d A \psi^{2}=\mu \epsilon E_{0}^{2} \frac{\pi}{2} R^{2}\left(1+\delta_{0 m}\right) \xi^{\prime 2}\left[1+\left(\frac{m}{x_{m n}^{\prime}}\right)^{2}\right] J_{m}^{2}\left(x_{m n}^{\prime}\right)
\end{aligned}
$$

- So finally

$$
\begin{aligned}
P_{m n p}^{T E}= & \frac{R_{s}}{2 \mu^{2}} \mu \epsilon E_{0}^{2} \frac{1}{4} A_{s}\left(1+\delta_{0 m}\right)\left\{1+\left[2 \frac{R}{L}+\right.\right. \\
& \left.\left.+\left(1-2 \frac{R}{L}\right)\left(\frac{m}{x^{\prime}}\right)^{2}\right] \xi^{\prime 2}\right\} J_{m}^{2}\left(x_{m n}^{\prime}\right)
\end{aligned}
$$

