Scattering - Introduction

«  We will consider two types of scattering

— Scattering on electron (g=-e, me=9.110-31 kg) which results in
high energy losses but small deflections

— Scattering on nuclei (g=Ze, mn>>me) which are associated to low
energy losses but large deflections

« Naively, since matter is composed of much more electron that nuclei
(a factor Z), we may conjecture that electron scattering is the
dominant type of scatter
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Energy transfer

« We now are going to compute the energy transfer between two
particle during scattering.

« The technique is imply to consider the “matter” particle at rest and
the particle to be scattered moving and penetrating the matter block.

« Scattering is not a point like collision, it occur via long-range
electromagnetic interaction (considering the e.m. field of the moving

particle)
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Energy transfer: the impulse approximation

« Calculation of energy transfer in the most general case can be
tedious,

* S0 we make some simplifying assumptions:

— Incident particle is NOT locally deflected by collision (rather a

momentum Kick is imparted and as the particle drifts away might
be deflected)

— Target particle is stationary during collision

« These two assumptions are part of the “impulse approximation” (1A)
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Energy transfer: the impulse approximation

« The E-field generated by the incident particle at the location of the
target particle is
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 The momentum transfer from g to e is
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Energy transfer: the impulse approximation

 The associated kinetic energy change NR

: 2
AT \/I Ap.c)? + (me?)? — me? ~ (E)

. The electrons AT, = AT x £

« Fornuclei AT, ~ I 226
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Energy transfer: the impulse approximation

« Let's what are the implication of the IA
— Deflection angle is given by
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— Target is stationary means that recoil of the target during collision
Is much smaller than impact parameter: d<<b

* Interaction time during collision glven by T %.
+ The corresponding recoil is d ~ 22 el
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Energy transfer: the impulse approximation

« This is a stronger condition than the small deflection angle condition
[by a factor M/m], so if the latter condition is fulfilled then the 1st
condition is fulfilled and IA is legitimate

« So for IA to be valid we need
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« Which can also be written (<1)
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NR approximation

 NR approximation implies
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« This is the SAME condition as for IA to be valid but just with y —1
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Passage through a bulk of matter

 Now we generalize our treatment to the case of a particle passing
through a bulk of matter (many electrons).

« We associate a electronic density n, to this block of matter

» The total number of electron b
in a cylindrical shell or radius
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Passage through a bulk of matter

« The differential energy loss by the charge g is
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* Integrate over b
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Passage through a bulk of matter

« Limit of the integral
— When b goes to zero |IA is no more valid so we must limit

our integral to values such that
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— When b goes to infinity the stationary condition breaks: electron
orbit with an angular frequency w, — E,./h. so we must make
sure T <= m‘Dl
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Passage through a bulk of matter

« So finally
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