Transition Radiation

« Transition radiation is emitted whenever a
charged particle cross the boundary between
two media with different electrical properties

« |f we consider the case of an
electron crossing a vacuum/
perfect conductor interface

e” (image charge)

@515
* Then the problem can be e-
treated as the collapsing of

the electron with its image
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« Both particle are decelerated... vacuum
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TR fluence |

« Start with the spectral fluence:
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« Let t=0 be the time corresponding to the charge hitting the boundary,
so at t=0 the charge suddenly disappear.
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TR fluence I

« The spectral fluence seems independent of frequency!

« Physically impossible integrating over the frequency spectrum should
be a finite energy value

« Simple argument...

— Another way of explaining transition radiation is to consider the
e.m. fields associated to the moving charge

— When the charge passes through the foil these field are
“reflected”

— Reflection impose the interface to be a good mirror, and this
generally introduce a frequency dependence

— For instance the X-ray components of the e.m. field will not be
reflected. The typical cut-off frequency is the plasma frequency

— A similar argument hold for the low frequency (diffraction!)
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TR fluence llI

* In the relativistic and small angle approximation

sinf ~ 6, cosf ~1—-60?/2and 3~ 1-1/(2v?%)

« the fluence simplifies to
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» So the angular distribution is peaked at O=%1/y
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Angular distribution of TR fluence

Fluence (arb. Units)
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Forward and backward TR

« We consider the case of the particle which suddenly disappears this
gives the forward transition radiation

« Considering the particle which suddenly appears give the backward
transition radiation

BACKWARD -] FORWARD
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Angular distribution of TR (polar plots)
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Figure 5.9 Polar plot of the normalized radiation pattern for an almminum foil with an
clectron under normal incidence (i.e. what we derived in the text) (A) and with a 45 deg
incidence (B) (not derived here). For these plots the Lorentz factor was chosen to be v — 10
for clarity of the figure.
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Angle integrated TR

« To compute the total energy radiated per unit of frequency, we just

need to evaluate the integral over the solid angle
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Angle integrated TR
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Example of use of Optical TR |

« Angular distribution of transition
radiation can be used to infer
some of a charged particle
beam properties:

— Energy
— divergence
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Figure 3: Experimental picture of the OTR
polarisation. The beam energy is 3.8 MeV
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Example of use of Optical TR |l
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(a) Beam image

Figure 3: Image of the beam on
projection (b).
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(b} Beam projection

the TR screen (a) and its
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Figure 4: OTR angular distribution: a) image with back-
ground, b) measured and simulated projection.
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Example of use of Coherent TR

« CTR can be used to measure
the time distribution of charged
particle beam

Phys. Rev. ST Accel. Beams 9, 082801 (2006)
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FIG. 1. (Color) Michelson interferometer. Detector 1 is used to
record the autocorrelation function. Detector 2 is a reference
detector used to normalize the autocorrelation function.
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