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Two types of scattering:

o - (= —e,me=9.1x 1031 kg)

— high energy loss, small deflection,

e nuclei (g = Ze, mn > me)

— low energy loss, large deflection

There are more e- than nuclei (factor Z) so Z more time e- scat-
tering...

matter

q, E'<E




Energy transfer:

Impulse approximation (IA):

- incident particle is not deflected by collision,

- target particle is stationary during collision.

E-field at target is: (we ignore magnetic field since e is stationary
(in IA).

(1)




The momentum transfer from ¢q to e is:

400 — 400 bx + vtz
AT = / dte & = — / it 2
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TV oo T2 £ 20202)312 7 b Jeoo (1 4 u2)3/2
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The associated energy change is:

AT = \/(Ape6)2 + (mc?)? — me? ~ 2 (%)2 (4)

m \vb
where the RHS approximation is written in the non-relat. (NR) limit

2 2 2 2
(Ap <€ mce). Fore-: AT, = AT % For nuclei AT}, 7317; X Zmi .
Hence

ATn Qn)z mMe Qme Z
= =7 = < 1. 5
ot = < 2

e mn, mn 1836



So we see that e- are much more efficient that nuclei at extracting
energy from incident particles. But when is the IA valid? Let's
check the assumptions:

1- incident particle travels on straight path:

Ape  2qe  2qe/b 5 E electrostat. 2V (6)
vMv — ~vMv2b  ~vMv2  incident Energy < E

S0OK1=VKEFE.
2- target remains stationary = recoil distance during collision is

d <€ b. The interation time is 7 ~ ,Y% and corresponding recoil

0 —

distance is d ~ %T SO

Ape b 2ge/b

Pe” «1= qe/2
m v Ymuv
this is a stronger condition than the one coming from 6 < 1 by a

factor M/m.

d<< b= < 1. (7)




So let's keep the stronger condition (and rewrite it by making the

classical radius of e- appearing):

2qe?/(mc?) ¢?

<1
ye b V2
So IA is valid when:
2
=97 <1
Gyed
The NR limit implies:
A 2 2 2
Pe o g 29 o qo 0987/ met)
mc muc e Bb
2qre
=1L
Be b

Same as condition for IA to be valid but with v — 1.

(8)

(9)
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Now consider the case when the charge g passes through a bulk
material (many e-), let ne be the electron density. We have to
add all their respective energy gain to deduce their influence on ¢'s
slowing down. We do not need to consider the nuclei to a good
approximation. The total number of e- in a cylindrical shell of radius
b and thickness db is:

Ne = ne(vdt) (27bdb) (11)




The differential energy loss by the charge q is:

d?T 2 2
4 — _Drpevb | = (ﬁ) (12)
dtdb m \bv

(minus comes from energy is lost by ¢). Integrating over b gives:

dT, 2 rbmaz db
M e (97 [rer (13)
dt mv Jb,, b
2 b
= —47rn€(qe) In 22 (14)

muv bmaa:.
We cannot integrate from 0O to co. When b — 0, IA is no more valid.
IA is valid when
2 qre
1«1 15
B2ye b (15)

= Take byin = -5-Ire = ¢




Choice of bmaz: €- are bounded with energy E.. Their orbits have
angular frequency we = Fe¢/h. We must have the collision time
T K wal otherwise target not stationary and IA not applicable.
This gives:

b bmax 1

e~ — (16)
YU v wQ
U
jbmamzv_-
wo
Then
dT. 2 L 3
s T I MRS a1 s LS €00
dt mu s mv  wobmin
p) 2 3
_ g L96)7  Tme (18)

muv qewq



Note that dAT,/dt = dE/dt (E is total energy of ¢), and (1/v)d/dt =
d/dz so we can write:

dE 2 2 3
— = —47Tne(qe) In vy
dz

muv2 qgewqQ
This equation has been derived under the IA. Compare to Bohr's
results (1915) more carefully derived:

[JDJ Eq (13.9)]. (19)

1.123+2mu? 102
In DAL (20)

mu2 ge{w) 2c2 |’

dE (qe)2
_— == —47Tne
dz

where (w) represents the average angular frequency of the bound
electron in taget. The agreement between Bohr's and the equation
we derived is no bad: the IA seems to contain the essential physics.
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Influence of Dielectric Screening

For particles not too relativistic the observed energy l0ss is accu-
rately given by the Bohr's formula for all kinds of particles in all
types of media. For ultra-relativistic particles observed energy loss
less than what predicted with Bohr formula = reduction of energy
loss is due to “density’” effects.

In dense media, dielectric polarization alter the particle’'s field com-
pared to free-space

Problem of finding field in the medium can be solved using the
Fourier transform.
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Consider a dielectric medium, ¢ = e(w), p = 1. In Gaussian units we

have:
47
[JAY = —J¢ (21)

C

where [J = 0,0% = 5 — 97V2. A* = (o, A) and J* = (pc/e, T).
Define

F(T.t) = \/%7 /__:OdwF(?,w)e_M
F(7,w) = \/% /__:OdwF(?,t)e"l‘M
F(7,w) = (2771)3 - /_t:od?ﬁ’(?,w)e??
(k. w) = (2771)3 - /_t:od?ﬁ’(?,w)e—??

two first egns: Fourier transform in time, two last egns: Fourier
transform in space.
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The source of the field is the incident point charge (q) so we have:

p(,t) = qo(x —v't)
J(Z,t) = Vp(T,t)
The time and space Fourier transform is:
(ke w) = -2 / 47 / dt[q5(T — Tt)]e (kT —wh)
(27)?

_ —z(k v—w)t 9 . —

= (277)2/dt6 27T5(w P (22)
So finally:

.
o(k,w) = Qia(w— E.7): and J(k,w) = (]2—v5(w— E.T)  (23)
7T 7T
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Now transform the wave equation in the Fourier space:

A — (k2 — e(w)¥)A® = 47 jo

So that:
A0 — A J
c[k? — e(w)®s ]
or
R
4r J v
A = T = L))o (k,w)
c[k? — e(w)% I
o — A7p _ 2¢6(w — % 7)

e(@) k2 — e(w)%5] e(w)[K2 - e(w)2

-l

(24)
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The electric field is then given by

E=-Vo— 1%;‘ or E(k,w) =i(%e(w) — k)P and
—)_—) —)_ E(W)
B_VXA—wkxA_Tkxvcb. Hence
E(kw) _,(“v-F (k. w) (25)
— — — )
B(k,w) @?x?

We want to find the flow of energy away from the incident particle’s
trajectory = find the Poynting flux = find E(Z,w) and B(Z,w):

— ') ‘oo — w v — — +i?-7
E(7,w) = e /_OO 4k [Ce(w)— = K)o (k ,w)e (26)

Let’'s specify the problem: consider = = bz and take v = vZ.
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B2 = o [ [ [ - 7] =

— (275 5 / / / dkydkydk _—kxa: — kyg + (Z—e(w) = kz) ]

the term in kyy has no contribution to the integral of ky. Let's
integrate over dk.,:

2

— - 1 2q ., w (v R
E(7,w) = oy //dkxdky [—kg;a?—l—;(C—Qe—l) z]
eikxb

B+ (2) -

(27)
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Let A=%/1 ¢ and T = ffdeszfji/\Q. Then the E-field takes
Yy
the form:

— 1 2(_[ d . 2
E(x, = [ — —1)Z ] 28
(F.9) = Gogpe Tt t =D (28
‘The integration over dky gives:
arctan (——y__
+00 1 VE24+)2 oo s
/ dky— 5 5 = z (29)
—00 kx_l_ky_l_)‘ \/k%+)\2 oo \/k‘2—|—)\2
So
T = 7r/ dkz —W/ BT
\/k2 e \/kg e
+o00 CcOoS(kzb
— o / dky SO5F2b) o e o). (30)
0 VE2 4 22

and % = —27AK1(bN).

17



So finally the E-field re-writes:

24 A
B(7,w) = -2 [—,\Kl(m)sﬁ—if(eﬁ— DE.(bNzZ|. (31)
TV LE U
Now let’'s find the B-field

BF.w) = % « vo(F. w)—ze (—ka§ + ky2) P (& ,w)

C

—

R L ev2gf(w— k. T) T
— dkdbyds [—kyG -+ ko] ¢
(27‘(‘)3/2/// TRy v I e e[k2 — EW_QQ]

C

' 5w —k 7 =
= /qu% / / / depdlydhzky— O =R iR
(27) c k2 + k3 + k2 — e

2

C
the term in kyx has no contribution to the integral in dky. Integrate
over dk:

etkazb i 1 dT
- _ > —A//dk dker K >
(203271 T L N2 T a3
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By inspection this is the same as z-component of f thus

B = \Eg/\Kl(b,\)@. (32)

T C

Now that we have ﬁ and § we are in position of computing the
e.m. field energy flowing out of a cylindrical surface of radius b
extending from —oo to 400 in z:

dgf 0 — 1 +oo
ad 27rb/ S Adt = 27rb—/ (E x B).adt (33)
dz —00 4 J—c0
we have:
(E x B).ia = [(EeZ + E».2) x Byj.i
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So
d& f
dz

b roo
2 / E.Bydt
2 )

b o0 o0 it o0 p N —iwlt
— ——/ dt [/ dwFE.(w)e ™ ] [/ dw' By(w")e "
471 J—0 —00 —00

b oo b [+oo .
= =/ Ez(w)By(—w)dwz—E/_oo E.(w) Bi(w)dw

+o0
= Re <_b/0 EAw)BZ(w)dw) (35)

Expliciting E, and By we have:
d€ +oo 2
acr —bRe{/ dew {_i,/q”(l/e—[s?)l(o(/\b)]
dz 0 TUV

x {\/EZA*Kl(A*b)] } (36)



ey _ Re{/(foodwg—Q[zw(l/e—ﬁ )A*b]Ko(Ab)Kl(A*b)}

= gq—Re {/O_I_OO dw(iwA*b)(1 /e — ﬁQ)KQ()\b)Kl(Xkb)} (37)

7'("U

The equation was first derived by Fermi. Note that A or € need to
dE

be complex to have — # 0.

To proceed with our calculation we now need to introduce a model

for e(w). Use the same model as the one used to study Thom-

son Scattering: we model the bound target electron as a damped

harmonic oscillator:

(38)
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The dipole moment is just —ex and the polarization is defined as
the dipole moment density that is —neex:

— Nee E(w)
Pw) = — 2 _ D
m wj—w —wwl
—1
= W= 1x iy (39)
4
So we can write
w2
D
(W) =145 2 (40)
wh — w —wwl

wherein wy = \/47Tne€2/m iIs the plasma frequency. Now we just plug

this into % and perform the integral.
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Integral not so simple to perform. We follow JDJ's suggestion and
use the “narrow resonance approximation”

W~ wo :>b>\=b%\/1 — 32 Nb%\/l — 32 (41)

So

b
b0 ~ o (42)

(Y )\e
bA <€ 1 if b < an atomic radius. Then, using the small argument
approximation for the modified bessel function we have: (see JDJ
Eqg. 3.103)

1
DA*K1(bA*) ~ DA ~ 1

A*
D¢ 1.12
Ko(b\) ~ In2 —In(bA) —~ = In | =5 :m( 3
27 bA

) (43)
v = 0.577 Euler constant.
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d& 2 + 1.12
d—zf - ;qQUQRe {/O oodwiw(l/e — %) 1In ( o 3)}
2 5

= v2Re(T) (44)

where Z = [;7* dwiw (1) In (%) (we took B8 = 1). Explicit e(w)

€

[recall that bA = 20/T —¢ ]:
C

+o0 —w? 1.123
T =i dew| 5ty |in ) —Inw+
0 wh —I—wO — w* —wl bwp
1
+ 2 In(w? — w3 + z’wr)] (45)

Now let's perform the integration in the complex plane...
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Two sources of poles: —w3 + w? —iwl = 0 from the In(...), and

w2 + wg —w? —iwl = 0 from denominator of 1=, All the poles are

in the lower part of the complex plane. Consider the integral along
C. This gives:

I1+I,+13=0

, SO0 Z =111 = i(—1I» — I3). The i comes from the fact we drop the

12

I3

1 when evaluating the integrals I,,.
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Let’'s evaluate the integrals:

0]
I3=/ dww(.)INC) (46)
100
Let w =12 with €2 € R then:

0 00 21 Q24 Qr
Is = — [ deQ(.)n(.) = [ 20 i ML
1.123 1
X (In S Q4 ZIn(—Q2 — w2 - QI‘)) (47)

the bracket simplifies:
1.123
(..) =In ¢

b&)p

—Ini—InQ—I—%In—l—I—%In(QQ—I—wg—I—QI—) (48)

25



the Ini and 1/2In(—1) cancel each other. So Iz becomes:

wh + Q2+ Qr
w3 +wg + Q2+ Qr

0. @)
I3 = /O 405

X (m 1'1236—InQ—I—%In(QQ—I—wg—I—QF)) (49)

bCUp
So I3 is real, so I3 is pure imaginary and therefore its contribution
to ReZ is zero.
Now consider I, let w = Re'?, then

/2 . . w2
I» = lim id0ReRe"—— P
R—o0J0 wp—l—wO—Re" — 1 Re"l

1.123 a1 . |
X (m C InRe? + S In(—wd 4+ R%e%? 4 iRewl_)>(50)

bCUp



Taking the limit R =— oo, we get:

. 1.123 Tw2  1.123
I, = l/‘ idfw? In C—iZPn ¢ (51)
0 bwyp 2 bwp
So finally energy l0ss is:
d& w2 1.123
Cf = 222Re(1) = L9 1 ¢
dz s c2 bwp
where we have taken v = ¢. On another hand we have derived at the
beginning of Part V the energy loss under the impulse approximation
to be:

(52)

d& 2 2 2,2
g —47ne (ge) In — 1% In %,
dz mu wob c2 bwo

(53)

note that we have actually derived jt - we also took v = ¢ in the
latter equation.
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The influence of dielectric screening is two-folds:

1- It removes the dependence of energy loss on atomic structure wq
is replaced by wp which only depend on the density number of e-
(and not on their binding energy).

2- It reduces the energy loss from highly relativistics incident charge,
the ~ in the argument of In is gone.
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Cerenkov radiation

We now consider density effect in the extreme |limit b\ > 1 and
look at the energy deposited in the target. The large argument
approximation for the modified bessel function gives: Kp(b\) =
K1(b)\) = \/ge_w. So the fields are:

vV bA
—bA

— qe A w1 o ~

B = 150 (%2 ee), ”

(7, w) URVAN " Zv(e B7)z (54)

—bA

—_— qe N

B(Z,w) = = . 55

to get radiation A or e € C. Let’s take ¢ € R (no dielectric screening).
Then

A= %\/1 — e(w)B? (56)

Tohave A eI, 1—¢82 < 0= ¢82 > 1, this is the Cerenkov condition.
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Now replace the field in the expression for

d€; g

dz v

L
N

v

_ ¢ © AT 1 5
= ,02736(/0 1w 7(E_ﬁ>

= ~Re (/OOO dw(iw)\*b)(% — B2

de; .

dz -

2 0O 1
= —5Re (/O dw(m/\>‘<b)(z — 62)Ko(bA)K1(bA*)>
5 o—b(A+2*)

)

bV AN*

(57)

(58)

(59)

but radiation only when X\ € I that is for a frequency band w € [w;, wg].
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d€ 2w 1
A q—/odww 1— (60)
dz v2 Jw; €32
This is Frank-Tamm (1937) equation.
e(m)

/ 1/32
/
ol 2
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The propagation direction of the wave is given by
. — — . I
pendicular to E and B. So if .Z(v", k) then

| EL Ey
COoS 6O, = =
Bl JE2 + E2
Y

S €

[@)2 B C{j—; (% _62)]1/2.

introducing A2 = (w/v)?(1 — ¢62), we finally obtain:

1 1
cosf,. = Em

\/1—1+5Qe:5\@: v

R
k and k is per-

(61)

(62)

wherein ¢y, = ¢/4/€ is the velocity of light in the medium; ¢y < ¢ so

cosf. <1 and 0 € R.
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The shock wave feature should be derivable from the e.m. potential,

(kQ—""—) Veo(E ) = Tp(E
w2m — — 47— —
<k2—67> ﬁA(k,w)_c—J(k w)

So in the medium, A% takes the same form as in vacuum, under
the renormalization ¢ — q/+/¢, ¢ — cm. Using these potential we can
directly get the Lienard-Wiechert potentials:

\/Cb(x t) g 1 1
( A7, 0 ) ﬁ[%ﬂm(&) (63)

let { =7 —0t, R=7—-2{) =7 —7t. So R=7 — ot+
_>
vt—t)= ¢ Fo(t-t).
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So ¢ ¢ — BW) _ [(+7=t)]
= (t—1)2 = 3[P+2 T~ t)+02(t ). = (2 -3t —t)2+

2C. T (t—t) + ¢2 = 0: solve to get

7w T )2 — (02 — 2)¢2
(1), — —C miz 2 - (2 - )¢ (6

For cherenkov radiation v > ¢y, to obtain t —¢ > 0 € R we need:
— —

.U <0and (¢.0)2> (v2 —¢2)¢2, which means (v costheta < 0O
or theta > w/2, and cos20 > 1 — ¢2, /v2. So

0 > arccos(—\/l — (cm/’u)z), (65)

which lies in [7/2,7].
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So potential and fields exist at time t only within a cone which the
apex lies at ( = -t (i.e. the present position of incident charge)
and for which the apex angle is © — arccos(—\/l — (em/v)?). The
4-potential is A% = A% + A‘j‘_ where the + corresponds to (¢t —t')+.
Now,

—~

KRlret = |(1=1/em @A) R| =R ~ ~0.[C + T (-]
= R w_M2u_y
Cm Cm

—_— — 2

— JAlem(t—t) = <L )
Cm Cm
= L@ -De-t)-7T7| (66)
Cm
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Expliciting (¢t —t') in the latter equation (using 64), we get:

2
[kR]ypet = iﬁ,?n — v2sin? 0 = CJ 1— %sm2 0. (67)
Cm

m

both for (¢t —t')4+. So the potentials are given by:

@cb(?,t) ) _2q 1 ( 1 ) (68)
( A(Z 1) \ﬁg\/l—g;sinze

The potentials have a singularity (a hock front) at sin?0 = (¢m/v)2,
which corresponds to the earlier results cos?6 =1 — (cm/v)Q. Note
that when the frequency-dependence of ¢ is introduced the shock
wave-front is smeared.

v
Cm
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Scattering

Thus far we have only looked at energy loss from charges incident
to a target. Now let’s look at momentum transfer that is scattering.
Let N/ be the number of incident particle scattered from bdbdg into
dS2 per unit time; we have:

N’ d do N’
d2N = nobdbdd = N'dQ = bdbde = —d) = 2 dQ: = 2L (69)
nv dS?2 dS2 nv

g’s with velocity v
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do do b db

bdb = 2 sinfdf) = — = — (70)
dS?2 dS?2 sin 6do
Under the impulse approximation we have sinf ~ 6 = W|d_g . But
Ap 2qge
0] = = 5 (71)
P YoM v
. . __ 2gqe db| _  2qe
for tgrget e~ (cf beginning of part V). so b = ~OMo2 = )@‘ = e2n2:
So finally,
2
da 2qge 1
= 72
| (’vaQ) o4 (72)
For target Nuclei:
do 1 (2qZe\” (73)
Q64 v Mv?

this is the small-angle Rutherford formula. scattering by nuclei is Z?2 times
stronger than by e-.
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There are Z times more e- than nuclei, so the net effect is that
nuclei scattering is Z times stronger than e- scattering.

Average deflection angle in a material: To get the mean-square
deflection angle, evaluate:

[ dQ02do /d2 [ dAO>1/6%

(0%) = [dQuo/dY [ d001/6% (74)
_ fgnﬁix d@l/@ _ N % (75)
[do1/63 2(1/9mm —1/62..)
So (62) ~ 262 . In g?:ss for a single scattering event. This is just few

times 62 . which is a small number.
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Let's estimate 6,,;, from physical arguments:. bmaer >~ a, the atomic
radius because atomic electrons almost completely screen the nu-
cleus if b > a. So

2qZe 2qZe
emin — > =~ > (76)
Yomax Muv yaMv
2 2 2
e e</(mec r
~ > ~J /( 62 ) ~ - << 1 (77)
ampc ampc 1836a

So to achieve a sizeable deflection angle, the incident charge needs
either to undergo manu small-angle scattering of a few large-angle
scattering.

e Case of many small-angle scattering:
Net effect: charge ¢ random-walk through the target (©2) = N(62)
and:

d(©2)

Z

min
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The distribution of angle after many small-scattering event (random-
walk) is given by:

_92%

(7).

Prw (0p) o €”

e Case of few large-angle scattering:
Consider the distribution of scattering angle for a single scattering
event:

do < 2qZe

1
—dS2 = dgOdo 79
dS2 ’va2> 64 ¢ (79)

In terms of projected angle 6, = 6sin ¢, this takes the form:

do 2qZe \ 1 . D
—dS2 = dB, sin“ od 80

Upon integration over ¢ we find that the distribution scales as:

do 1
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