Introduction

- Starting from the radiation field, we have

$$
\frac{d P\left(t^{\prime}\right)}{d \Omega}=\left[\kappa R^{2} \vec{S} . \hat{n}\right]_{r e t}=\frac{q^{2}}{4 \pi c}\left[\frac{|\hat{n} \times[(\hat{n}-\vec{\beta}) \times \vec{\beta}]|^{2}}{\kappa^{5}}\right]_{\text {ret }}
$$

- What we did Lesson 16 was to perform the integration

$$
P\left(t^{\prime}\right)=\frac{q^{2}}{4 \pi c} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin (\theta) \frac{|\hat{n} \times[(\hat{n}-\vec{\beta}) \times \vec{\beta}]|^{2}}{\kappa^{5}}
$$

- Now we turn to computing the angular distribution (so we actually do not want to perform the integration)...

Angular distribution of radiation emitted by an accelerated charge

- Starting from the radiation field, we have

$$
\begin{aligned}
\frac{d P\left(t^{\prime}\right)}{d \Omega} & =\frac{q^{2}}{4 \pi c} \frac{\mid \hat{n} \times\left[(\hat{n}-\vec{\beta}) \times\left.\overrightarrow{\dot{\beta}}\right|^{2}\right.}{\kappa^{5}} \\
& =\frac{q^{2}}{4 \pi c} \frac{\kappa^{2} \dot{\beta}^{2}+2 \kappa(\vec{\beta} \cdot \hat{x})(\vec{\beta} \cdot \overrightarrow{\dot{\beta}})-\gamma^{-2}(\overrightarrow{\dot{\beta}} \cdot \hat{n})^{2}}{\kappa_{u}^{5}}
\end{aligned}
$$

where we used $|\hat{n} \times[(\hat{n}-\vec{\beta}) \times \overrightarrow{\dot{\beta}}]|^{2}=-\gamma^{-2}(\hat{n} \cdot \vec{\beta})^{2}+2 \kappa(\vec{\beta} \cdot \overrightarrow{\dot{\beta}})(\vec{n} \cdot \overrightarrow{\dot{\beta}})+\kappa^{2} \dot{\beta}^{2}$.

Angular distribution for linear motion 1

- Introducing θ, we have:

$$
\vec{\beta} \cdot \hat{n}=\beta \cos \theta, \vec{\beta} \cdot \hat{n}=\dot{\beta} \cos \theta, \kappa=1-\vec{\beta} \cdot \hat{n}=1-\beta \cos \theta_{1}
$$

- And the numerator becomes

$$
\begin{aligned}
& \dot{\beta}^{2}\left[\kappa^{2}+2 \kappa \beta \cos \theta-\left(1-\beta^{2}\right) \cos ^{2} \theta\right] \\
= & \dot{\beta}^{2}\left[\left(\kappa^{2}+2 \kappa \beta \cos \theta+\beta^{2} \cos ^{2} \theta\right)-\cos ^{2} \theta\right] \\
= & \dot{\beta}^{2}\left[(\kappa+\beta \cos \theta)^{2}-\cos ^{2} \theta\right]=\dot{\beta}^{2} \sin ^{2} \theta .
\end{aligned}
$$

- So the radiated power writes

$$
\frac{d P\left(t^{\prime}\right)}{d \Omega}=\frac{q^{2} \dot{\beta}^{2}}{4 \pi c^{2}} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}
$$

Angular distribution for linear motion 2

- The power distribution has maxima given by

$$
\begin{aligned}
0 & =\frac{d}{d \theta}\left(\frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}\right) \\
& =\frac{\sin (\theta)\left(2 \cos (\theta)+3 \beta(\cos (\theta))^{2}-5 \beta\right)}{(1-\beta \cos \theta)^{4}}
\end{aligned}
$$

- With solutions $[\cos \theta]_{ \pm}=\frac{1}{3 \beta}\left[-1 \pm\left(1+15 \beta^{2}\right)^{1 / 2}\right]$
- Only $\cos \theta_{+}$is possible so:

$$
\theta_{ \pm}= \pm \arccos \left[\frac{1}{3 \beta}\left[-1+\left(1+15 \beta^{2}\right)^{1 / 2}\right]\right] \xrightarrow{\beta \rightarrow 1} \pm \frac{1}{2 \gamma}
$$

Angular distribution for linear motion 3

$\beta=0.0001$

$\beta=0.5$
$\beta=0.1$

$\beta=0.25$

Angular distribution for linear motion 4

- Small angle approximation for ultra-relativistic case:

$$
\begin{aligned}
\frac{d P\left(t^{\prime}\right)}{d \Omega} & \simeq \frac{q^{2} \dot{\beta}^{2}}{4 \pi c^{2}} \frac{\theta^{2}}{\left(1-\beta\left(1-\frac{\theta^{2}}{2}\right)\right)^{5}} \\
& =\frac{q^{2} \dot{\beta}^{2}}{4 \pi c^{2}} \frac{32 \theta^{2}}{\left.\left.2(1-\beta)+\beta \theta^{2}\right)\right)^{5}} \\
& \simeq \frac{8}{\pi} \frac{\dot{\beta}^{2}}{c^{2}} \frac{\gamma^{10} \theta^{2}}{\left(1+\gamma^{2} \theta^{2}\right)^{5}} \\
& \text { JDJ equation } 14.41
\end{aligned}
$$

Angular distribution for circular motion 1

- We have:

$$
\begin{aligned}
\hat{z} & =\cos \theta \hat{n}-\sin \theta \hat{\theta} \\
\hat{x} & =\sin \theta \cos \phi \hat{n}+\cos \theta \sin \phi \hat{\theta}-\sin \phi \hat{\phi}
\end{aligned}
$$

- That is

$$
\vec{\beta} \cdot \hat{n}=\beta \cos \theta, \vec{\beta} \cdot \vec{\beta}=0 \text {, and } \vec{\beta} \cdot \hat{n}=\dot{\beta} \sin \theta \cos \phi
$$

- Which gives:

$$
\frac{d P\left(t^{\prime}\right)}{d \Omega}=\frac{q^{2}}{4 \pi c^{2}} \frac{\dot{\beta}^{2}}{(1-\beta \cos \theta)^{3}}\left[1-\frac{\sin ^{2} \theta \cos ^{2} \phi}{\gamma^{2}(1-\beta \cos \theta)^{2}}\right]
$$

- In the ultra-relativistic limit (small angle approximation):

$$
\frac{d P\left(t^{\prime}\right)}{d \Omega}=\frac{8}{\pi} \frac{q^{2}}{c^{2}} \frac{\dot{\beta}^{2}}{\left(1+\gamma^{2} \theta^{2}\right)^{3}} \gamma^{6}\left[1-\frac{4 \gamma^{2} \theta^{2} \cos ^{2} \phi}{\left(1+\gamma^{2} \theta^{2}\right)^{2}}\right]
$$

Angular distribution for circular motion 2

- Note that $P_{\text {Linear }}=\frac{2}{3} q^{2} m^{2} c^{3} \dot{p}^{2}$

$$
P_{\text {Circular }}=\frac{2}{3} q^{2} c \gamma^{4} \dot{\beta}^{2}=\frac{2}{3} q^{2} m^{2} c^{3} \gamma^{2} \dot{p}^{2}
$$

- So we have $\frac{P_{\text {Ciratar }}}{P_{\text {Linar }}}=\gamma^{2}$

$$
\beta=0.05
$$

$$
\beta=0.2
$$

$$
\beta=0.5
$$

Figure 4.9: Distribution evaluated in the plan $\phi=0$.

