e.m. Field tensor \& covariant equation of motion

- Define the tensor of dimension 2

$$
F^{\alpha \beta} \equiv \partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}=g^{\alpha \delta} \partial_{\delta} A^{\beta}-g^{\beta \delta} \partial_{\delta} A^{\alpha} 4 \text { potential }
$$

- F, is the e.m. field tensor. It is easily found to be
$F^{\alpha \beta}=\left(\begin{array}{cccc}0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0\end{array}\right) F_{\gamma \delta}=\left(\begin{array}{cccc}0 & E_{x} & E_{y} & E_{z} \\ -E_{x} & 0 & -B_{z} & B_{y} \\ -E_{y} & B_{z} & 0 & -B_{x} \\ -E_{z} & -B_{y} & B_{x} & 0\end{array}\right)$
- In SI units, F is obtained by $E \rightarrow E / c$
- The equation of motion is

$$
\frac{d u^{\alpha}}{d \tau}=\frac{q}{m c} F_{\beta}^{\alpha} u^{\beta}
$$

Invariant of the e.m. field tensor

- Consider the following invariant quantities

$$
F^{\mu \nu} F_{\mu \nu}=2\left(E^{2}-B^{2}\right), \text { and } F^{\mu \nu} \mathcal{F}_{\mu \nu}=4 \vec{E} \cdot \vec{B}
$$

- Usually one redefine these invariants as

$$
\mathcal{I}_{1} \equiv-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}=\frac{1}{2}\left(B^{2}-E^{2}\right), \text { and } \mathcal{I}_{2} \equiv-\frac{1}{4} F^{\mu \nu} \mathcal{F}_{\mu \nu}=-\vec{E} \cdot \vec{B} .
$$

- Which can be rewritten as $\mathcal{I}_{1} \equiv-\frac{1}{4} \operatorname{tr}\left(F^{2}\right)$ and $\mathcal{I}_{2} \equiv-\frac{1}{4} \operatorname{tr}(F \mathcal{F})$
where $F \equiv F_{\mu}^{\nu}=F^{\mu \alpha} g_{\alpha \nu}$ and $\mathcal{F} \equiv \mathcal{F}_{\mu}^{\nu}=\mathcal{F}^{\mu \alpha} g_{\alpha \nu}$.
- Finally note the identities

$$
F \mathcal{F}=\mathcal{F} F=-\mathcal{I}_{2} I, \text { and } F^{2}-\mathcal{F}^{2}=-2 \mathcal{I}_{1} I
$$

Eigenvalues of the e.m. field tensor

- The eigenvalues are qiven bv

$$
\begin{gathered}
F \Psi=\lambda \Psi \Rightarrow \mathcal{F} F \Psi=\lambda \mathcal{F} \Psi \Rightarrow \mathcal{F} \Psi=-\frac{\mathcal{I}_{2}}{\lambda} \Psi \\
\left(F^{2}-\mathcal{F}^{2}\right) \Psi=-2 I \mathcal{I}_{1} \Psi=\left[\lambda^{2}-\left(\mathcal{I}_{2} / \lambda\right)^{2}\right] \Psi
\end{gathered}
$$

- Characteristic polynomial $\lambda^{4}+2 \mathcal{I}_{1} \lambda^{2}-\mathcal{I}_{2}^{2}=0$.
- With solutions

$$
\begin{array}{r}
\lambda_{ \pm}=\sqrt{\sqrt{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}} \pm \mathcal{I}_{1}} \\
\lambda_{1}=-\lambda_{2}=\lambda_{-}, \lambda_{3}=-\lambda_{4}=i \lambda_{+}
\end{array}
$$

Motion in an arbitrary e.m. field I

- We now attempt to solve directly the equation

$$
\frac{d u^{\alpha}}{d \tau}=\frac{q}{m c} F_{\beta}^{\alpha} u^{\beta} ; \quad \text { independent e.m. field }
$$

following the treatment by Munos. Let $\theta \equiv \frac{q \tau}{m c}$:

- The equation of motion reduces to

$$
\frac{d U}{d \theta}=F u \text { with solution } u=e^{\theta F} u(0)
$$

- Where the matrix exponential is defined as

$$
e^{\theta F}=\sum_{n=0}^{\infty} \frac{\theta^{n}}{n!} F^{n}
$$

Motion in an arbitrary e.m. field II

- The main work is now to compute the matrix exponential.
- To compute the power series of F one needs to recall the identities

$$
F^{2}=\mathcal{F}^{2}-2 \mathcal{I}_{1} I
$$

- Because of this one can show that any power of F can be written as linear combination of $F, 7, F^{2}$ and I :

$$
\begin{aligned}
F^{3} & =F F^{2}=F \mathcal{F}^{2}-2 \mathcal{I}_{1} F=-\mathcal{I}_{2} \mathcal{F}-2 \mathcal{I}_{1} F \\
F^{4} & =-\mathcal{I}_{2} F \mathcal{F}-2 \mathcal{I}_{1} F^{2}=\mathcal{I}_{2}^{2} I-2 \mathcal{I}_{1} F^{2} \\
F^{5} & =\mathcal{I}_{2}^{2} F-2 \mathcal{I}_{1} F^{3}=\left(4 \mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}\right) F+2 \mathcal{I}_{1} \mathcal{I}_{2} \mathcal{F}
\end{aligned}
$$

etc...

- This means $e^{\theta F}=\alpha I+\beta F+\gamma \mathcal{F}+\delta F^{2}$.

Motion in an arbitrary e.m. field III

- Consider

$$
e^{\theta F}=\alpha I+\beta F+\gamma \mathcal{F}+\delta F^{2}
$$

- We need to compute the coefficient of the expansion

$$
\begin{aligned}
t_{0} & \equiv \frac{1}{4} \operatorname{Tr}\left[e^{\theta F}\right]=\alpha-\mathcal{I}_{1} \delta, \\
t_{1} & \equiv \frac{1}{4} \operatorname{Tr}\left[F e^{\theta F}\right]=-\mathcal{I}_{1} \beta-\mathcal{I}_{2} \gamma, \\
t_{2} & \equiv \frac{1}{4} \operatorname{Tr}\left[F^{2} e^{\theta F}\right]=-\mathcal{I}_{1} \alpha+\left(2 \mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}\right) \delta, \\
t_{3} & \equiv \frac{1}{4} \operatorname{Tr}\left[F^{3} e^{\theta F}\right]=2\left(\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}\right) \beta+\mathcal{I}_{1} \mathcal{I}_{2} \gamma .
\end{aligned}
$$

Motion in an arbitrary e.m. field IV

- The solution for the coefficient is

$$
\begin{aligned}
\alpha & =\frac{\left(2 \mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}\right) t_{0}+\mathcal{I}_{1} t_{2}}{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}} ; \quad \beta=\frac{t_{3}+\mathcal{I}_{1} t_{1}}{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}} \\
\gamma & =-\frac{\left(2 \mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}\right) t_{1}+\mathcal{I}_{1} t_{3}}{\mathcal{I}_{2}\left(\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}\right)} ; \quad \delta=\frac{t_{2}+\mathcal{I}_{1} t_{0}}{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}}
\end{aligned}
$$

- Now let evaluate the t_{i} 's
- The Trace is invariant upon change of basis. So consider a basis where F is diagonal, let F^{\prime} be the diagonal form then
- Recall than

$$
\operatorname{Tr}\left[e^{\theta F}\right]=\operatorname{Tr}\left[e^{\theta F^{\prime}}\right]=\sum_{i=1}^{4} e^{\theta \lambda_{i}}
$$

$$
\lambda_{1}=-\lambda_{2}=\lambda_{-}, \text {and } \lambda_{3}=-\lambda_{4}=i \lambda_{+} \quad \lambda_{ \pm}=\sqrt{\sqrt{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}} \pm \mathcal{I}_{1}}
$$

Motion in an arbitrary e.m. field V

- The traces are then

$$
\begin{aligned}
t_{0} & =\frac{1}{4} \operatorname{Tr}\left[e^{\theta F}\right]=\frac{1}{2}\left[\cosh \left(\theta \lambda_{-}\right)+\cos \left(\theta \lambda_{+}\right)\right] \\
t_{k} & =\frac{1}{4} \operatorname{Tr}\left[F^{k} e^{\theta F}\right]=\frac{\partial^{k} t_{0}}{\partial \theta^{k}}
\end{aligned}
$$

- Now let evaluate the t_{i} 's

$$
\begin{aligned}
t_{1} & =\frac{1}{2}\left[\lambda_{-} \sinh \left(\theta \lambda_{-}\right)-\lambda_{+} \sin \left(\theta \lambda_{+}\right)\right] \\
t_{2} & =\frac{1}{2}\left[\lambda_{-}^{2} \cosh \left(\theta \lambda_{-}\right)-\lambda_{+}^{2} \cos \left(\theta \lambda_{+}\right)\right] \\
t_{3} & =\frac{1}{2}\left[\lambda_{-}^{3} \cosh \left(\theta \lambda_{-}\right)+\lambda_{+}^{3} \sin \left(\theta \lambda_{+}\right)\right]
\end{aligned}
$$

Motion in an arbitrary e.m. field VI

- The traces are then

$$
\begin{aligned}
& \alpha=\frac{\lambda_{+}^{2} \cosh \left(\theta \lambda_{-}\right)+\lambda^{2} \cos \left(\theta \lambda_{+}\right)}{2 \sqrt{I_{1}^{2}+I_{2}^{2}}} ; \quad \beta=\frac{\lambda_{-} \sinh \left(\theta \lambda_{-}\right)+\lambda_{+} \sin \left(\theta \lambda_{+}\right)}{2 \sqrt{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}}} ; \\
& \gamma=\frac{\mid I_{2}}{I_{2}} \frac{\lambda_{-} \sin \left(\theta \lambda_{+}\right)-\lambda_{+} \sinh \left(\theta \lambda_{-}\right)}{2 \sqrt{I_{1}^{2}+I_{2}^{2}}} ; \quad \delta=\frac{\cosh \left(\theta \lambda_{-}\right)-\cos \left(\theta \lambda_{+}\right)}{2 \sqrt{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}}} .
\end{aligned}
$$

- Substitute in the power expansion to yield

$$
\begin{aligned}
u(\theta) & =\frac{1}{2 \sqrt{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}}}\left[\left(\lambda_{+}^{2} I+F^{2}\right) \cosh \left(\theta \lambda_{-}\right)+\left(\lambda_{-}^{2} I-F^{2}\right) \cos \left(\theta \lambda_{+}\right)\right. \\
& \left.+\left(\lambda_{-} F-\frac{\left|\mathcal{I}_{2}\right|}{\mathcal{I}_{2}} \lambda_{+} \mathcal{F}\right) \sinh \left(\theta \lambda_{-}\right)+\left(\lambda_{+} F+\frac{\left|\mathcal{I}_{2}\right|}{\mathcal{I}_{2}} \lambda_{-} \mathcal{F}\right) \sin \left(\theta \lambda_{+}\right)\right] u(0) .
\end{aligned}
$$

Motion in an arbitrary e.m. field VII

- Remember that $u(\theta)=\frac{2}{m c} \frac{d x}{d \theta}$:
- Integrate for $\theta \in[0, \theta)$

$$
\begin{aligned}
x(\tau) & =x(0)+\frac{m c}{q \mathcal{I}_{2}} \mathcal{F} u(0)+\frac{m c}{2 q \sqrt{I_{1}^{2}+\mathcal{I}_{2}^{2}}}\left[\left(F-\frac{\lambda_{+}^{2}}{\mathcal{I}_{2}} \mathcal{F}\right) \cosh \left(\theta \lambda_{-}\right)\right. \\
& \left.-\left(F+\frac{\lambda_{-}^{2}}{\mathcal{I}_{2}} \mathcal{F}\right) \cos \left(\theta \lambda_{+}\right)+\frac{\lambda_{+}^{2} I+F^{2}}{\lambda_{-}} \sinh \left(\theta \lambda_{-}\right)+\frac{\lambda_{-}^{2} I-F^{2}}{\lambda_{+}} \sin \left(\theta \lambda_{+}\right)\right] u(0) .
\end{aligned}
$$

Motion in an arbitrary e.m. field VIII

- Let's consider the special case $\vec{E}=E \hat{x}, \vec{B}=B \hat{y}$
- Then $\vec{E} \perp \vec{B} \Rightarrow \mathcal{I}_{2}=0$.
- So we just take the limit $\mathcal{I}_{2} \rightarrow 0$ in the equation motion derived in the previous slide which means:

$$
\lambda_{-} \rightarrow 0 ; \lambda_{+} \rightarrow \sqrt{2 \mathcal{I}_{1}}, \cosh \left(\theta \lambda_{-}\right) \rightarrow 1 \text { and } \sinh \left(\theta \lambda_{-}\right) / \lambda_{-} \rightarrow \theta
$$

- So we obtain

$$
\begin{aligned}
x(\tau)= & \frac{m c}{q \mathcal{I}_{2}} \mathcal{F} u(0)+\frac{m c}{2 q \mathcal{I}_{1}}\left[\left(F-\frac{2 \mathcal{I}_{1}}{\mathcal{I}_{2}} \mathcal{F}\right)-F \cos \left(\theta \lambda_{+}\right)\right. \\
& \left.+\left(2 \mathcal{I}_{1} I+F^{2}\right) \theta-\frac{1}{\sqrt{2 \mathcal{I}_{1}}} F^{2} \sin \left(\theta \sqrt{2 \mathcal{I}_{1}}\right)\right] u(0) .
\end{aligned}
$$

ExB drift

- With $\Omega \equiv \frac{q}{m c} \sqrt{2 \mathcal{I}_{1}}$ then

$$
\begin{aligned}
x(\tau)= & \left(I+\frac{F^{2}}{2 \mathcal{I}_{1}} u(0) \tau+\frac{m c}{2 q \mathcal{I}_{1}}(1-\cos \Omega \tau\right. \\
& \left.-\frac{F}{\sqrt{2 \mathcal{I}_{1}}} \sin \Omega \tau\right) F u(0)
\end{aligned}
$$

- compute

$$
\begin{aligned}
& F u(0)=\gamma_{0} c\left(\begin{array}{cccc}
0 & E & 0 & 0 \\
E & 0 & 0 & -B \\
0 & 0 & 0 & 0 \\
0 & B & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
\beta_{0 x} \\
\beta_{0 y} \\
\beta_{0 z}
\end{array}\right)=\gamma_{0} c\left(\begin{array}{c}
E \\
E-\beta_{0 z} B \\
0 \\
\beta_{0 x} B
\end{array}\right) \\
& F^{2} u(0)=\gamma_{0} c\left(\begin{array}{c}
E\left(E-\beta_{0 z} B\right) \\
-2 \mathcal{I}_{1} \beta_{0 x} \\
0 \\
B\left(E-\beta_{0 z} B\right)
\end{array}\right)
\end{aligned}
$$

ExB drift I

- With $\Omega \equiv \frac{q}{m c} \sqrt{2 \mathcal{I}_{1}}$ then

$$
\begin{aligned}
x(\tau)= & \left(I+\frac{F^{2}}{2 \mathcal{I}_{1}} u(0) \tau+\frac{m c}{2 q \mathcal{I}_{1}}(1-\cos \Omega \tau\right. \\
& \left.-\frac{F}{\sqrt{2 \mathcal{I}_{1}}} \sin \Omega \tau\right) F u(0)
\end{aligned}
$$

- compute

$$
\begin{aligned}
& F u(0)=\gamma_{0} c\left(\begin{array}{cccc}
0 & E & 0 & 0 \\
E & 0 & 0 & -B \\
0 & 0 & 0 & 0 \\
0 & B & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
\beta_{0 x} \\
\beta_{0 y} \\
\beta_{0 z}
\end{array}\right)=\gamma_{0} c\left(\begin{array}{c}
E \\
E-\beta_{0 z} B \\
0 \\
\beta_{0 x} B
\end{array}\right) \\
& F^{2} u(0)=\gamma_{0} c\left(\begin{array}{c}
E\left(E-\beta_{0 z} B\right) \\
-2 \mathcal{I}_{1} \beta_{0 x} \\
0 \\
B\left(E-\beta_{0 z} B\right)
\end{array}\right)
\end{aligned}
$$

ExB drift II

- The "projected" equation of motions

$$
\begin{aligned}
x & =\frac{\gamma_{0} m c^{2}}{2 q \mathcal{I}_{1}}\left[\left(E-B \beta_{0 z}\right)(1-\cos \Omega \tau)+\sqrt{2 \mathcal{I}_{1}} \beta_{0 x} \sin \Omega \tau\right] \\
y & =\gamma_{0} v_{0 y} \tau \\
z & =\frac{\gamma_{0} c E}{2 \mathcal{I}_{1}}\left(B-E \beta_{0 z}\right) \tau+\frac{\gamma_{0} m c^{2} B}{2 q \mathcal{I}_{1}}\left[\beta_{0 x}(1-\cos \Omega \tau)-\frac{E-B \beta_{0 z}}{\sqrt{2 \mathcal{I}_{1}}} \sin \Omega \tau\right] \\
t & =\frac{\gamma_{0} B}{2 \mathcal{I}_{1}}\left(B-E \beta_{0 z}\right) \tau+\frac{\gamma_{0} m c E}{2 q \mathcal{I}_{1}}\left[\beta_{0 x}(1-\cos \Omega \tau)-\frac{E-B \beta_{0 z}}{\sqrt{2 \mathcal{I}_{1}}} \sin \Omega \tau\right]
\end{aligned}
$$

- the particle has a velocity perpendicular to \vec{E} and \vec{B} fields.
- This is the so-called ExB drift and the drift velocity of the particle is

$$
v_{d}=c E / B
$$

ExB drift III

