Radiation Spectrum I

- Starting from the radiation field, we have

$$
\begin{aligned}
\frac{d P(t)}{d \Omega} & =\frac{1}{\kappa\left(t^{\prime}\right)} \frac{d P\left(t^{\prime}\right)}{d \Omega} \\
& =\frac{q^{2}}{4 \pi c}\left[\frac{|\hat{n} \times[(\hat{n}-\vec{\beta}) \times \vec{\beta}]|^{2}}{\kappa^{6}}\right]_{r e t} \equiv|\vec{A}(t)|^{2}
\end{aligned}
$$

- Where A is defined as

$$
\vec{A}(t)=\sqrt{\frac{c}{4 \pi}}[R \vec{E}]_{r e t}
$$

- To obtain the power spectrum we need to work in the frequency domain

Radiation Spectrum II

- Let's define the "symmetrized Fourier transform"

$$
\begin{gathered}
\vec{A}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} d t \vec{A}(t) e^{i \omega t}, \\
\vec{A}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} d \omega \vec{A}(\omega) e^{-i \omega t},
\end{gathered}
$$

- Parseval's theorem states that

$$
\frac{d W}{d \Omega}=\int_{-\infty}^{+\infty} d t|\vec{A}(t)|^{2}=\int_{-\infty}^{+\infty} d \omega|\vec{A}(\omega)|^{2}
$$

- Since A is a real function

$$
\frac{d W}{d \Omega}=2 \int_{0}^{\infty} d \omega|\vec{A}(\omega)|^{2}
$$

Radiation Spectrum III

- The radiation spectrum is therefore

$$
\frac{d^{2} I(\hat{n}, \omega)}{d \Omega d \omega}=2|A(\omega)|^{2}
$$

- Starting from $A(t)$

$$
\vec{A}(t)=\frac{q}{\sqrt{4 \pi c}}\left[\frac{\hat{n} \times[(\hat{n}-\vec{\beta}) \times \vec{\beta}]}{\kappa^{3}}\right]_{r e t}
$$

- $A(\omega)$ is

$$
\vec{A}(\omega)=\frac{q}{2 \pi \sqrt{2 c}} \int_{-\infty}^{+\infty} d t\left[\frac{\hat{n} \times[(\hat{n}-\vec{\beta}) \times \vec{\beta}]}{\kappa^{3}}\right]_{r e t} e^{i \omega t}
$$

Radiation Spectrum IV

- This must be evaluated at the retarded time t^{\prime}

$$
\vec{A}(\omega)=\frac{q}{2 \pi \sqrt{2 c}} \int_{-\infty}^{+\infty} d t^{\hat{n} \times[(\hat{n}-\vec{\beta}) \times \overrightarrow{\vec{\beta}}]} \kappa^{2} e^{i \omega\left(t^{\prime}+\frac{R\left(t^{\prime}\right)}{c}\right)}
$$

- Note that in the far-field regime

$$
\begin{aligned}
& \hat{n}=\frac{\vec{x}-\vec{r}\left(t^{\prime}\right)}{\left|\vec{x}-\overrightarrow{\mathrm{r}}\left(t^{\prime}\right)\right|} \simeq \hat{x} \quad \text { is constant in time } \\
& \text { and } R=x-\vec{r} \cdot \hat{n}+\mathcal{O}(1 / x) \text {. }
\end{aligned}
$$

argument of the exponential in the far-field is

$$
\begin{gathered}
\text { ignore } \\
\Xi=i \omega\left[t^{\prime}+\frac{R(t)}{c}\right]=i \omega x+i \omega\left[t^{\prime}-\frac{\hat{n} \cdot \vec{r}\left(t^{\prime}\right)}{c}\right] \Rightarrow \Xi\left(t^{\prime}\right)=i \omega\left[t^{\prime}-\frac{\hat{n} \cdot \vec{r}\left(t^{\prime}\right)}{c}\right],
\end{gathered}
$$

Radiation Spectrum V

- We finally have

$$
\vec{A}(\omega)=\frac{q}{2 \pi \sqrt{2 c}} \int_{-\infty}^{+\infty} d t \frac{\hat{n} \times[(\hat{n}-\vec{\beta}) \times \vec{\beta}]}{\kappa^{2}} e^{\Xi(t)},
$$

- And the corresponding angular spectral fluence distribution

$$
\frac{d^{2} I(\hat{n}, \omega)}{d \Omega d \omega}=2 A^{2}(\omega)=\frac{q^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{+\infty} d t \frac{\hat{n} \times[(\hat{n}-\vec{\beta}) \times \vec{\beta}]}{\kappa^{2}} e^{\Xi(t)}\right|^{2}
$$

- This is the most general formula for computing the angular spectral fluence.
- JDJ re-write the vector part of the integrand as a total time derivative

Radiation Spectrum VI

- Consider

$$
\frac{\hat{n} \times(\hat{n} \times \vec{\beta})}{\kappa}
$$

- Then the time derivative is

$$
\frac{d}{d t}\left[\frac{\hat{n} \times(\hat{n} \times \vec{\beta})}{\kappa}\right]=\frac{(-\dot{\kappa} \hat{n}+(1-\kappa) \hat{\dot{n}}-\overrightarrow{\dot{\beta}}) \kappa-\dot{\kappa}[(1-\kappa) \hat{n}-\vec{\beta}]}{\kappa^{2}}
$$

- We have

$$
\begin{aligned}
\frac{d}{d t}[\ldots] & =\frac{1}{\kappa^{2}}\{[(\vec{\beta} \cdot \hat{n}) \hat{n}-0-\vec{\beta}] \kappa+(\vec{\beta} \cdot \hat{n})[(1-\kappa) \hat{n}-\vec{\beta}]\} \\
& =\frac{1}{\kappa^{2}}\{-\vec{\beta} \kappa+(\overrightarrow{\dot{\beta}} \cdot \hat{n})(\hat{n}-\vec{\beta})\}+\mathcal{O}(1 / R)=\underbrace{\frac{1}{\kappa^{2}}\{\hat{n} \times[(\hat{n}-\vec{\beta}) \times \vec{\beta}]\}} .
\end{aligned}
$$

Radiation Spectrum VII

- So we can do an integration-by-part

$$
\begin{aligned}
& \vec{A}(\omega)= \frac{q}{2 \pi \sqrt{2 c}} \int_{-\infty}^{+\infty} d t \frac{d}{d t}\left[\frac{\hat{n} \times(\hat{n} \times \vec{\beta})}{\kappa}\right] e^{\Xi(t)} \\
&= \frac{q}{2 \pi \sqrt{2 c}}\{\left\lvert\, \underbrace{\left.\left.\left\lvert\, \frac{\hat{n} \times(\hat{n} \times \vec{\beta})}{\kappa}\right.\right]\left.e^{\Xi(t)}\right|_{-\infty} ^{+\infty}-i \omega \int_{-\infty}^{+\infty} d t[\hat{n} \times(\hat{n} \times \vec{\beta})] e^{\Xi(t)}\right\}}_{\quad}\right. \\
& \begin{array}{l}
\text { but care must be taken } \\
\text { to verify this in practice }
\end{array}
\end{aligned}
$$

Radiation Spectrum VIII

- So finally the angular spectral fluence is

$$
\frac{d^{2} I(\hat{n}, \omega)}{d \Omega d \omega}=\frac{q^{2} \omega^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{+\infty} d t[\hat{n} \times(\hat{n} \times \vec{\beta})] e^{i \omega\left[t^{\prime}-\frac{\hat{n} . \vec{r}(t)}{c}\right]}\right|^{2}
$$

note that $[\hat{n} \times(\hat{n} \times \vec{\beta})]=\beta \sin \theta=|\hat{n} \times \vec{\beta}|$ where $\theta=\angle(\hat{n}, \vec{\beta})$.

- Here we could also start introducing the polarization, but we will do this for the special case of circular motion

Case of Circular motion I

- Introduce the polarization unit vectors ε 's

$$
\begin{aligned}
\hat{n} & =\sin \theta \hat{y}+\cos \theta \hat{z} \\
\vec{\beta} & =\beta\left[\sin \left(\omega_{0} t^{\prime}\right) \hat{x}+\cos \left(\omega_{0} t^{\prime}\right) \hat{z}\right] \\
\hat{\epsilon}_{\|} & =\hat{x} \\
\hat{\epsilon}_{\perp} & =\hat{n} \times \hat{x}=-\sin \theta \hat{z}+\cos \theta \hat{y}
\end{aligned}
$$

- Then

$$
\begin{aligned}
\hat{n} \times(\hat{n} \times \vec{\beta}) & =(\hat{n} \cdot \vec{\beta}) \hat{n}-\vec{\beta} \\
& =\beta\left[c_{\omega_{0} t} c_{\theta} \hat{y}+c_{\omega_{0} t}\left(c_{\theta}^{2}-1\right) \hat{z}-c_{\omega_{0} t} \hat{x}\right. \\
& =\beta\left[-s_{\omega_{0} t} \hat{\epsilon}_{\|}+c_{\omega_{0} t} s_{\theta} \hat{\epsilon}_{\perp}\right]
\end{aligned}
$$

Case of Circular motion II

- The argument of the exponential writes

$$
\begin{aligned}
& \hat{n} \cdot \vec{r}=r \cos \theta \cos \left(\pi / 2-\omega_{0} t^{\prime}\right)=r \sin \left(\omega_{0} t^{\prime}\right) \cos \theta \\
& \Xi=i \omega\left(t^{\prime}-\frac{\hat{n} \cdot \vec{r}}{c}\right)=\omega\left[t^{\prime}-\frac{r}{c} \sin \left(\omega_{0} t^{\prime}\right) \cos \theta\right]
\end{aligned}
$$

- If an observer catches an impulse from the charge q : θ is small and the pulse originated close to $t=0$, so under these approximations

$$
\lim _{\theta \ll 1, \omega_{0} t \ll 1} \hat{n} \times(\hat{n} \times \vec{\beta})=\beta\left(-\omega_{0} t \hat{\epsilon}_{\|}+\theta \hat{\epsilon}_{\perp}\right)
$$

and

$$
\begin{aligned}
\lim _{\theta \ll 1, \omega_{0} t \ll 1} \frac{1}{i} \Xi & =\omega\left\{t^{\prime}-\frac{r}{c}\left[\omega_{0} t^{\prime}-\frac{1}{6}\left(\omega_{0} t^{\prime}\right)^{3}\right]\left(1-\frac{\theta^{2}}{2}\right)\right\} \\
& =\omega\left\{(1-\beta) t^{\prime}+\frac{\beta t^{\prime}}{2} \theta^{2}+\frac{1}{6} \frac{r}{c}\left(\omega_{0} t^{\prime}\right)^{3}\right\} \\
& =\frac{\omega t^{\prime}}{2}\left(\gamma^{-2}+\beta \theta^{2}\right)+\frac{\omega \beta}{6 \omega_{0}}\left(\omega_{0} t^{\prime}\right)^{3}
\end{aligned}
$$

Case of Circular motion III

- The angular spectral fluence is

$$
\begin{aligned}
\frac{d^{2} I}{d \Omega d \omega} & =\frac{q^{2} \omega^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{+\infty} d t \beta\left(-\omega_{0} t \hat{\epsilon}_{\|}+\theta \hat{\epsilon}_{\perp}\right) e^{\Xi}\right|^{2} \\
& =\left|-A_{\|}(\omega) \hat{\epsilon}_{\|}+A_{\perp}(\omega) \hat{\epsilon}_{\perp}\right|^{2} \\
\sigma & \pi
\end{aligned}
$$

- This displays the two polarizations.

$$
\begin{aligned}
&\binom{A_{\|}}{A_{\perp}}=\frac{q \omega}{2 \pi \sqrt{c}} \int_{-\infty}^{+\infty} d t\binom{\omega_{0} t}{\theta} e^{i \frac{\omega}{2}\left[\left(\gamma^{-2}+\theta^{2}\right) t+\frac{1}{3 \omega_{0}}\left(\omega_{0} t^{\prime}\right)^{3}\right]} . \\
& x=\frac{\omega_{0} t}{\sqrt{\gamma^{-2}+\theta^{2}}}, d t=\frac{1}{\omega_{0}} \sqrt{\gamma^{-2}+\theta^{2}} d x ; \text { and let } \xi \equiv \frac{1}{3} \frac{\omega}{\omega_{0}}\left[\gamma^{-2}+\theta^{2}\right]^{3 / 2},
\end{aligned}
$$

Case of Circular motion IV

- We have to compute the integrals

$$
\left.\binom{A_{\|}(\omega)}{A_{\perp}(\omega)}=\frac{q \omega}{2 \pi \sqrt{c}} \int_{-\infty}^{+\infty} d x,\left(\gamma^{-2}+\theta^{2}\right) x \frac{1}{\omega_{0}}\left(\gamma^{-2}+\theta^{2}\right)^{1 / 2} \theta \frac{1}{\omega_{0}}\right) e^{i \frac{3}{2} \xi\left[x+\frac{1}{3} x^{3}\right]} .
$$

- We have
$\int_{-\infty}^{+\infty} \sqrt{d t^{(x+1 a t a s)}}=\frac{2 \pi}{(2 a)^{1 / / 3}} A_{i}\left(\frac{x}{(3 a)^{1 / 3}}\right)$,

$$
\int_{-\infty}^{+\infty} d x e^{i \frac{3}{2} \xi\left[x+\frac{1}{3} x^{3}\right]}=\frac{2 \pi}{(3 \xi / 2)^{1 / 3}} A_{i}\left[\left(\frac{3 \xi}{2}\right)^{2 / 3}\right]=\frac{2}{\sqrt{3}} K_{1 / 3}(\xi)
$$

$$
A_{i}(x)=\frac{1}{\pi} \sqrt{\frac{1}{3}} K_{1 / 3}\left(\frac{2}{3} x^{3 / 2}\right) .
$$

P. Piot, PHYS 571 - Fall 2007

Case of Circular motion V

- Finally the angular spectral fluence takes the form

$$
\begin{aligned}
\frac{d^{2} I}{d \Omega d \omega} & =\left|A_{\|}(\omega)\right|^{2}+\left|A_{\perp}(\omega)\right|^{2} \\
& =\frac{q^{2}}{3 \pi^{2} c}\left(\frac{\omega}{\omega_{0}}\right)^{2}\left(\gamma^{-2}+\theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\theta^{2}}{\gamma^{-2}+\theta^{2}} K_{1 / 3}^{2}(\xi)\right]
\end{aligned}
$$

- or, introducing $\xi=\frac{1}{3} \frac{\omega}{\omega_{0}}\left[\gamma^{-2}+\theta^{2}\right]^{3 / 2} \equiv \frac{1}{2} \frac{\omega}{\omega_{e}}\left[1+\gamma^{2} \theta^{2}\right]^{3 / 2}$:

$$
\frac{d^{2} I}{d \Omega d \omega}=\frac{3 q^{2}}{\pi^{2} c} \xi^{2} \frac{1}{\gamma^{-2}+\theta^{2}}\left[K_{2 / 3}^{2}(\xi)+\frac{\theta^{2}}{\gamma^{-2}+\theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

Case of Circular motion VI

Case of Circular motion VII

