Scattering: introduction

« Thus far we concentrated on energy loss

«  We now wish to quantify scattering, i.e. momentum transfer

- ,
g's with velocity v
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Differential cross-section |

* Let N’ be the number of particles scattered from bdbd ¢ into the
solid angle d{2per unit of time.

e Then
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Differential cross-section ||

e Under the small-angle approximation we have:
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* For e- we saw that 2ge . |db 2qe
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e So do bﬂ|db| 2ge \° 1
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e This is a small-angle approximation of the Rutherford differential cross
section
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Differential cross-section IlI

* For electrons targets:

dor ba|._r.f.b 2ge \° 1
A0 2'de v M2

d_f:r 1 2q7e\*
d?  #* \ yMw?

» Therefore scattering b¥ nuclei is Z2 more probable that
scattering by electron target.

* For nuclei targets

« But there are Z times more nuclei than e- = scattering by
nuclei is Z times more probable that by e-

« So scattering in a block of matter is dominated by nuclei (while
energy loss is dominated by the electrons)
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Remarks on Rutherford Cross section

* The Rutherford cross section is actually:

do (2,2, 1
dQ | 4E ) sin*(8/2)

 Which we could have inferred from a detailed analysis of the
scattering geometry, wherein the impact parameter 1s actually related
to the angle via )
p— ZZe 1

2E tan(@/2)
* While we only had a 1/0 dependence

« This 1s an historical conincidence that the Rutherford cross section
which was derived in the framework of classical mechanics keep the
same form in Quantum mechanics (when spin effects are

introduced).
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rms scattering angle |

 When we have an incoming cloud of particle, e.g. a charged
particle beam, how do we quantify the scattering?

« Use statistical concept: the variance: 1f a variable x 1s
distributed with a probability function F(x) then the variance of
the function which 1s an indication of the spread of the variable

X 18 ;
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X
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e Correspondingly the rms value 1s defined as
1/2
o, = <x2 >
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rms scattering angle |l

« Evaluating the integral for the do/dQ2 we have
J d?dajdt [ dg6°1 /6"
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* Thus for single event scattering
(67) == 2675, In Gmax
 Where we can estimate
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Case of many small angle scattering

* The charge g performs a random walk through the
material and the rms deflection angle is given by

(92 = N(#?)
* So that

d (67
dz

ne -:j:HE = Enaﬂfmﬂ [ETTY— —

 And from central-limit theorem we infer the
probability distribution to be
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Case of single scattering events

« Consider the single scattering event cross-section:

der 2ge Ny 1
—d\) —depdd
a0 (n,-ﬂ.h.-?) g

* Introducing the projected angle #, = #sin¢

do 2gZe \ 1 9,
ﬁtﬂ? (’}-'ﬂh-‘z) H—gfiﬂp sl el

» Upon integration over ¢ we get
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Scattering probability

P (arb. units)
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Summary (extract from the PDG)

A charged particle traversing a medium is deflected by many
small-angle scatters. Most of this deflection is due to Coulomb
scattering from nuclei, and hence the effect is called multiple Coulomb
scattering. (However, for hadronic projectiles. the strong interactions
also contribute to multiple scattering.) The Coulomb scattering

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
a width given by [32.33]

0o = 13'3{{?“* 2 v/ /Xo[1 +0.038 In(x/X0)] - (27.12)

distribution is well represented by the theory of Molicre [31]. It is 3
roughly Gaussian for small deflection angles. but at larger angles o
(greater than a few 6p. defined below) it behaves like Rutherford (e)
scattering, with larger tails than does a Gaussian distributiorn. §
If we define _g)

1
o = 0TS | = 7 oL . (27.11) <
s
<

Here p, Fc, and 2 are the momentumn, velocity, and charge number

of the incident particle, and x /Xy is the thickness of the scattering
— mmedium in radiation lengths (defined below). This value of fp is from = —
“"tf;’“j ~ a fit to Molicre distribution [31] for singly charged particles with 7 =1

W, U for all Z, and is accurate to 11% or better for 1072 < &/ X < 100. ropRysics Gro




