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Chapter 1

Electromagnetic resonance in
cylindrical cavities and waveguides

1.1 Maxwell’s Equations in MKSA units

In a medium with dielectric permittivity e and mangetic permeability 1, Maxwell’s equation
takes the form

- —
V.D = p, Coulomb law (1.1)
— —
V.B = 0, no magnetic charges (1.2)
- - —
V x E = —0,B, Faraday law (1.3)
- = — —
VxH = J+0D, Ampere- Maxwell law (1.4)

where
ﬁ ﬁ ﬁ . . . ﬁ . ﬁ . . .
e D =¢FE + P is the electric displacement, E the electric field P is the polarization.
e p, is the charge density,

— — —
e B is the induction, H = B /u — M is the magnetic field, u the magnetic permeability
—
of the medium and M the magnetization.

ﬁ .
e J is the current.

Let’s now consider a perfectly conducting resonant cavity which is cylindrical, and which
is filled with a homogeneous, isotropic, non-conducting, non-dissipative medium. Then in
the medium,

— — — —
D =¢E, and B =puH. (1.5)
Given the boundary conditions at the cavity walls:

—

é
AB=nxE =0, (1.6)



Maxwell’s equations (MKSA units) can be written as:

— — —
V.D=0=V.E=0V.B =0;

- — —
V x E+0,B =0;

e — —
VXH—(?tD:O:>V><B—,u6(9tE:O

1.2 Relation between axial and transverse components

of the em field in a resonant cavity

We now specialize the problem to cylindrical cavities with revolution axis Z and we write

the electric and magnetic field in the form

f(r, ¢,2,t) |
§(r, ¢, 2, 1) B

Ei(ra ¢) ] e:l:ikz—iwt‘
B(r, )

Separating transverse and axial components:

— —
E E, E, | .
- | = ="+ ;
B B, B,
— — —
E. .| E E, . E
=z | =S |;and | = | =12%X| =
B, B B, B

- = —
2% (V< E)| x 2 - iwB, =0,
- = —
[éx(Vx B)| xzZ+ipewE; =0
In general,
- = - = e "
Ex(VxV)=V(EV)=(2V)V =VV, -0,
e — —
éx(VxV)] X2 = VVix -0,V x32)
— —
= —ZA,’X Vt‘/z—i-éxaz‘/t
So,
— — —
iCUBt = ZA,'XGZEt—ZAJX VtEZ7
— — —
—iwueEt = 2><3th—2>< vth

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)
(1.17)



Apply “Z2 x 0.” to 1.18:
iwix 8.8, =ix(2xPE,)— 2x
- —@ﬁt— (—)
— 12 E, +ikV,E..

. — —1,, 9 =
= 2z X ath = —(k Et iZkVth).
w
Similarly:

. — ) = =
ZX@ZEt:—(k BtiZkVth).
JLEW

Insert 1.24 into 1.18:

7 — — —
iu)Bt = —(kQBt + szth) —Z X Vth
JLEW

. 9 N — =
i(pew® — k*)By = FkVB, + pewz x VE,
— 7 — =
= Bt = ﬁ(ik’Vth + pewz X Vth)
pew? — k
Insert 1.23 into 1.19:
—ipewE, = —(KE,+ikV,E)—%x V,B,
9 N — L =
—i(pew® — kK°)E;, = +kV,E,—wix VB,
— 7 — =
= FE, = —(+kV,E, —wix V,B,).

pew? — k2

(1.20)
(1.21)
(1.22)

(1.23)

(1.24)

(1.25)

(1.26)
(1.27)

Eqn 1.27 and 1.30 generally pertain as long as the transverse cross-section is z-independent

as illustrated in JDJ Fig. 8.3.

1.3 Wave Equation

Multiplying Faraday’s law by ?x gives

—

— — — — — = — — —
Vx(VXxE)+0VxB = V(V.E)-V?E + ucd’E

273 273 23
= —V;EA+EE —pewll =0

[V2 4 (new® — k%)) E = 0.
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Similarly multiplying Ampere-Maxwell’s law by V x gives

— - = - = —- = = 03 o
Vx(VxB)—uVxE = V(V.B)—V*°B+ ued; B (1.34)
— — —
= —V!B+kB — puew’B =0 (1.35)
[V2 4 (new® — k%)) B = 0. (1.36)

Equations 1.33 and 1.36 can be casted as

ool =1

(Vi + (pew? — k%)) [ =0. (1.37)

which is sometime referred to as the wave equation.

1.4 Recipe for EM-field calculations

The previous derivations suggest a prescription for computing the em field in a resonant
cavity.

_
1. Find E,(r, ¢) and B.(r,¢) from [V? + (uew? — k?)] E = 0.
2. Find ﬁt(r, ¢) and ﬁt(r, ¢) from
Et (Tv ¢) _ Z = Ez (Ta ¢) _ 2 =1 Bz (Ta ¢)
Buro) | par B\ TV Birg) | TV —peBaro) |
3. The total field is:
E E, { E. } .
= | = ="+
B B, B,

4. Incorporate the boundary conditions (S: cavity side surface):

—

nx b :O:>EZ|S:Oand, ft:() at end plates
2B =0=nV,B.=0= 0,B.|g =0 from Eq.1.19
Boundary conditions at the cavity side S for B, (E, straightforward)
— — — — —
—ipewFE, =2%x0,By —2x VB, =2x(0,B;— VB.) ( from Eq.1.19). (1.38)
take “nx”:

—

— —
—ipewh X By = x [z % (0,8, — V:B.) (1.39)

8



L.h.s= 0 since n X E = 0 and E,=0 at the cavity walls.

use @ x (b x¢)=(a.2)b - (a.0)¢:
7.0, B — V:B.)| 2 — (7.)(0. B, — V,B.) = 0 (1.40)

n.z = 0 because n L Z on the cavity side

— —
= 0,(n.By) —n. VB, = (1.41)
— —
n.By=n.B — (R.2)B, =0
= 0,B,=0 (1.42)

1.5 Resonant modes categorization

The boundary conditions EZ| s =0and 8,132‘ s = 0 cannot generally be satisfied simultane-
ously. Consequently the fields divide themselves into two distinct categories:

e Transverse Magnetic (TM): B. = 0 everywhere; E.| s =0

e Transverse Electric (TE): E, = 0 everywhere; (3nBZ} s=0

1.5.1 Wave equation in cylindrical coordinate and its solution

Consider the case of a resonant cavity with end plates located at z = 0 and z = L in
cylindrical coordinate (r, ¢, z). The boundaries condition at the end plates imposes E)t =0
= Et oc sin(kz) with & = £ (p € N).

Let 72 = pew? — (pL—”)z, then the longitudinal field are found from:

(Vi+7)¥(r,0) =0 (1.43)

where ¥ = E, (TM) or B, (TE)
The transverse field are then given by:

E Y
TM: Ealro) | _ ~ CVL W, ), (1.44)
By(r, ¢) V| pewz x Vy
E ' 2 x V
e | Bne) | 2 TRV (9, (1.45)
B(r, ¢) g +kV,
In cylindrical coordinate the wave equation is
1 1 ., 9
;&(r@r) + ﬁ% + 7| ¥(r,¢) = 0. (1.46)

9
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Figure 1.1: example of TM-mode accelerating cavities used in charged particle accelerators.
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Assuming an harmonic azimuthal dependence of the form
U(r,¢) = U(r)e™™?; (m € N).

the wave equation simplifies to

(r*d? + rd, + r*y* —m*)¥(r) = 0, (1.47)
which is a Bessel equation. Such equation has solutions of the the form V(r) = AJ,, (Ymar) +
BN,y (Vmnr). However B = 0 since lim, g N,, = —oo which would result in unphysical
solutions.
So finally:
U(r,¢) = Adu(Ymnt )€ Y = xg" (1.48)

where 1,,, is the n'* root of J,,(r) = 0, and R cavity radius. 7., is defined to insure ¥ — 0
asr — R.

1.5.2 Resonant frequencies
We have defined

pm? Tn | 2
Vo = HEWh,, — (f> = ( I ) (1.49)

expliciting the frequency w gives

_ _\/ xmn p”) (1.50)

which is the resonant frequency associated to the “mnp” mode.

1.6 Transverse magnetic (TM) mode fields

For the TM mode ¥ = FE, so that
E.(r,¢,z,t) = EOJm(7mnr)eii(kz+m¢)_i“m"t : B, =0. (1.51)

The transverse electric field is

Bing) = 17 (a n aw) ()T,

kEy .. .
= di—etm (yan;@f + @ngb) . (1.52)
y r
Insert J! = %:”;T I — Jma1:
— +ikE R
Et(rv (b? 2 t) = 72 ° { [%Jm(’ymnr) - ’anJm+1 (’Ymnr)} r
], ('ymnr)gg} etimeptikz p—ivmnt (1.53)
Note that:

11



H .
o £, =0atz=0,L = Fiet™* — —sin(kz)
e “time” is arbitrary: e~ — cos(wt)
e ¢ is also arbitrary = ™% — cos(m¢) and £ieT™?® — —sin(mae).

—
E,; can be written in the real form:

—=  kEysin(kz)

Et - ~ {[?Jm(ﬁ/mnr) - ’Ymnt]m—i-l(menr)] COS(mgb)f
= T (YmnT) sin(mgb)(;ﬁ} cos(Wmnt). (1.54)
where Ey € R.
likewise,
E.(r,0,z,t) = EgJm(Ymnr) cos(me) cos(kz) cos(wpmnt) (1.55)
The transverse magnetic field is
. ..
Bur.o) = “5ix (am ;am) (r, )
TIEW 1. N
— 72 <—;8¢7’ + 87»¢) \I’('f’, (b)
EWEY 4y |t m ~
= ——5 ¢ F—Jml" + (_Jm - %]m+1> of -
y r r
. — —
e ic” " — sin(wt) B and FE are 90° out of phase;

)
o M cos(mo), Fiet™? — sin(mo), and e** — cos(kz).

E
Bs — t( ¢ . t) JEWmn Lo COS(kZ) {@Jm('ymnr) SiIl(ﬂlgb)TA’
’ymn r
m N
[T Onr) = Yo Tins1(nar) | €05(m) } sin @int) (1.56)

Let’s define the shorthand notations:
kpy = 5 Jn(r) = Jin(YmnT), Ty (1) = 2 Jon(YmnT) = Ymnma1 (YmnT ),

[kl s v o i) ] R B

12



The TM-fields are:
koo

B, 0,50) = =By Tn(r)em()5p(2)emnp(0), (157)
EDM(0.500) = By =0 (1)sn(0)3y(nmn(t). (1.58)
E™(r ¢, 2,t) = EoJpn (1) Cm () cp(2) Crnp (1), (1.59)
BIM(r,¢,2,t) = Eo“jgj”%Jmn<r>sm<¢>cp<z>smp<t>, (1.60)
BIM(r,¢,2,1) = Eo%:‘Jmn<r>cm<¢>cp<z>smnp<t>, (1.61)
By ¢,2,t) = 0. (1.62)

1.7 Transverse Electric (TE) modes

The TE-fields now follow at once by inspection:
Winn M

ETR(60.50) = —Bo 28 T (150052 ), (1.63)
EY(r,6,2,t) = —Bog™ Joun()em(#)55(2)crunp(1), (1.64)
B gt = 0, (1.65)
BIE(r,0,2,8) = — B Joa(1)em(6)cp(2)smnpl), (1.66)
BIM(6.50) = By () @)cp ()1, (1.67)
BTE(r,0,2,8) = —Bodua(r)em(#)5y(2)sma(0) (1.68)

with 0,B.(r = R) =0 = v, = 2,/ R; x., root of J,,(x) = 0.

1.8 summary field associated to TE and TM modes

The Tables and summarize the equations for the electromagnetic field components and res-
onant frequencies associated to respectively TM and TE modes.

1.9 Physical insight

See Figure 1.2.

1.10 Geometry considerations

Comment on choice of modes and R/L:
11

Wmnp = —ILLE E

(#7n)? + (p)*(R/L)?.

13



- - m=0,1,2,.. Zon = 2.405, 5.520, 8.564, ...
WwIM = F= (m"—é") + (PT") d on=1,2,3... —{ =z, =23.8327.016,10.714, ...
p=0,1,2,. Zon = 5.136,8.417,11.620, ...
prnonn = o (EE D) () v (s ) = s (sven ) Jeontnosin (v ) cos
r, ¢,z = Tmn— ) — JIm T — | | cos(me) sin { pm— ) cos(w
(7, , — p— mn mt1 (Fmn z mnp
pm R m R T i R z ™
E¢(r, b, z,t) = (zmn L) (zmn r) Jm (E"”LE) sin(me) sin (p‘irz) Cos(wmnpt)
E.(r,¢,2t) = EoJ ) cos(me) Z) cos(wmityt)
2(r, b, z, = 0dm zmnR cos(me) cos pTrL c08(Woynp
™ m R Ty 2\ . . T™
Br(r, ¢,2,t) = EO\/E( \/Twnntp) ( ) Im (z;nln—) sin(me) cos (pﬂ'*) sin (w7 pt)
Tmn Tmn T R L
m R s T z M
Bd)(r, b, z,t) = Egpe ( v ewmnp) [( 7) JIm (zmnf) — Jm+1 (zmnf)] cos(me) cos (pwf) sm(wmnpt)
Tmn Tmn T R R L

Bz(r,¢,2,t) = 0

Table 1.1: Summary of resonant frequencies and electromagnetic field components associated
to the TM,,,, mode in a cylindric cavity of length L and radius R).

—~ 2 S [ m=0,1,2,.. 2y, = 3.832,7.016,10.714,
WwTE, = ( Tﬁn) + ()58 n=12300 «},, = 1.841,5.331,8.536,
v p=1,2,3,.. ol = 3.054, 6.706, 9.970, .

R TE m R ;T L . z TE
E,(r,¢,z,t) = Eg Ve iy — Im | ©ppp — ) sin(me) sin | pr— cos(w"mpt)
R TE m R ( , T ) ( , T ) ( z ) TE
Ey(r,o,z,t = E Ew — |} J x — ) — J T — cos(mae) sin 7w — | cos(w t
(1, 0,2, 1) o (x;nn N mnp) [(y;nn T) m (Tmn mA1 | Fmn (me) P (Wrnpt)
E.(r,¢,2z,t) = 0
B pt R m R , T , T z TE
By (r,¢,z,t) = Eg\/pe o z o - Im (zmng) — Jm+1 (zmng) cos(ma) cos (p?rz) sin(wy, pypt)
By(r, ¢, 2,1) Eo /e ”"R[’"RI('T)‘M» (472 ) sint 2,0
r, b, z, = - € — — . z — | sin(m¢) cos | pm— |} sin(w
¢ VN ) e 7 ) T\ R L e
r . # TE
B.(r,¢,2,t) = EoypeJm |x,,, = cos(me) sin pTrZ sln(wmnpt)

Table 1.2: Summary of resonant frequencies and electromagnetic field components associated
to the TE,,,, mode in a cylindric cavity of length L and radius R).
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Figure 1.2: Charge and current distribution in a pillbox resonant cavity during an oscillation
of the electromagnetic field associated to the TM10 accelerating mode [from H. Padamsee,
Cornell University].
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Figure 1.3: graphical interpretation of the quality factor.

Want to choose a frequency such that it is well separated from other resonant frequencies,
and such that it is sensitive to both R and L to enable easy tuning. Thus,

e not interested in large p or R: liMp_ 00 psoo Winnp = \/1#7’% = R-independent.
e not interested in large m or n (and/or large L): wyny — \/%x}'%" for large m or n and

R/L ~ 1 L-independent.

= The most interesting modes in practical applications should be low order modes with
R/L ~ 1.

1.11 Quality factor

A resonant cavity is a class of harmonic oscillator: it can actually be modeled by an equivalent
RLC circuit. Oscillators are usually characterized by a figure-of-merit refer to as quality
factor which is define as the ratio of stored to dissipated power per cycle.

e (1.69)

P
(1.70)

where U is the stored energy (i.e. the electromagnetic energy that was “injected” in the
resonant cavity, and P is the dissipated power. For a normal conducting cavity (as opposed
to superconducing cavity), the main source for power dissipation are Ohm losses due the
conductor resistance.

Note: having cast things into ”consistent units”, we have in effect inserted into the wave
equation:

TM: Ez<ra ¢) - E0¢<T7 ¢)7 Bz(r7 ¢) =0;
TE:  B.(r,¢) = —Eo\/ue(r, ¢), E.(r, ¢) = 0;

16



(note the use of small cap ¥ defined as ¥ = Ey1)) so that for both TM and TE-modes
1
€

holds and from Eq. 1.44 and 1.45:

E Ey | +kV
T | Denol ) tBo RV ),
| Bu(r,9) | Y pewz X Vy
[ E)t(r, o) ] ivieEy | —w2 x ?t
TE: — = B — ’(/J(T, ¢),
I By(r, ¢) | Y +EV,
Hence for both TM and TE-modes we have
E? lBQ—Eng ) (Vip)? 1.72
t+Et—¥( + pew”) (Vi) (1.72)
The stored energy in the cavity is the volume integral
_ 1 —3 _ € s (2, B
U= | dx°(ED+BH)=- [ dz”° ( E*+ — (1.73)
2 Jy 2 Jy e

we have [dzsin?(kz) = L/2 and [ dzcos?(kz) = L/2(1 + dp,). Time averaging of sin?(wt)
and cos?(wt) gives a factor 1/2. We also note:
kR\?
v ()
T

2
- (g) 14 2¢%) where ¢ = 27 (1.74)

st g (5)

T

xL

Note that here we use the shorthand notation z to refer to either z,,, or z .
The stored energy in the cavity becomes

vl +850%E§L /A dA { <5> [1+28%] (Ve)* + W} : (1.75)

X

For TE mode p # 0 = dpp = 0. Let’s consider the integral [, dA(V,1)*:

/A JAV W) /A IAT (9 ) - /A V2

- 7{ Al i — / dAYVH). (1.76)
C A
but,
= ¢TM(T = R) =0
Jaidwn.vtzp = 0{ ™ (r = B) = 0 (1.77)
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we also have, from the wave equation, V1) = —(k* — pew?)y = (z/R)*.

So
2
dA(V)?2 = (Z /dAzﬁ, 1.78
Jaawr=(3)" [ (178)
and the stored energy is

L

U= EZE2(1 + dop) [1 4 €] / dAY? (1.79)
A

this is JDJ eq, (8.92). Considering the azimuthal dependence 1)? o cos?(ma); one has
J27 dgnp® — m(1 + Gom)J* s0 that

T R r
U = ZeLE2(1+ 6om)(1 + bop) [1 + €] / drrJ2 (x—) . (1.80)
1 ; R
Case of TM-modes ':

R
1
/ drrJ? (%) = §R2J31+1(35mn) (1.81)
0
Let V = mR%L; the stored energy associated to TM-mode is

Uﬂ; gveEgu + Som) (1 + bop) [1 4 €] T2 11 (Tmn)- (1.82)

Case of TE-modes:
use the identity:

Jo dpp I (p) = 52* [T () + I3,y (2)] — maJun(2) T (2)

;s/ drrJ2 T R2{§x2[...]—m...}

SR [ () + T (a >}— T R () s (). (1.83)

mn

1
T2

mn

where we used the recursive relation Z.J,, (') = Jpi1 (') = Jp-1(2) 2

Finally,
[Carer (o) = Ll (5] e - m (B) 2w

I MmN o
= SR [1 (x> } T2 (2). (1.84)
Thus, with V = 7R*L and dp, = 0 (p # 0) for TE-modes,
m
ULl = gVEES(l + Bom) {1 - (%) } 1+ €2] J2 (2, (1.85)

the identity fo dexJ?(ox) = $J2., if J,(a) = 0 was used
?Arfken pg. 631 J,—1(z) = 2J,(2) + J),(2) and Jny1 = 2J,(2) — J;,(2).
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with ¢ = 2L

Let’s now turn to the computation of the dissipated power in a cavity:
P 1 s  Rs

Y __RH-=2p 1.86
A~ 3t = 5B (1.86)
with R, = surface resistance and | means component || to cavity walls. The dissipated power
is

Ry 2 2

2/1“2 side end

Case of TM-modes:

L 2
side: / dABﬁ :/ dz/ d¢RB§,(r, b, 2)
side 0 0

= §<1 + Sop)T (L + Gom ) peEG [1+ & R [%Jm(@ — Jms1(2)

2

but J,,(z) =0 so

1
/ ) dAB} = §MEE§(7TLR)(1 + S0p) (L + Som) [1 + 2] T2 (2) (1.88)
27 R
end: / dABﬁ :/ dgb/ drr B}
end 0 0
E3M262W2/ 2 E3M262W2/ 2
S0 = [ qA(vy)? = 222 | gAy
@i LAY ame
= peB} [1+ €] 5L+ 80n) BT, (a) (1.89)
1
end: / AAB] = Spe B3 (mR?) (14 Gom) [1+ €] T (), (1.90)
end
where (again) £ = m’;ffL.

So the total power loss is:

Ry
pr — o ueEggR(l + Som) [14 €2 [L(1 + 80p) + 2R J2 4 1 (1),
or, with A, =27 RL,

o R, 1 R
P7fw]1\f) - 2,LL2 MGE(%ZAS(l + 5Om> [1 + 52] |:1 + 6Op + 2:| =],2n+1(:l;mn>~ (191>

L
The quality factor is Q = % that is:
1 =z
= 2 J1+¢
Q = opV1Ex
sV EEG(L + Som) (1 + 00p) (1 + €%)J711
s el 3 As(1+ Gom) (1 + dop + 27) (1 +€2) 71

(1.92)
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after simplification and using V/As = R/2,

R /1+&
QRS - \/g(l + 50}2) x —+£

R 21+, + 28

Re-arranging

TR\ 2
1 1% I?rm + (P L )
TM
Ro=—/*1+s .
Cmnplts = 5 \/1 ) oyt 2

TE-mode:
L 2
side: /SidedABﬁz /O dz /0 dpR [Bi(R,¢,2) + BX(R, ¢,2)]

1+ (Rmm>2 J2 (2")
2L "

2 R
end: / dAB2:/ dgb/ drrBf(T,gzﬁ,())
end 0 0
2 2
= peEe” (5) / a4 (V)
x A

= ueE@{Z/dAQﬁ.
A

2 : r
/AdAlp = 7w(1+ 60m)/0 drrJ;, <x R)

m

- gpﬁu + Som) {1 -~ (;)2} J()

/ dAB} = ueEggLR(H(SOm)
side

= / dAY? = ueEgng(lJr%m)f/Q
A

Thus,

R ™ m 2
TE S 2 2
Pinp = gty RO+ Som) T () {L [1+ (*) 5’2}

12R [1 - (%)2} 5’2} 7
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or,

Rs 1 m\ 2
Pryy = Q—MQMGEgZAs(l + Gom) {1 + (g) &+

R my?2 12 2 (.0

2~ {1 - <?> ] ¢ }Jm(x ). (1.101)

and finally,
R 51 R
TE s 2
P’m/n,p - 2/L2 MEEO ZAs(l + 50m) {1 + |:2L+
R m\? 2 2 /
The quality factor is then
o1
N S )
Q R e + &2 %

sV e (14 dom)[1 — (m/a")?)(1 + £°) 7,
s e 55 1 As(1+ Som) {1+ [2R/L + (1 — 2R/L)(m/x')2]€2} J2,
1 fp1 2'[1 — (m/a')*](1 +€7)*?

2\ € R, 1+ 2R/L +2(1 - 2R/L)(m/v)?]€"

q

(1.103)

2'[L— (m/a')?)(1 +£7)*?
1+ 2R/L+2(1 —2R/L)(m/x")?]£"?
2'[L — (m/a')?)(1 + £7)*?
L4 2[1 = (m/a")?|(R/L)E™ + (m/a")*¢"™
Z’[](l _|_£/—2)3/2
2[..JR/LE + (..)% L 4¢3
2[](1 4 £2)30

T ZLPL(R/L) + (m/a)? + €7} (1.104)

Finally one has:

- (&)
QZIW’L%‘]?RS —= m\/'ﬂ |: .
€

(1.105)
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1.11.1 Comment on JDJ’s geometry factor for T'F,,,, mode — Eq.
(8.96)

For the power dissipated on the wall we use:

dP

o 2R H?, (1.106)

where the factor 1/2 comes from time-averaging, and R;, the surface impedance is defined
for normal and super-conductor. JDJ uses:

AP pewo

= H (1.107)

the factor £ ‘Z"‘; is valid for normal conductor only. Compare to infer:

W
R, ol ;‘) (1.108)
JDJ also introduced the geometrical factor G' so that:
wV
_ Y A 1.109
Q=1 (1.109)
This means
pw Vo pewd oV

Ry=——G—— = =-—=wG 1.110
Qi =m0 = 35% (1.110)

Let I' = QR (I" has units of 2). One has:

28T

G=———. 1.111
Vo (1.111)

Substitute the earlier results for TE-mode:

o - 227RL + 21 R?
ou TR2L p 2
f
4(1
_ A0+ 9 (1.112)
R\ ppr AL
e ( i)
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o (1+R/L) eL
- T x_'£>2
p7rR
9 / 573/2
- ()] ()
p'ﬂ- M |: Tmn :| |: + pmR
2 €

L 2
¢ - (14+Z% [H(W” (1.113)
~ T R) [ ol W ey '
21— (m/},,)%]
1.11.2 Example of TE111
ahy A/z)° L @ym?
L 1+0.343(L/R)?
=G=[(1+2 1.114
( + R> 1+ 0.209(L/R) + 0.244(L/R)? ( )

This is JDJ’s Eq. (8.97).
The advantage of using G instead of I' is that G = O(1) so that for the right circular cylinder:

uV uw  TR2L
~ —— et ——2
O~ Y = S RL + 2™
L

1.12 Perturbation of cavity wall & Slater’s Theorem

Consider a single resonant mode in a cavity. We perturb the cavity wall and estimate
the associated change in resonant frequency. This relates to the cavity tuning and also to
removing degeneracies between modes.

Consider a volume V bounded by a surface &, then the the force associated to e.m. field in
the volume is related to the Maxwell stress tensor (see JDJ Chapter 6) via:

— —
F :/T.dA (1.116)
S
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2.4

1 | | | | | | | | |

12 14 16 18 20

10
L/R
Figure 1.4: G vs. L/R for the T E11;-mode.

é
with d A = dAn and
— —— — —— ] -—
Tze(EE—l——BB)——(EE—F—BB)ﬁﬁ. (1.117)

Introducing the displacement d ¢ = d¢i, = dV = dAd(;
0U, the work done by the e.m. field against displacement is

5U:/dAdgﬁT.ﬁ:/ dVi.T i (1.118)
AV

ﬁ
Note that n T n represents the e.m. pressure on the wall.

1
n.T.A = eE* — —~(E* + —B?) (1.119)

€
2 I

= . —
because n.B =n x E = 0 at the surface of a perfect conductor.

€ 1
5U:/ —(E? — —B?). 1.120
BB (1.120)

or, written in terms of time-averaged fields,

SU = f/ V(B — L), (1.121)
4 Jav He
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In the cavity the “photon number” is conserved, which means U/w is an invariant. So
U/U = dw/w, from which

ow € 1
== dV(E?* — —B?). 1.122
o I s ( e ) ( )

(E? and B? are time-averaged).

1.12.1 Example of application: measurement of field profile with
a bead pull

Consider T'My11, » = 0. The only non zero field component is:
E.=E COS(W%) cos(wai't). (1.123)

Imagine pulling a conducting bead along the z-axis. The volume of the bead is AV. Then

ow € 2 ..
— EAVEZ (time-averaged)
€EZAV cos*(mz/L)
o~ . 1.124
EEg 7w L 2 2 ( )
g V2 1 + (Lr_m§> ‘]1 (Zlf()l)
dw AV cos?(mz /1) (1.125)

N L (2] st

Therefore we can "map” the cos>-dependence. Same principle for any other mode or super-
imposition of modes.
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Figure 1.5: Example of bead-pull measurement [taken from W. J. Brown, S. E. Korbly, K.
E. Kreischer, I. Mastovsky, and R. J. Temkin from Phys. Rev. ST Accel. Beams 4, 083501

(2001)]
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Chapter 2

Special Relativity & Covariance of
Electromagnetism

2.1 EM field of point charge moving at constant veloc-
ity

In this Section the em field associated to a point charge moving at contant velocity is derived.
We (of coursel) start with Maxwell’s equations:

H
For now we assume a charge distribution with associated density p and current J. Writing
ﬁ
in terms of electromagnetic potentials, A and ® gives

— —

— — — — — — —
B = VXA=Vx(E+0A)=0=E=-Vd-0A

11— = — — - = — —
—VxB—-ehE = J=VxB—uoE=pnlJ
s — - — — — —
=V X (VxA) +u(Voo+0;A)=pnlJ
— - — _ = —
Using the identity V x (V x A) = V(V.A) - V?A,

VA4 V(YA + ped®) + ped® A = J
A A+ ped, @) + ped; f

— —
but V. A + ped,® = 0 in Lorenz gauge so that

VA — ped? A = —pJ [IDJ, Eq. (6.16)] (2.1)
€
V2P — ped?® = -2 [JDJ, Eq. (6.15)] (2.2)
€
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For a source moving at constant velocity, v: p = p(¥ — v't) and
then have to solve a set of inhomogeneous d’Alembert equations: [ |f = g(@ —

Consider the case v = v2 = f(o — v't) = (z,y,2z — vt) = f(z,y,¢) with ( = 2z — vt.
Then

9¢
0:-f — 720 =0cf (2.3)
8
rf — C5<f = —vdf (2.4)
= [f = (02 + 02 4 0} — pev®d}) f = (02 + 0] +~v720%) f. (2.5)
with v = m Let 2/ =~v( = 0¢ = 84821_782/ :
(02 + 02+ 82) flx,y,77 %) = gla,y, v ). (2.6)
We now specialize to a point charge and explicit p(7 —0't) — §(2)d(y)5(y12") = v6(2)d(y)d (')
¥o(T"). .
As a results, A — Az (A, = A, =0);
2 s 2 q¢ 7
Vi A= —yuqui(z'), Vi® = —725(x ). (2.7)
Which is solved by inspection:
1 _
V2 () = —ams() = { L (2.8)
|QZ,| 4me R
where R = /22 + y% + 72(z — vt)2.
— —
Now we can calculate £ = —-V® — 0, A
B o= 29U 4 pevdiz)~
B 47re HEVOEI R
4 . - 20, _ _ 2\ 2
TreR? (22 4+ yg +7°(z — vt)(1 — pev®)z] (2.9)
E=_1 (22 + yy + (2 — vt)Z] (2.10)
4meR?

Conversion to spherical coordinates (r,16):
22+ 9% =1r%sin®0, z — vt = rcosé.

= R* = r%(sin’ 6 + 4 cos® )

1-—
= ~%r (1 + 7 sin? 9) = v*r?(1 — pev®sin® §),
o
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g r
= FE —
4e y3r3(1 — pev?sin® 0)3/2
q 1 — pev?
= . 2.11
drer? (1 — pev?sin® §)3/2 (2.11)

Note: In vacuum, take pe — poeg = ¢~ 2, and then

—

= q T

E = . [JDJ, Eq. (11.154 2.12
4rer? 42(1 — 32 sin” §)3/2 [JDJ, Eq. (11.154) (2.12)

Note that E(7/2)/E(0) = ~v

3 = field lines are “squashed” orthogonal to the direction of
motion.

- = =
Also we can find B =V x A:
A=pedv = B=peV x (07) = ue[VO x 7 + VY x 7]
— — N
= B =pueVao x v.
- — —
VX E=-1Ux(VO+0A)=Vdx

0 3 (g — yz). (2.13)

Further reductions [toward JDJ Eq. (11.152)]:

E=_—1 : (2.14)
 dmegr2 42(1 — (2 sin?0)3/2 :
b b
sinf = o W
1— BPsin?f=1— G207 D0 = 3P0 (1 — BP0 4 0Pt
B b2+ (vt)2 222 b + v2?
b2 2,242
1—ﬁ2sin29:—+320 = qry/1 — (2sin? 0 = /b2 + 72022
v4r
Finally
B_ 4 VT LB 4 ~bi 2.15)
T dmeg (b2 4 y2022)3/2 L Ay (b2 + 72022)3/2 :
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E,, (V/m)

0.5

Figure 2.1: transverse (left) and longitudinal (right) electric fields associated to an electron
moving at rest and at constant velocity with v = 10.

2.1.1 Space-charge effects

Consider a charge ¢y comoving with another charge ¢. Let’ assume (simplistic) that both
charge move at the same velocity . The force imparted to g by ¢ is

F = ¢(E+7 xB)

1 — —

The self-magnetic field of ¢ cancels its self-electric field to within a factor 1/42. This effect
is an important one when dealing with charged particle accelerators aimed at producing and
accelerating high brightness beams (a lot of charge in a very small phase space volume). The
cancelation of the transverse force shown in Eq. 2.16 calls for rapidly accelerating a beam in
order to preserve its brightness.

2.2 Special relativity
The squashing of the E-field of a moving charge, as it corresponds to the equation of motion,

is suggestive of the Lorentz contraction, and thus indicative that electrodynamics is invariant
under Lorentz transformations.
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v of O' measured by O
—_—>

spherical waves propagate

Figure 2.2: left: two inertial frame ( O is the lab frame). right: light cone, [AB] is time-like
[AC] is space-like.
2.2.1 Proper time and its invariance

Consider a spherical waves propagating such that (%)2 + (%)2 + (%)2 = ¢?; see Fig. 2.2.

If ¢ is the same in all inertial reference frames (postulate), then
da'\ 2 dy’ 2 dz'"\? 9
() + (i) (&) =

Adt* — dr* — dy* — dz* = 0 for photons. (2.17)

So, we write:

This holds true in any inertial coordinate system. More generally we can define the proper
time:

1
dr? = dt* — 0—2(d:1c2 + dy? + d2?). (2.18)

In SR, the proper time is an invariant — all inertial observers measure the same dr. Note
that:

1
dr? = dt*(1 — ) = ﬁdf?; (2.19)

5) %7; o = velocity measured in lab frame (O), dt = period between “ticks” of clock in
lab frame.
When @ = 0, dr = dt = dr = period between “ticks” of clock comoving with O©'. Every
inertial observer measure the same value for this time interval: it is a scalar — a fixed physical
quantity!

If 5t represents the period between ticks of O"’s clock, then O sees it ticks with period:

dt = ~dt (2.20)

This is “time dilatation”: O thinks O"’s clock runs slow.
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2.2.2 Minkowski metric and Lorentz transformations
Let 2 =ct, o' =z, 22 =y, 2 =2 [s0 77 = X (i=1,2,3)]. Then we can write:

ds?® = gopdr®da’ (2.21)
with a, 8 =0,1,2,3 and g,s is the Minkowski metric *:

1 0 0 O
0O -1 0 0

Gapg = 0 0 1 0 (223)
0o 0 0 -1

standard convention: Use Greek indices to represent sums from 0-3 and Latin indices for
sum from 1-3.

The Lorentz transformation matrix from stationary observer O to moving observer O’ is
the “boost matrix” [JDJ, Eq.(11.98)] (AS;A?gaB = s

g B —By —75:
e 1+ (5) 1) BEG-1) B
A= -8, By -1) 1+ (%)2 (v-1)  ZE(y-1) @2
=8 ZE(r-1) a1 14 (%) -1

provided the coordinates of O and O’ are aligned. The the Lorentz transformation from O

and O’ is:
2’ = Aja’. (2.25)

Note Aj = %"’;l; . If the coordinate axes are not aligned then the transformation is the product

of Ag and a rotation matrix.

The principle of SR is : All laws of physics must be invariant under Lorentz transfor-
mations. “Invariant” < Laws retain the same mathematical forms and numerical constants
(scalars) retain the same value.

2.3 Particle dynamics in SR

Define the “4-velocity”: u* = ddLT = cddis:

N dt 4o 1 dx! dt dx'
U =C— =7yC and u = — = C—
dr K cdr dr dt
lwe should note that this is not the only definition: in the literature, especially on general relativity, gas
is often defined with opposite sign

=y (2.26)

-1 0 0 0
0 1 0 0

Jap = 0 0 1 0 (2.22)
0 0 0 1
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Then
U™ = gopu’u® = 7 —7*3% = ¢ (2.27)
Is an invariant.
Moreover since dr is an invariant and = conforms to Lorentz transformation, then

u'* = AGu” (2.28)
= u® satisfies the Principle of SR.
Define the 4-momentum of a particle:

P, = mu® (2.29)
= P =~ymc= E/c, P' = p'; E = total energy, p’ = ordinary 3-momentum, m = particle’s
rest mass. Then

P,P* = m*uu® = m’c® = E/c? (2.30)
is an invariant. The fundamental dynamical law for particle interactions in SR is that 4-
momentum is conserved in any Lorentz frame.

Note that
P = Ag PP (2.31)

also one has:
PLP* = gy PP = B (2.32)
E?/c* — p* = (mc)? (2.33)

= E=+/(pc)? + (mc?)2,

The kinetic energy of a particle is T = E — mc?:

T = +/(pc)? + (me?)? — mc? (2.34)

2.3.1 Example 1: n+n—-n+n+n+n
Consider the reaction (one neutron at rest)
n+n—-n+n+n+n

What is the minimum required energy for the incoming n that will enable the reaction to
proceed?

At threshold the four neutron are at rest in the lab frame, so that the 4-momentum conser-
vation requires:

P+ Py =Py (2.35)
= (P + P5)(Pia + P) = P§Pjo = 16(my0)°
PPy + 2P Poy + Py Pyy = 2(myc)? + 2P0 Py,

= PPy = T(mpc)®. (2.36)
PP P = GupPPPy = gooPYPY = micZ
E = Tm,c”. (2.37)
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Figure 2.3: 7777

2.3.2 Photon emission and absorption:

Let ug, = 4-velocity of emitter, absorber, respectively. FE., = photon energy measured by
emitter, absorber, respectively.
P% = 4-momentum of photon.

Then look at

Pu* = gagP’gua
= P —Pu'=cP’=E.
Ist term u° = ¢, 2nd term v’ = 0 in either emitter’s or absorber’s frame.
So E = p,u® is the photon energy measured by an observer with 4-velocity u®. The
expression is the same in any frame, including accelerating frame! So:

E. =Py and, E, = P,u’

Example: “Absorber” is rotating with angular velocity €2 on a circle of radius R4. Emitter
is stationary — Let’s find E,/E,

In emitter’s frame: c*dr = g,pdr®dz®, the emitter is stationary so u% = (c,0,0,0).

In absorber frame:

A(dr)? = gopdr®da”
= Adt* —vdt* = Adt* — Ry d¢*
R2
dr? = d* — —2d¢’ (2.38)
c
From Eq.77777 we have:
E, P Pyl —pul
E. Pu® n Pyc
Punl, — 7| cos
_ Poug = [p]lug | cos (2.39)
P()C



n
~
)

— — — —
V.D =p V.D =4mp
- = - = e — —
VxH-0D=1J] VxH-9D="2]J
- = — - = —
VXE+atB:0 VXE—#—%@B:O
—— ——
VB =0 VB =0
— - L, = — - - =
F=q(E+7vxB)=0 F=q(E+*%xDB)

Table 2.1: Maxwell’s equations in CGS and SI units.

— —
But cosf = sin ¢, and for photons P,P* = (P°)? — |P|*=0= |P| = P°. Thus

& _ Ug — yﬁa‘ Sin¢

E, c
But,
d R4
%] = R, 4 Ll = ¢
dr — \/1— (RaQ/c) VI — (Rajc)?

E, X A 1—(RaQ/c)sing
- = : _— =
Ee )\a )\a 1— (RAQ/C)2
Doppler shift (¢ = 90°):
Ae 1= (RaAQ/c)  [1—(RaQ/c)

Mo T=(RaQfF | 1+ (RaQfc)
2.4 Covariance of Electrodynamics

2.4.1 CGS versus SI units

(2.44)

(2.40)

(2.41)

(2.42)

(2.43)

We wish to proceed in keeping with Jackson’s notation, which involves switching from SI

units to Gaussian units. Conversions:

EC  _ ESI; \/%B)G _ BSI; mpc:(j)c’qc:) _ p51(751,q51); \/%T?)G _ 551;

VAreo
e = H5 e = €15 pop® = 1575 ¢ = (poeo) ™2
As one check, look at the Lorentz force:

1
FC = C(EC+-7 x BY

c
SI
— q — N 47—
= Y = — |Vireo E¥ + Jjgeo v x | — B!
Treo T€o Ho€o UV 1o

_ SUES T B
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The conversion from “Maxwell G” to “Maxwell SI” works the same way. So we do have a
prescription to go from Gaussian results to SI results and vice versa.

2.4.2 Current density as a 4-vector

Consider a system of particles with positions 7', (t) and charges ¢,. The current and charge
densities are:

[e.e]

f(& - V)=f(V) (2.45)

—00

if we define J° = cp and J{(7) =Y, ¢.0°(z" — 21, (t))ds2l,(t), then using §* function we can
write:

- /an54(xo‘ — 2%(t))da” da:%t(t) (2.46)

ﬁ
J® is a function of x® — it is a Lorentz invariant; J® is a 4-vector. J* = (cp, J ). Also note

Ja = pua

2.4.3 Equation of charge continuity

=l

= — 0 _
TI(Tt) = 3 (7 = ()22

o 0 3/~ — n
= =) @:00(T — Tat)

= —0p(T,t) = —0o[ep( T, 1). (2.47)

So the equation of charge continuity writes as 0“.J, = 0

2.4.4 4-gradient
In the previous slide we use the operator d,. It is defined as

0

aa @ .

(2.48)
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This operator transforms as:

0 0 Ox¥ 0 0,
d, = = =AY — = (A= 2.49
B Qak Qav Ox'™ ( )“895” ( )“ ) ( )
.
Note that 9, = (0p, V).
We can "upper” the indice and define
N
oM =g"o, = (0y,—V) (2.50)
Finally we can define the d’Alembertian: [ ] = 0%0,.
2.4.5 Potential as a 4-vector
A% = (¢, A) (2.51)
Lorentz Gauge then write 0, A% = 0. We also have
4
[]A” = %rja, (2.52)
or in SI units
(1A% = poJ®, [31] (2.53)

this is the equation we wrote when deriving the field induced by a charge moving at constant
velocity.

2.5 Covariant form of Maxwell equations

Returning to Maxwell Equation
Define the matrix F*? = 9%A% — 9% A> = ¢*9;A8 — g7 05 A -

0 -E, -E, —E.
N E, 0 -B, B
FoP = E. B. 0 _Bgfm (2.54)
E. -B, B, 0
Look at:
8aFa/6 = 80F0’3 + 81F15 + 82F25 + 83F3’62
O FP° = 9gF" + 0, F° + 9, F* + 9, F3°
4 4
= QE =V.E =drp=—J° (2.55)
C

37



Similarly,
aaFal — 80F01 T alFll 4 82F21 4 83F31
1 1 - =
= Eat(_Ex) + 8x(0) + 8y(_BZ) - aZ(By) = _Eat(Ex) + [V X B]x

1 4
= [V x B, — -0,B, = —~J' (2.56)
c c
... The same for component 2, and 3. So we cast these equations under:
4 /4
98 = = g8, (2.57)
C

This corresponds to the inhomogeneous Maxwell’s equations. In SI units F*? is obtained by
replacing E by E /c.

How do we get the homogenous Maxwell’s equations?
Let’s introduce the Levi-Civita (rank 4) tensor as:

+1 ifa,3,7,0 are even permutation of 0,1,2,3
P9 = —1 ifa,3,7,6 are odd permutation of 0,1,2,3 | (2.58)
0 otherwise

and consider the quantity e*#°d5Fy,; with Fy, = g,a9s55F*".

o E E, E,
| -E. 0 -B. B,
»~ | -E, B. 0 -B,

~-E. =B, B, 0

(2.59)

— —
F.s is obtained from F*? by doing the change ' — — E. Now consider the component ”(”
of the 4-vector 6“575851%5:

6057565F75 = 1239, Foy + 21320, Fyy +
02139, Fly + 9219, Fy 4 120, Fyy + 93210, Fyy
= 013 — 01F30 — OoF13 + OaF31 + O3F19 — O3y
= 0,(—By,) — 0.(B,) — 0,(By) + 0,(—B,) + 9.(—B.) — 9.(B.)
= —2V.B(=0) (2.60)
now let’s compute the 71”7 component
61ﬁ7585F75 = B9 Fys + €920, Fay + 3205 Fyy + €'32905 Fy
612930, Fog 4 €230, Fy
= —0olhs + OoF3g — O3Fng + O3F5 + OaFo3 — OaFg
= 2(DoF3z + 02 Fp3 + 03F)

= 2 (%ath - aZEy + ayEz)
- — 1
= 2 {(V X E)x + Eath} (: O) (2.61)
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It is common to define the dual tensor of F,s as F¥ = %eo‘ﬂV‘st. With such a definition
the homogeneous Maxwell equations can be casted in the expression:

D, FP = 0. (2.62)

Note: Fog = Fag(E—>B B—-E)
— - — —

To include H and D one defines the tensor G* = F*9(E — D, B — H), and then
Maxwell’s equations write:

0,GP = 41]‘3, and 0, F" = 0. (2.63)

C

Due to covariance of F*? it is a tensor, the calculation of em field from one Lorentz frame
to another is made easy. Just consider:

oz’ 9x'®
P = ——F° 2.64
97 O’ ’ (2:64)
or in matrix notation
=AFA = AFA (2.65)
Example: Consider a boost along the Z-axis, then
v 00 —py
0O 10 0
A= 0 01 0 (2.66)
-8 0 0 ~
Plug the F matrix associated to F*° in Eq. 2.65, the matrix multiplication yields:
0 V(B — 5By) 'Y(Ey + BB,) E,
- Ex - ﬁB ) 0 Bz _7(3 - ﬁE:c)
e _ | y v 2.67
_’Y(Ey + /8B$) _Bz 0 V(B:v + ﬁEy) ( )
_Ez V(By - /BEJJ) _V(Bx + BEy) 0

by inspection we obtain the same equation as [JDJ, Eq. (11.148)].

2.6 Fundamental Invariant of the electromagnetic field
tensor

This section i adapted from a paper by Muiioz 2. The scalar quantities

PR, =2(E? — B?), and F*F,, —4E B, 2.68
1 1
are invariants. Usually one redefines these two invariants as:
1 1 1
Ty =~ F"F, = 5(B = E%), and Ty = — F"F,, = ~EB. (2.69)

2G. Mufioz, Am. J. Phys. 65 (5), May 1997
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Note that these invariants may be rewritten as:
1, 1
I, = —Ztr(F ) and Z, = —Ztr(F]-"), (2.70)

where I' = F)) = F'g,, and F = F}/ = F'gq,.
Finally note the identities:

FF=FF =-1,I, and F? — F? = -2T,1 (2.71)

Eigenvalues of F' (for later!):
Look for eigenvalue A\ associated to eigenvector W:

7
FU=\U = FFU = \FU = FU = —TQ\IJ. (2.72)

(F? — F)U = 21T,V = [\* — (/)] ¥, (2.73)

So characteristic polynomial is: A\* 4+ 2Z;\? — 72 = 0.

Solutions are:
AL = \/\/If—i-IZQj:Il (2.74)

)\1 = —)\2 - )\,, )\3 == —)\4 - Z)\Jr

2.7 Equation of motion

The equation describing the dynamics of a relativistics particle of mass m and charge ¢
moving under the influence of em field F3 is:

du® 4 1o g

—_— == . 2.75
dr me P Y ( )

with u® = (y¢,77"). Note that this is equivalent to introducing the ” quadri-force”
= Fu,. (2.76)
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Chapter 3

Particle Dynamics Electromagnetic
Fields

3.1 Lagrangian & Hamiltonian formulation

H
Classical mechanics, Given 7' (z!,2%,2%) in K and 4 system is characterized by a La-
grangian: L(z', 2", t). The action

to ) )

A= / Lz, @' t)dt (3.1)
t1

is a functional of 7' (t), VZ'(t) defined for t € [t1, ).

The least action principle states that A is a stationary function for any small variation § @ (¢)

verifying 07 (t) = 62 (t2) = 0.

The equation of motion then follow from Euler-Lagrange equations:

; oL
P= it
Pt oL
dt — Oxt

3.1.1 Case of a free relativistic particle

Equation of motion must be referential-invariant = the least action princple 6.4 = 0 must
have the same form in different referential = A must be a scalar invariant.

A is a sum of infinitesimal elements along a universe line z*(t)

= Ldt associated to a small displacement must be a scalar invariant.

= Ldt = ads = ay/1 — ‘g—;dt also,

1 V2
‘l/igzﬁ = §mV2 + const = « (1 ~ = + (’)((V/c)4)> (3.2)
so a = —mc, and the relativistic Lagrangian of a free particle is
V2
Liree = —mc*y 1 — — = —@\/uaua, (3.3)
& 8



where u® = (yc,y0') is the four-velocity. One can check:
d oL d —
3.1.2 Lagrangian of a relativistic particle in e.m. field

The Lagrangian now takes the form £ = L¢,¢c 4+ Line, where L,y is the interaction potential.

In the nonrelativistic limit L) = —e® = —eA® so let’s try
'Cint = _iuoaAa
ve
— _C g ufAl
,ycgaﬁu
e — —
= —— (’yc@ — ny.A)
ye
Liw = —ed+ef A (3.4)

The total Lagrangian is

Let’s check this gives the equation of motion, by calculating

oL d oL
d oL d — e—
a5 _ 2 €A
dtyy  dt <7mv+c )
d(’me_/) e (0A Ox; 0 — d(ym‘—/}) e (04 — = —
g —_ _— ¢ — —_ —_— A
dt +c ot ot Ox; > dt +c( t—l—(VV) >

—

e
With B =V x A, one finally has:

oL 0L _d o c0A oo ep
dtyy 07  dt
which gives the Lorentz force equation (in Gauss units!):

d — —

%(fan):eEnLZ(‘—/)x B) (3.7)

42



Let’s check the Lagrangian verifies the “least action principle”
The total Lagrangian can be written
me
L=——Vuu, — iuoéAo‘(:zcﬁ). (3.8)
Y e

define £ = L. The action is A = ff drL.
least action principle 6. A = 0.

M_a[ / drﬁ] = / dréL (3.9)

5 1 1 I(uua)| o 4 0A,
— 0L = mc= Anou” @ 8. 1
oL ch\/m{ 50 }(5u + qAL0u™ + qu axﬂdx (3.10)
One has du® = §(%=) = Z(62), and
O(u®uy) O(uu”) N N
o = 0 25 = o 0500+ 030) = 205 @11
using 0 dj—f = % (commutation of 0 and d operators), one gets:
. (5P
— 0L = (mecug + qAp) (627) + qu® s An02”. (3.12)

dr

Evaluating the integral by part and noting that d2°(m) = d2°(7) = 0 gives:

T2 d
0A = —/ dr {—mc% — (00 Ap)u® + qudsA, | 02°, (3.13)
and 0A4 = 0 = [..] = 0 (linear independence argument) gives the equation of motion

d, 4 a
mo-ug = tFapu

H
The canonical momentum P conjugate to z is, by definition,

P - %L T A
ov ¢
P = p+4 (3.14)
c
and the hamiltonian is defined as:
— —
H=P.V - L (3.15)
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3.2 Relativistic Hamiltonian

— N — . — _
We use P =ymv + £ A and calculate H then express H only as a function of P and 2.

ﬁ
On can do the algebra (namely explicit ¥ as a function P and replace in the expression of

H.

1
H = 7. (”ym7 + E_A>) +ymct= + e® — AT (3.16)
c v c
2

= ymv? + % +e® = yme? + ed. (3.17)

— —
We note that the relation between P — ¢ A and H — e® is the same as between H and Vit
for the case of zero-field so we have:

2
(H —e®)? = (? - fZ’) & +m?ct (3.18)
c
So finally,
— —\ 2
H = (Pc—eA> + m2ch + e (3.19)

3.3 Motion of a particle in a constant uniform E-field

Let & be the total energy: € = /(pc)? + (mc?)? = ymc* = v = % Thus,
E 2
szﬁ:—ﬁ:ﬁz%? (3.20)

—
Let’s consider the case of a particle of charge ¢ interacting with the field £ = Fz, and with
initial conditions p(t = 0) = poy. Lorentz Force gives:

ps =gk, and, p, =0 (3.21)
which yields:
pe = qEt, and, p, = po (3.22)

and p* = (¢B1)* + pj.
So the total energy at time ¢ is:

EXt) = [(gBt)* + py| + m*c* = (cqEt)* + & (3.23)
where & = £(t = 0). The velocity is:

o =B bt (3.24)
dt (cqEt)? + &2

44



note that lim; .., = ¢. Performing a time integration yields:

x(t) = qiE\/(cht)2 + &2. (3.25)

dy . c*po

For y-axis we have:

dy _ , 3.26
dt (cqFt)? + &2 (3.26)
and lim;_, Z—i/ = 0.
A time integration gives:
poc . . 1 [ cqEt
= ——sinh . 3.27
Y o sin ( g, ) (3.27)
remember: fog 55{ = sinh ™ (¢). Expliciting ¢ as a function of y:
E
cqEt = sinh (M) : (3.28)
Poc
and substituting in z, we have the trajectory equation in (z,y) plane:
E
r = é sinh? (M) +1
qE Poc
& E
= =2 cosh (M) . (3.29)
qF Poc
The nonrelativistic limit (v < ¢) is given by setting & = mc?, py = muy:
mc? qEy qF
= —cosh [ —= ) ~ —/—¢? t. 3.30
x B cos (mvoc) vagy + cons (3.30)

the familiar parabola. The Taylor’s expansion cosh(x) = 1 + z2/2! + O(x?) was used.

3.4 Motion of a particle in a constant uniform B-field

— — — —
Lorentz force gives (CGS!): p = %? x B; P = c%? = 0 = Cg—q?) x B.
ﬁ
B changes the direction of @ but not its magnitude so W, and + are constants. Consider
—

for simplicity B = Bz, then

— - A ~

v X B =uv,Bt —v,By,

which gives

) cqB
Ve = TUZ],
Uy = __chU
y T
&
v, = 0. (3.31)
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Figure 3.1:  Trajectories (in normalized coordinate) in uniform constant E-field:
cosh(ky), with kK = 1,2,3,4. dashed are corresponding parabolic approximation & =
1+ 5(k9)*.

So we have to solve a system of coupled ODE of the form:

Uy = WUy, Uy = —Wuy, U, = 0. (3.32)
where w = %. Let’s cast the transverse equation of motions:

d . . .

%(vx +ivy) = —iw(v, + 1vy), (3.33)

the solution is of the form v, + v, = v e iwtta) et v = v,. With these notations we can
write:

Vg vy cos(wt + )
vy | = | —visin(wt+a) |; withwvy = 4/v2+02, and, (3.34)
Vs vl
x zo + Rsin(wt + «) . T
y | = vo+ Rcos(wt+a) |; with R=— = =y (3.35)
z 2o+t w “q

So the trajectory is a helix whose axis is along 2, with radius R. The frequency w is the
rotation frequency of the trajectory when projected in a plan orthogonal to the helix axis.

v €
cqB

__ pic w_ch_ qcB
~ ¢B- £ T ymc?

R is called the gyroradius, R =

(%)

= f—ﬁc is the gyrofrequency

The gyroradius and gyrofrequency arise in all calculations involving particle motion in
magnetic fields. Note that in SI units:

B
w = q_’ and R = bl

ym qB

(3.36)
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3.5 Motion of a particle in a constant uniform mag-
netic and electric field

— —
We now consider the case where both £ and B fields are present in some arbitrary orien-
tation. The idea is to directly solve the equation of motion

du® 4
_ 8.
= u’; 3.37
dr me P ( )
the treatment follows Mufioz’s paper '. Let 0 = 2= and rewrite the equation of motion in
matrix form:

au
i Fu with solution u = e’F'u(0), (3.38)
where,
0F __ _n n
= P (3.39)

Now, recall the identity (see handout end of part IT) F? = F? — 27,1. Because of this,
every power of F' can be written as a linear combination of I, F, F, and F?, e.g.:

F3 = FF’=FF?—-20,F = —-T,F — 21, F;

F* = —L,FF —20,F* =131 — 2T, F*;
F5 = IzzF — 2T, F? = (4112 + 122)F + 214, F,
etc...
(3.40)
This means,
0F _ 2
e =al + BF +~yF +6F~. (3.41)

To find the constants «, 3, 7, and J, consider the following traces (note that the trace of
odd power of F' and F are zero:

1
ty = ZTr[eGF] =a — 10,

1
ZTr[FeeF] =-T,8 - Ly,

~
—_
Il

~
[N}
Il

1
ZTr[F%GF] = —Tia + (217 + T2)6,

1
ty = ZTlr[Fi*e@F]:2(112+I§)ﬁ+11127.

LG. Munoz, Am. J. Phys. 65, 429 (1997)
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Solving this system of equation for «, 3, v, and 9, yields:

_ QI¥+INto+Tats 3= t3 + Ity .

vz PR
_ _CTHTHntTis, 5 to + Iitg
T = L) 0 °T i1

. . . !
The traces are found upon diagnonalization of e?F — e/

Tr[e?"] (%] Ze‘“ (3.42)
where \; are the eigenvalues of F: A\ = —Xy = A_, and A\3 = —\; = i\, where \. =
VT B £1..

Thus
1 OF 1
ty = Z—lTr[e | = E[Cosh(ﬁ)\,) + cos(6A4)]
1 okt
ty = ~Tr[FFe” :
g 7 I= %er
(3.43)
So

fHo= %[Asinh(@)\)—)\+sin(9)\+)]

ty = %[)\2_ cosh(OA_) — A7 cos(OA4)]

%[/\3 cosh(OA_) + A3 sin(OA )]

Substitute and simplify to finally obtain the values:

2% cosh(OA)+A2 cos(OA+) A_sinh(OA_) + Ay sin(0A,)
N Vs A

Zo| A_sin(0A) Ay sinh(6A_) . 5 _ cosh(6A_) — COS<8>‘+)_

T L 2/T34T3 » 0 o0 /T + I3
Substitute into the power expansion for e to find:
u(f) = _ [(A21 + F?)cosh(OA_) + (A2 1 — F?) cos(6A4)
o0/ + I3

+ ()\_F | IQ‘AJ) sinh(OX\_) + <A+F+’I‘A ]—") sm(Q/\Jr)} u(0).

(07

6=

Note that u(f) = 2% so integrate over 6 € [0,6) to get

u? ]—“) cosh(OA_)

mc
2 Fu(0) + —e
422 ©) 2q\/ 1} + 13 [< ya)

A2 AT+ F? NI — F?
— | F+ —=—F)cos(6ry) + i sinh(O\_) + ————sin(0A 1) | u(0).
T A s
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which is the final result.
— — — —
Consider the special case of £ = Ez, B = By then £F 1 B = 7, = 0. Taking the limit
Zy — 0 gives:
A — 0; Ay — /274, cosh(AA_) — 1 and sinh(6A_)/A_ — 6.
Consider the case Z; = £(B* — E?) > 0 and let’s take 2(0) = 0. Then:

mc mc 274
(1) = —Fu(0)+ F——F | — Fcos(6\ 3.44
) = Zeru)+ g (£ 2 ) - Feosion, (344)
1
+ (2,1 + F?)0 — \/2_LF2 sin(Q\/QL)] u(0).
Define 2 = %\/211 then
F2
z(r) = (I+ Q—LU(O)T + 27;1101 (1 —cosQr
E_ no )F’@) (3.45)
— sin Q7 | Fu )
V21,
0O FEF 0 0
1 ) E(E - ﬂOzB)
E 00 -B Bo E — Bo.B 2 —2T1 /30
Fu(0) = v | = 22| FPu(0) = g
u(0) = ~yoc 0 0 0 o 5oy Yoc 0 s F7u(0) = oc 0
z B B(E — 6y, B
o B o o Bo Bo (E — Bo-B)
and so:
2
r = 'y;m;c (E — Bfo.)(1 — cos Q) + /271 [y, sin QT}
qLli
Yy = ToVoyT
YocE Yomc? B E — Bfy,
= B — Efy, 2 (1 —cosQr) — Q
z o7, ( Boz)T + o |:60 (1 —cosQr) N sin Q7
Yo B YomcE E — Bgy. .
= —(B— Efy, ——— | By (1 — cos Q1) — — Q
2Il( Bo:)T + o {ﬁo (1 —cosQr) 7 sin Q1

Note that the particle has a velocity perpendicular to E and § fields. The so-called ' x B
drift. The drift velocity is vy = cE/B.

3.6 Non uniform magnetic field and adiabatic invari-
ance
Suppose the magnetic field is non uniform but changes “slowly” compared to the ”gyrope-

riod” of the charge particle (charge=q) under its influence. This is a so-called “adiabatic
change. The action integral is conserved:

- =
J= 7{ P .di (3.46)
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Ef is the line element along the particle trajectory. Expliciting P, :
J = J(I{(’ymWL + QZ})EZ)
c

= (meBa)(Qﬂa)%—g/E).ﬁdS
¢Js

= J = 2rymwpa® — 4 Ba?
c

_)
since B is anti-parallel to . Also, ymwp = 4B so that:
J = gﬁBcﬂ.
c

This means the magnetic flux
— —
by = / B.dS = mBa*
s

is an adiabatic invariant.

3.6.1 Example of application of adiabatic invariance

Vadddddddddddas

(3.47)

(3.48)

(3.49)

(3.50)

3.7 Non uniform magnetic field without adiabatic in-

variance: the solenoid

The B, component of magnetic field imparts a py to a charge particle coming off a cathode

immersed in a B-field; see Figure 3.2. Let E)(z =0) = B,z

d
Fy = %UZBT = %; po(t =0) =pe(z=0) =0

:>p9—g/ Brvzdt—g/ B,dz
cJo cJo

But integrating over the surface, S, of a ”Gauss” cylinder gives:
—— 9 o
/ BdS=0 = —nr Bc—|—27TT/ B,dz
S 0

:>/ B,dz = 1Bcr.
0 2

(3.51)

(3.52)

Consequently the charge ¢ picks-up a total angular momentum py = 5L B.r. Note that

Do 1 ch r
—_ = = r
Pe 2 Dpec 2p

20

(3.53)
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Figure 3.2: Configuration used to generate an angular-momentum-dominated electron beam

where p~! = .
c

H
momentum. p is the gyroradius the electron would have had if it was orthogonal to B..
Consequently the angular momentum scales as L = 7 X p o r
ment %; see Fig. 3.3. Note that for a particle originating external to the solenoid, pg = 0 by

symmetry.

2 Y.-E Sun, P. Piot, K.-J. Kim, N. Barov, S. Lidia, J. Santucci, R. Tikhoplav, and J. Wennerberg, Phys.

Rev. ST Accel. Beams 7, 123501 (2004)
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Figure 3.3: Measured averaged angular momentum imparted on an electron beam being
photoemitted from a cathode immersed in a solenoidal lens. Left: dependency of the angular
momentum versus the laser transverse size (0. = r/2). Right: beam’s angular momentum as
a function of computed angular momentum [from vector potential given the B, field (note
By = B.]

92



Chapter 4

Radiation from accelerating charges

4.1 Radiation from accelerating charges

Radiation emitted at time ¢’ reaches the observer (P) at time ¢ > t'. It is retarded due
to the finite speed of light. Let’s first derive the 4-potential due to the moving charge.

4.2 Four-potential produced by a moving charge
Let’s start with the inhomogenous Maxwell’s equation:

Do = FP = —j (4.1)
47 is the 4-current j° = (cp, 7) Use the definition of F*% = 9*A®% — 9% A* and impose the
Lorenz Gauge condition d,A“ = 0 we have:

475P

Do AP — 0,0° A* = 0,0° AP = (4.2)

Figure 4.1: geometry associated to the problem of retardation
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which can be re-written:

47rﬂ

1A% = —j%(x) (4.3)

Solution of the latter equation — find Green’s function D(z,z’) for the equation
(1,D(z,2') = 6W(x — 2 (4.4)

where §®(z — ') = §(zg — x6)5(3)( X —x ) If free-space (no boundary condition) then
D(z,2") = D(x — 2'). Let 2% = 2% — 2/*, D(xz — 2') — D(z) and the d’Alembert equation

rewrites:
[1.D(z2) = 6™ (2).

Which can be solved using the Fourier transform method: write

1 47, T —ikz
D(z) = (27)4/d kD(k)e ™, and,
1 )
§(z) = d'ke™ 4.5
©) = o [ d'he (4.5
Expliciting in the wave equation on finds:
~ 1
D(k)=——7

H
where k% = (ko, %) is the four-wavevector, and let z = (29, R). kghk® = k2 — k2.
so the Green function is given by:

e—zkz

_ 1 /de‘ﬂ;eZ?I_%)/dk e—ikOZO (4 6)
= T S '

Consider the integral over ky. It can be replaced by an integral over a closed contour in the
complex space associated to ky. The integrand has two poles at ky + x on the real axis. If

we consider zy > 0 the contour need to be closed toward Zm(kg) = —oo and the integral is:
+00 e—ik‘ozo e—ikozo ‘ e—ik‘ozo
[ i = f o = e (=)
2
= —Tin(kz) (4.7)
K

So D, the retarded Green function, becomes:

D) = (2;)3/ dgksjn(:%)emﬁ (20 > 0) (4.8)

_ @(zo)/d3k81n( zo)emﬁ
(2m)3 K
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where O(z) is the Heaviside function. Introducing d®x = k*drk sin(6)dfd¢ then we can work

out the integral over angle:

R 2r ™ A ikzcosfT
/Sin 0dfdpe’ ™t = / d(;S/ sin fdfe™ <% = or {e ]
0 0 0

—iKZ
B sin(kR)
= dr——>=
So,
4
D(z) = ((92(;;)3 /d/{% sin(kR) sin(kzp)
O(z < :
= 2752(1)33 /0 dr sin(kR) sin(kzp)
_ v [ikRE20) _ pik(R0) _ gmik(Rs0) | h(R+20)]
AT R 2w ),
CO(0) T[T R k(R
=~ 4rR 27 / . [~e — ]
O(z O(z
= 4; ;) [6(20 — R) + 6(20 + R)] = 4; ];) 8(z0 — R)
since the condition zy > 0 implies 0(z9 + R) = 0.
@(2’0)
_D ) — o
(x — ') R d(x —2' — R)
Now use the identity
ol(z—a')"] = d[(z—x0)* — |z — [

— S[(wo — ah — R) (w0 — 2+ R)]

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

1
= R [0(zg — 25 — R) + 0(zg — 2y + R)]
where we make the use of §[(x — x1)(x — 23)] = %. The function D becomes:
/ ]' / N2
D(x —2a') = %@(xo — x5)0[(x — 2)7].

Then the retarded 4-potential is given by the convolution integral:

4
A%(x) = const. + —W/d‘lx’D(x — ') J ()
c
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4.3 Liénard-Wiechert Potentials

The 4-potential caused by a charge in motion is:

4
A%(z) = % / &' D(x — 2)§°(2), (4.17)
The 4-current is (see Part II)

(@) = ec / drv*(r)6@ 2 — r(7) (4.18)

7 is the charge’s proper time. So expliciting D and j“ the 4-potential takes the form

A%(x) = 2e / drd*z'O(zo — 24)0[(z — 2)*]v(1)6W [z — r(7)]

= 2€/dT@(ZL’0 — 2p)v*(7)8[(x — r(7))?] (4.19)
A%(z) = 26/d7(5(7’—7)@($ —x')vo‘(T)‘ -1 ‘
R 20°(7) [z — (7))
using the relation
o(r — x;
6wm=2éf—l
) Ox lz=x;
The four-vector potential finally writes:
ev®(T)
A¥(z) = —/——F——
Vle —r(7)|s], =0
which can be written in the more familiar form:
N
@(?,t) = [% s and, Z(?,t) = [#A (420)
(1- )R], 1-8.12)R]

where ret means the quantity in bracket have to be evaluated at the retarded time ¢’ that
satisfies the causality condition.

4.4 Field associated to a moving charge

Consider a charge ¢ in motion the Lienard-Witchert potential are given by:

(%@%):ki%gﬁ(%ﬂm‘ 2



r(t) particle trajectory

Figure 4.2: Notations and conventions.

Causality imposes:
c(t-t)=|R]|

: e b 104 L
The fields are given by £ = - V& — but, we need to evaluate the quantities at the

c ot

retarded time t'. First let’s express the V and 0/0t operators in term of retarded quantities.

AN / aR_ _a_t/
R(t)—c(t—t)ﬁa—c(l 8t>'

On another hand:

OR _ oRor
ot ot ot
1OR? _ OR _3 OR RO
2 ot o~ or 0 U or T U
Thus
Ok _ 3.9
ot Cot
From equation 4.22 and 4.25 one gets:
ot 1 1 o 10
— — — = = — = _——
o 1-ga K ot kot

H
For the operator V take:

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)



H
if V is the gradient operator evaluated at constant ¢’ then

OR
VR = VR+ =Vt
815’
ﬁ
= a—cB.avt
From equation 4.27 and 4.28 one gets:
V= —
c(l— (G.n)
So we finally get:
V=Vy— e
So the electric field is :
104 hod 1 0A
— — — n
B=eVe gy = Ve o T e
with & = <
— —e — —
Vt/(b = (ﬁR)Z [th//ﬂ'/ + Hvt/R]
V+R =n, and

= 675//{ = _(ﬁgt’)%
_ R(BNNE-R(G.Y,
- =
R
B R
So we finally get:
Vo = (R_;)Q B +#(3.0) + (1 — B.2)A
e R —
= _(K,R)Q[n_ ﬁ]

where we have used Kk =1 — ﬁ 1. Now let’s calculate the quantity - a0 P

0P 0 1 —e . )
% = —Gg <@) = (HJR)Q[I{R—F RKJ]

o8

K Ot

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)



— — —
5o QE_RR—RR
R R?
_ T+ (@an_ F - (B
B R B R
Then
KR+ kR = —cﬁ.fm—l—R{—ﬁ'.ﬁ—i—cﬁ[ﬁ_(Rﬁ')
- — —
= —B.R+cf*—ch.n
So
. -
b= [~ B.R+cs—chaal

(nR2)?

So from Equations 4.35 and 4.39 we have

l

e —

Vo = — i = 0+ [+ R = o e}

Now we need to compute % 8‘4

—A— =24
ot ot k
So
— —_
A=Go+ Fb= +—ﬁ(eﬁ) [6F +cBa— 6
Finally the E-field is:
— = 10A
E({) = —-Vo@{)-=
) = ~Vou)- -2
e R n = — — 9
= OO (n—ﬁ)ﬁ+z(ﬁ.R+cﬁ n—cf%)
ﬁ)_)—> — 9 e
C(ﬁ R+cfB.n—cp) ch#ﬁ
After simplification (and using ﬁ =1 — k) we end-up with
By - - [P FFq-mi- L3R F -

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)



— —
So finally the F and B fields are given by:

BW) = |- D)+ |t (-7 x )
B(t) = [nx Elu

where the identity n x [(7 — E)) X E] = gﬁ(ﬁ - E}) - E(l - ﬁﬁ) was used.

4.5 field of a charge moving at constant velocity

R — . R — -
ﬁ(?,t) = q ;;—3}22 t—i-q nx[(n;gg)xﬂ] , and
re ret
B(7.t) = [ix Elu
if B = 0, constant velocity then
_—
E)( b ;;—3; ret
from part II, we know that:
E (7.t = vab

(62 + 721}2]52)3/2'

PP =v(t—1t) =R, PQ = PP cos(0) = BRcos(f),
PQ = BRsin(f) = BRE = Bb; QO =R— PP' = (1— §.n)R
—
P2 = Q0+ PQ* = (1 — BA)R? =12 — B2 = (ut)? + b? — 3°b? So,
12 = 4 2% 4 420242 = [K2R?e;
and 2.(2 — 3 )yer = sin(d) = £ so that

(i~ 5)
z.(h —
Eﬂf:q[ V2K R2

by
q [b2 + 72'02752]3/2'

(4.44)

ret

4.6 Radiated Power

H

S (7', t).n: power crossing a unit area, at time ¢, of a surface that incircles the radiating
particle. n is the normal to unit area.

The total energy radiated through the unit area is:

+o00 N
W = / dt % S ) — / dt/[’f S ﬁ]’ret
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Figure 4.3: 777

So,
aw

At
This is dP(t')/dA or 1/R*dP(t')/dS2 so the instantaneous power radiated at time ¢’ per unit
solid angle df2 is given by:

= kS e

dP(t")
ds}
From now on, consider only radiation field i.e. R large — this is the “far field” approxi-
mation, then

= [k S AR e

?ﬁ::i@meﬂW
= C[B - (E).
Consider fzﬁ
2B o« wfnx (= B) x 4}
x ﬁ.{(ﬁ.z)(ﬁ ~B) — [(h - ﬁ)ﬁ}
< a{(hB)h—B)— 01— F.2)3}
_ 0 (4.45)
Hence,
Fam e £ Bxl=T) )

ret
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ret
This is the power radiated per unit solid angle in terms of the charge proper time ¢'.
If we wants to know dP(t)/dt the power radiated per unit solid angle at the time ¢ it arrives
at the enveloping surface, then one must trace back to the associated ¢’ time (retardation).
Note also that dt = dt'k,e; — if a particle is suddenly (dirac-like) accelerated for a time
At = 7, a pulse radiation will appear at the observer at time t = r/c and the pulse duration
will be At = K, T.
Energy is conserved: total energy radiated=total energy lost by the particle
BUT T%g/) = Tﬁret%g); Energy radiated by unit of time = k,.; times the energy lost to
far-field per unit time.

4.6.1 Instantaneous rate of radiation

/ 2 n " n— ﬁ X ﬁ 2
13(1&)_4(-’—m/0 @ | i sin () L7 ,{5) J
A x (- B) x B = |(a.6)A—F)— (- F.a) 3
= |(.B)(R—F)—rf
= (01205 + 57— 26B(n. B) (A — B) + K
= (. B)[1—20. G + B — 26(n. B) (0. B — G.B) + K232
Using ?.ﬁzl—mwe get:
7 (2= B) x BIP = =420 0 )% + 26(5 . 0) (. ) + K262 (4.46)
So,
. 2 ™ ) 1 . - = 1 =
P(t) = %%/0 sin(0) 527+ 26( 5.0)(F . 5) = (6 .0
2 r Uy oG e 1 fn,
= g—c i df sin 0 E—F%_V /;;nJ]. (4.47)

é
Recall k =1— g.n=1—cosf, and let

_ sinfdf 1_ du B 2 o4
h= / 1—ﬁn /1 (1_5U>3_(1—52)2_27

7 = / nzsm«9d9 18[ 8 B 5
i = 1—ﬁn4 303 ( ﬂQ) fVa
mysingdd 190, 205+ T 2
Ki' = J l.:—l _2:—6(5144 62Z
j /‘1—5n Tiop —aQopp 30 0ot
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N _ @32 2 A4 1 4ipj
= P(t') = Z[B* T +2(5. 5)5 Ji_,y_Qﬁﬂ]Kij]-
explicit 1, J;, and Kj;:

2

P(t') = g—c {27252 + Eﬁﬁﬁiﬂ'i(ﬁ E) — 274(5@ + 672@'5]')5.%.]]
2 . — . —

= g—c {27%2 =1°(8.8)" ~ §V4W+672(ﬁﬂ)2]

2 _) -
= 2 @5y

2¢° 6 232 4 = 2q 22 52 92 2

= 2Tt = ) (BB = Sl - - o)

2 . 2 . N —
= 20— 7 sin? 8] = 205~ (F x 5 (1.48)

This is the relativistic generalization of the Larmor’s results (to recover the standard Larmor
power consider 5 — 0).

4.6.2 example 1: radiative energy loss from a linear accelerator

I —
In linear accelerator (or “linac”), B || 8. In order to calculate P(t'), we need to evaluate
6. From p = vBmc we have:

p = mc(3B+78) = me[(v*B3)3 + 0]

ﬂQ . .
= e ({2 1) = (4.49)

So 5 2
/ q
P#) = 3m?2c?
Since P o< m~2 lighter particle are subject to higher losses. The rate of momentum change
is proportional to the particle energy change:p = dF/dz (consider particle being accelerated
along the z-direction).

The question is for what energy gain does radiative effects start to influence the dynamics.
Let P.,; = [dF/dt],e; be the power associated to the external (accelerating force) then the

radiative effect are comparable to external force effects when:

Prad - P(t,) - 2 q2 ld_E 1
Py  vdE/dz  3m2c |v dz ot '

p* [JDJ Eq. (14.27)]

Consider e-: typically v ~ ¢, and ¢ = e then
Proa  2€*/(mc?) [dE]

—— _ -
P. 3 mc dz |,

SO Prag > Py if dE/dz ~ mc?/r, = 0.511/(2.8 x 1071%) = 2 x 101" MeV/m
compare to 100 MeV/m state-of-art conventional accelerator or to 30 Gev/m plasma-based
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1

accelerator '; we see that radiative effects have negligible impact on the dynamics of e-

beams.

4.6.3 example 2: radiative energy loss in a circular accelerator

ﬁ
: —
In circular accelerator acceleration is centripetal: 6 L (3 so

- (F x 5)? = 31— %) = 2
72

So the radiated power is:
2 ¢%c 2 ¢%c E1*
P t/ = —-— 4 = —-— 4 _—
O e =

where E is the total energy. The revolution period is T' = 2w R/(f3¢c), and P = 2£. So the
radiative loss per turn is:

2¢%c ,[ E 1" 27R
AE=pT =Ll = | 270
3 R? & {mcz} Be
that is:

irg® [ E1*
AE = —=p33 | — DJ Eq. (14.32
o e

Consider an e- synchrotron accelerator, the energy loss per turn and per electon is:
dre? (B '
AE~ —— | — ] .
3 R (ch)
Take EF =1 TeV, R = 2 km we then have:

1 e E\* "

For protons however we gain a factor (m./m,)* = 1/1836* so
AEiproton ~ 4 eV

High energy physics circular accelerator use proton (or ions) reasons for Tevatron at FNAL
or LHC at CERN. One can however use e-/e+ storage ring as a copious source of radiation
for use or for “cooling” =radiation damping in the internation linear collider proposal.

4.7 Field lines examples

Figures 7?7 and 77 shown examples of field line associated to radiation field as an electron
is accelerated. These Figures were generated with a free software 2.

'W. Leeman, et al., Nature Phys. 2, 696-699 (October 2006), also The Economist, September 28th, 2006
Zsoftware available from Shintake-san’s homepage SCSS-FEL: http://www-xfel.spring8.or.jp
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Figure 4.4: Field line associated to a linearly moving charge.
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Figure 4.5: Field line associated to a moving charge in circular motion.
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4.8 Angular Distribution of radiation emitted
accelerated charge

WP() @ lax[(i—B)x B
d)  Adre ,%5_> _ .
2 R +2m(B B — B Ay
 Adre K5

where we have used Eq.4.46.
4.8.1 Case of linear motion
—
B

32[K2 + 2KB cos — (1 — () cos? 6]
= 3?[(K® + 266 cos O + 3% cos? 0) — cos® 0]
= ﬁ2[(ﬁ + B cosf)? — cos? 0] = 32 sin? 6.

dP(t') @3 sinf
dQ  4me® (1 — [Bcosh)

= [JDJ, Eq.(14.39)]
The location of peak intensity are given by:
0 — d sin” #
~do \ (1 — Bcosh)’

sin (6) (2 cos (6) + 33 (cos (0))* — 50)
(1 — Bcosh)?

whose solutions are:

[cos )L = %[—1 + (1+156%)"7

Only [cos 6], is viable since we must have |cos(f)| < 1. So finally

1 = 1
0. = + arccos ﬁ[—l + (1 + 153 it iﬂ

these are locations of maximum in power.
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by an

(4.50)

- .
.n=[[cosl, f.n=Lcosl, k=1— ﬁfz =1 — [ cosf, and numerator of dP(t")/dS) is:

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)
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Figure 4.7:

4.8.2 Angular distribution for the case of linear motion

Ultra-relativistic limit: as the 8 — 1 the intensity angular distribution is contained within
small angle (so § < 1). The power angular distribution then becomes:

dP(t) 0 62 P 326?
dQ T dnc (1-p(1-F))p  4nc2(1 - 6) + 56%))°
. 80 _ [JDJ, Eq.(14.41)]. (4.56)

™ (147262)

Comparison of exact f-dependence (solid line) with ultra-relativistics
approximation (dash line) for two cases of g:
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Figure 4.8: snapshot of motion taken at time t'.

4.8.3 Case of circular motion

= cos0n — sin 00
= sin#cos ¢n + cosfsin ¢é — sin ¢$

Q>

=

Thus §.n=pPcosh, 3.6 =0, and [.n = Fsinbcosp

dP(t") q* 32 [ sin? 6 cos? ¢

aQ  dnc? (1—PBcosH)? | ~2(1 — Beosh)?

Unlike linear motion, the power angular distribution peaks at # = 0. Considering the ultra-
relativistic limit (8 — 1, 0 < 1).

dP(t')  8¢° 32 6 47262 cos? ¢
A0 r(1+4202)3 (1+7262)?2

A part from a different in the intensity distributions for linear and circular motion, there
is also a difference in total radiated power:

2
PLinear = §q2m263p2
2 . 2 .
2 4/62 2.3.2-2

PCircular = gq cy - ngm cyp

} [JDJ Eq.(14.44)] (4.57)

] [JDJ Eq.(14.44)] (4.58)

Thus
PCircular 2

PLinear
For a given applied force, there is 42 times more radiation energy if the force is applied
perpendicular to the charge’s velocity that is applied parallel to the velocity.
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Figure 4.9: Distribution evaluated in the plan ¢ = 0.

4.9 Radiation Spectrum

Go in the observer’s frame:

aP(t) 1 dP(Y)
aQ k() dQ
= R DX — Zp (4.59)

ret

At) = \/g[Rf]m (4.60)

to obtain the power spectrum of the radiation we need to work in the frequency domain, so

wherein

H
decompose A as:

A(w) = —— / A e (4.61)
V2r Joo
and reciprocally:
A = —— / m dw A (w)e ", (4.62)
V27 Joo
From Parseval’s theorem the total energy radiated per df2 is
= ardor= [ wder (463

-0 2/0 dw| A (w)|? (4.64)

So the radiation spectrum per unit of solid angle is:

&1 (R, w)

O 2| A(w)|? (4.65)
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H
Thus we need to evaluate A (w)

A — Zm A x [(R ;36) x ] (4.66)
and so,
. g +o0 nx [(n— 3) X E}] iwt
Alw) = 27r\/2_C /—oo i K ) o

ret

since the quantity [...] must be evaluated at the retarded time, let dt = x(t')dt’ and t =

t'+ @ then the integral becomes:

+ e B
Z(w) __ 4 / ay'™ x [(7 _26) X ﬁ]eiw(t’JrR(f)) (4.68)
27T\/2_C o K
T -7 (t)

In the far-field regime (large |Z'|) we have: n = 7 ~ & constant in time. And
R=x—-7.a+0(1/z).
In the far-field regime the argument of the exponential rewrites:
R(t) AT ()
c

E=iw[t' + | = iwx + iw[t' — ] (4.69)

we henceforth ignore the term iwz since it has no contribution (the final result is o< |A(w|?)
and define

T (1
=) = iwlt’ — TC( ) (4.70)
we have
+ -t
Aw)= 1 / it [(”_f) x Bl =0 (4.71)
27T\/2_C oo K
and the intensity distribution takes the form
— -
1 (7, w) ¢ | [ ax[(i= B) x B] g
—— T =2A%w) = dt =0 4.72
dQdw () 4m2c /oo K2 ‘ (472)

To follow JDJ, let’s show that the vectorial quantity in the integral can be written as a
time-derivative, in the far-field approximation. Consider
ﬁ

nx(nx f) (4.73)
K ’ '
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and let’s compute

d [ax(xB)]  (ciit(—r)h— 3)r—&[(L—r)i— B]
. [7] _ - (4.74)

X — .
It is straightforward (see Eq. 4.37) to show that n oc 1/R and k = — .7 — ﬁn =—pF.n+
O(1/R). So

gl = {1 0= Bl (Gala-wa- 71}

So the vectorial quantity is a time-derivative and we can write:
£ [ < B)
— X X -
Aw) = o [ | s
e dt K

27T\/2_c
_ q ﬁx(ﬁxﬁ) (1) T e 2(t)
= 27“/2_6{‘[#]6 Oo—zw/_oo dt[nx(nxﬁ)}e

The first integral is zero (in principle on should introduce a decay term e~*l with ¢ > 0,
perform the integral and take the limit e — 0).We finally have:

d*I(h,w) Wt [T — o ar|?
’ — ~ ~ iwt — c ]
T e /OO dtln x (0 x f3)]e (4.75)
— — —
Nota: [n x (n x )] = Gsinf = |n x §| where 0 = Z(n, §).
4.9.1 Case of circular motion
n = sinfj+ cosbz, (4.76)
3 = Blsin(wot))i + cos(wot)2], (4.77)
g = 2, (4.78)
€, = N XIT=—sinbhz+ cosby. (4.79)
N N — = aN —
Ax(xF) = (1 F)n— 5
= BlewtCol + Cupt(cs — 1)2 — Copi®
= ﬁ[—5w0t€|| + CutS0€ 1] (4.80)
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Let’s now consider the argument of the exponential function =. First we note that 7.7 =
rcos @ cos(m/2 — wet') = rsin(wpt’) cos § and

~ ., AT
=E=idw(t —

- ) =wlt' — gsin(wot’) cos 0] (4.81)

Also if P catch an impulse of radiation from q: ¢’s radiation is confined in forward direction,
0 is small, and the pulse originated near wyt ~ 0. Under these approximations:

—

6<<1171££1t<<1n X (nx () = B(—woté) + 0é) (4.82)
and,
1 r 1 62
li -= = "— —Jwot’ — = (wot')’](1 — —
9<<1,1ur1£1t<<1 { “ {t c[wo 6(w0 il 2 )}
/8 /
= u){(l—ﬁ) 92+6—(w0t) }
wt', wp
= —(y" 0?) + ——(wot')>. 4.83
O+ 50%) + 2 () (483)
The spectral energy density is:
d?I G*w? 2

+o0
/ dtﬁ(—wotgn + 9€J_)65

o0

dQdw A72c

2

= ‘ — A (w)é + AL(w)es (484)

This displays the two polarization associated to the radiation. Nota: || and L polarizations
are also respectively refer to as ¢ and m-polarizations.

where
A qw e wol '\ i%l(y~2+6)t+ 5h= (wot')?]
= dt 2 3w . 4.85

( Al ) 2my/e ) 6 )" (455)

let & = \/ﬁ dt = 2/~ + 0%dx; and let § = 32 [y7% 4+ 6%3/2, then

(40) -5 [ Toe (i e s

oo - ' 2T T
dt i(xt+at?) _ Az
/_oo ’ (2a)3 7\ (3a)1/5 )

we have the identity:

where A; is the Airy function, Note also that A;(z) = Ly /32Ky /3 (22*?). Thus:
Foe o 3N 2
dzeiatlrtse’] = =—F7A; |[= =—=K . 4.87
| a5 ) V3l e
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For the other integral. Note that

+eo - : 1d [T 3 2m x
dtt i(xt+at3) _ - ¢ i(zt+at )dt — A
/_ ‘ idr J_o ‘ (2a)1/37 7\ (3a)l/3 )’

[e.9]

The prime denote the differentiation w.r.t. total argument of A;. Inserting a = £/2, and
x = 3¢/2 we get:

+o0
ettt gy — 2T g
/oo xe 37 dx (35/2)1/314Z

2/3
(%) ] . _%%Kw(g). (4.88)

where we have used: Aj(z) = = /32K5)3 (§x3/ ?). So the spectral intensity per unit of solid

angle takes the form:

&1 ) )
aas = A+ AL W)
¢ W\’ 2 2\2 | 72 0° 2
= 3. (w—0> (V72 +67) [K2/3(§)+—7_2+ €2K1/3(§)}

or, introducing & = %50[7*2 + 6732 = %wic[l + 7262]3/2;

P21 3¢2 , 1 , 6
dQdw w2 424602

Ky55(8) + me/g(f)}

High frequency radiation occupies § < v (< 77! for w > w.) and low frequency

2we

radiation occupies 6 > ~~1. It is usual to also define a critical angle as 6, = % (T)

For low frequency w < w,, the frequency spectrum integrated over the solid angle is:

1 2]
d ~ 27, { d ]
0=0

dw dwd$)
21 (2w, 1/3 3 q*
-~ ( " > o 2162 K3 5(6)]o=0- (4.89)
£(0) = 55- < 1 50 that
r(2/3)]" w \**
2 2/3 o [ %
R e N = I (490)
So
dI 6 ¢° o\ 6 ¢ w 1/3 s
T T T =—— 4.91
dw s C/Y (2(-‘-)0) T C’V (373&}0) X w ( 9 )

for w < w,, so it is very broad y-independent spectrum.
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4.9.2 Angular distribution

we need to calculate [[* dwlis. Do the variable change € = 32 [y~% + 6%*/* then:

dQ

al 3q 3wo 9 6’2

qa - W—Qcm/ 3 {Kz/s(f) 2y K35(6) ¢ d€
9¢  Yuw T2 N 5% %0

¢ [L+ (10)2572 |144 ' 144 (1 + 262

where we have used the identity:

00 2 1—14 2
/ w? K} (aw)dw = T 3 K
0 32a3 cos(mp)

(4.92)

Thus we finally have:
ar 7 q° YPwo 1 5  ~20?
dQ 16 ¢ [y2 + 62]5/2 7 (14 ~%6?)
The total energy radiated is AW = [dQ4L = 27 [df% the integral on 6 should be
within [—m, 7] however because we did a small angle approximation and since dI/dQ is
significant only for v < 1 we do this integral from [—o0, 0o]:

AW = 27r/ d@ﬂ
0

} [JDJ, Eq.(14.80)]

do
B 77Tq 5 /+oo 1 +§ 7292
TR U T T (1t
s 5, 4 4 e, 1
- TL el L N 4.93
g ¢ ¥ [3’y+157} 6 c ity (4.93)

There is 7 times more energy radiated in the [|-polarization than in the L-polarization. The

total energy radiated is
47 ¢
AW = —q—'y4w0
3 ¢
where wg = ¢/r.
Let show that the previous result is in agreement with the radiated power associated to

circular motion we computed earlier in this chapter.

2 2 2
AWciT‘C - Pcirc t ( q 3 72p2) _7T
C

Wo 3m?2 Wo
2 ¢ 2\2 2T 47”1 4,2 3
= ngCgfy (,ymrw()) W_O 3 03,7 Wy
4 ¢*
- 1 4.94
5,7 (4.94)
The dI /dw angular-integrated spectrum was derived by Schwinger ® to be:
dl 2 w 400
== V3Ll Y K 5(x). (4.95)
w C We Jufw.

3Phys. Rev. Lett. 75, 1912 (1949)
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Figure 4.12: Integrated frequency spectrum.

4.9.3 Case of periodic circular motion

The results derived in the previous pages pertains to instantaneous circular motion, for which
the spectrum is a continuum. If the motion is periodic, the associated spectrum is discrete.
The tool for analyzing this type of motion are the Fourier series. First we note that the
period measured by an observed in the far field (7') is the same as the period of the particle
motion (7”). We now have to introduce the Fourier series decomposition:

n=-+oo
- _ C = _ - —inwot
A(t)_,/E[EE]m_ D Ayt

n=—00
where,
27 Jwo
—>n _ ﬂ Z(t)einwot
2 Jo

Following what we did previously we can show:

— 27 /wo

/ q W, . R = P

An = VT (—inw / dth x (H x emwo(t T
277\/2027T( 0) 0 ( )

where the v/27 come from the difference in normalization factor between the Fourier integral
transform and series.
The spectrum is now discrete w = nw with n € N.
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4.10 Thomson & Compton Scattering

“Scattering” of an e.m. wave by a charged particle (say e-). But e- has no surface —
radiation is not really scattered. Radiation emitted by the e- as it oscillates in the incoming
radiation field is the “scattered” radiation.

In term of photon: photon with wavelength A strikes a stationary e- and bounce off with
wavelength \.

P*+P® = PS4+ P2, (4.96)
P, = Pl +P'—PF; (4.97)

So the norm is:
m202 = (Pea_ + onz - P,?;)(Pe_@ + P’y,oz - P’y’,oz) (498)

remembering that for a photon P,P* = 0 we finally end up with

POPe o= PyPe o= PP o=0 (4.99)
we have:

P.o = mc(E,)2) = De.D\=mE, (4.100)

B E., ELE.,
PUPy o = 77% - ?7'7’7’ = —DyPy cost + % (4.101)
P._oP% = mE,. (4.102)

Taking E., = hf (and similarly for 4") we finally obtain:
h

A—N=—(1- 0). 4.103
(1~ cost) (4.103)

This is the usual Compton scattering. Thomson scattering is the non relativistic limit of
Compton scattering (so take ¢ — 00) so A = \.

Cross section for Thomson scattering:

The cross-section is defined as:

E radiated/time/solid angle

= . 4.104
7= Tncident flux/unit area/time ( )
ﬁ
e- is at rest 4 =0, and
AP(t) 2 Jix [0~ F) x B
e _
_ 4.105
dQ) dre K® ( )
-
2 |5« [h 2
350 e X [nx (] o . o
= © 4.106
" 4ne K5 47rcﬁ S ( )
- -
where ©/(n, ). Introducing the acceleration @ = ¢ 3 we have:
dp(t/> 62 . 92
= ) 4.1
0 173 Sin ) (4.107)
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Figure 4.13: Conventions and notations for the Thomson scattering geometry

Also note that in the NR limit ¢t — ¢’ so dg—g(;) = dlzgl). We now need to find @ .

— T =
Let’s consider an incoming plane e.m. wave of the form E (7 ,t) = éEye’* ¥t then
we have

we only consider the E-field contribution since = 0. Let ¥ = k2.
From the figure we have:

€ = cosyYx +sinyYy (4.109)
n = sinfcos@x + sinfsin ¢y + cos Oz (4.110)
’fl? = (159(ch¢ + S¢S¢) = aSeCy—¢ (4111)
= asinfcos(y) — ¢) = acosO. (4.112)
Thus
sin? © = 1 — sin® 0 cos* (¢ — ¢). (4.113)
t-averaged emitted power scales as (a?(t));.
1 (eBp\?
(a®sin? O); = 3 (u) [1 —sin®f cos*(¢p — ¢)]. (4.114)
m
If incident radiation is not polarized:
1
(cos® (¢ — @) sin® B),, = 5 sin? 6. (4.115)
So
_ 1 (eB\*, 1.
(a®sin® O), , = 5 (WO) 11— 5 sin? 0] (4.116)
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So finally the radiated power per unit of solid angle takes the form

dP cEZ [ e?\® ) c
—hw="—">-—7] [1 0l = —r(1 0). 4.117
(207 = Tor (nu?) (14 cos”6) = el + cos™0) (4.117)
The incoming Poyinting flux is:
cC = —
S = —FEXxXH" (4.118)
8T
the time average power per unit area is
dP c
=S =_—_F2 4.119
do gr 0 ( )
So the cross-section is:
2
do do dP lcge E?
— = —=— 1 0 4.120
aQ ~ dpdn CEQ[ + cos™ 0] (4.120)
1
=3 r2(1 + cos®0) (4.121)
This is Thomson scattering formula. The integrated cross-section is
2m
1671
o = / d¢/ desm@—az 2”2 r2 (4.122)
8m 2,
= 4.123
= (1.123)

4.10.1 Case of Bounded Electrons
Thomson and Compton scattering apply to a free-electron. Let’s now consider a bounded
electron whose dynamics is described as a damped oscillator model:

ATV +02T = LE. (4.124)
m
As before consider E — eEyet i(k T-wl) Take T = 7 oe “!. We then have:
—w? —iwl + w7 = égE ei?‘? 4.125
( 0 0 0
m

e
assume k.x = 0, that is |x| < A (e- orbit is small compared to radiation wavelength)

Then
<F
¢ ¢ (4.126)

—
Xz

0=
wo—w2—sz

and
— 2— 2 € 2 w?
A =—-wT = |a| = <EEO> T (4.127)
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02| = . (4.128)

Same as before but modified to include @’s denominator. So finally for a bounded e-, we
get:

dP 1 20
(=5) = 1; B —— eos -, (4.129)
T ) o] 1)
and the cross section is
d 1 1 20
A o8 , (4.130)

L [ R T

The limit w > wy, w > T" corresponds to Thomson scattering, while the limit w < wy,
w > T gives the Rayleigh formula:

do 1 ,(w * 9 4
— = = — 1 4.131
70 = 3¢ (w0> [1+ cos” 0] x w (4.131)

So high frequencies are scattered more preferably than low frequencies. This explains why
the sky is blue...
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Chapter 5

Scattering

5.1 introduction

Two types of scattering:

ec (g=—e,m,=09.1x107% kg)

— high energy loss, small deflection,

e nuclei (¢ = Ze,m,, > m,)

— low energy loss, large deflection

There are more e- than nuclei (factor Z) so Z more time e- scattering...

5.2 Energy transfer

Impulse approximation (IA):

- incident particle is not deflected by collision,

- target particle is stationary during collision.

E-field at target is: (we ignore magnetic field since e is stationary (in IA).

bz + vtz
b2 + 7 202¢2)3/2

—

The momentum transfer from ¢ to e is:

+oo +o0o A ~
- = bx + vtz
Ap = /_ dte E = —qefy/ dt(bQ 2R

oo —00

o 0+ A20%2)3 vb ) (1+u2)3
—qe . [ u }Jroo _ 2ge

wh " V1+u2 BT

The associated energy change is:

2 rqe\?
— 2 2\2 _ 2~ .
AT V (Apec)? + (me2)? — mc? ~ - (vb)
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where the RHS approximation is written in the non-relat. (NR) limit (Ap < mc). For e-:
AT, = AT % For nuclei AT, 7?1—’2; o 222 Hence

Mn

AT,

So we see that e- are much more efficient that nuclei at extracting energy from incident
particles. But when is the IA valid? Let’s check the assumptions:
1- incident particle travels on straight path:

AT, gn\2 m m Z
= = -7t = T« .
( e ) My, m, 1836 < (5:5)

Ap.  2qe  2qe/b 9 E electrostat. 22‘ (5.6)

0 = = = — pum pu—
yMv  yMv?b vy Mv? incident Energy E

S0kl =VKE.

2- target remains stationary = recoil distance during collision is d < b. The interation time
b

is 7~ et and corresponding recoil distance is d ~ %7’ SO
Ap. b 2qge/b
d<b= "’ «1= Q/2<<1. (5.7)
m yv ymu

this is a stronger condition than the one coming from 6 < 1 by a factor M /m.
So let’s keep the stronger condition (and rewrite it by making the classical radius of e-

appearing):
2 qe?/(mc?) ¢?

il 1 5.8
ve b v? < (5:8)
So TA is valid when:
2 qre
~1’e 1 5.9
Byebd < 59)
The NR limit implies:
A . 2 2 2
Pe o 1o 20 g 10/
mc much e (b
2qre
= -—-— K 1. 5.10
5ep < (5.10)

Same as condition for IA to be valid but with v — 1.

Now consider the case when the charge ¢ passes through a bulk material (many e-), let
ne be the electron density. We have to add all their respective energy gain to deduce their
influence on ¢’s slowing down. We do not need to consider the nuclei to a good approximation.
The total number of e- in a cylindrical shell of radius b and thickness db is:

N, = n(vdt)(2wbdb) (5.11)

The differential energy loss by the charge ¢ is:

d*T, 2 /qe\?
= —omnub | = (L 12
datdp e [m (m) } (5.12)
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Figure 5.3: 7777

(minus comes from energy is lost by ¢). Integrating over b gives

dT, 2 [Pmas b
Ty g, l0) / i (5.13)
dt mv Jy b
= —4mn, 1 . 5.14
™ p— n b ( )
We cannot integrate from 0 to co. When b — 0, IA is no more valid. IA is valid when
2 qre
= dle 1
Breb S
= Take by = %gre = L

(5.15)
T ymw?”

Choice of b,,.,: e- are bounded with energy E.. Their orbits have angular frequency
we = E./h. We must have the collision time 7 < wy ' otherwise target not stationary and
IA not applicable. This gives:

b bmax 1
T~ —; = — (5.16)
yvo v Wo
= bmax = ﬂ
wo
Then
T 2 v 2
T, = —4mn, (4) In =2 = —47n, (4e) In — Y ) (5.17)
dt muv W‘fwg mv  wWobmin
2 2.3
_ g, LSy T (5.18)
mu gewy
Note that dAT,/dt = dE/dt (E is total energy of ¢), and (1/v)d/dt = d/dz so we can
write:
2 2.3
d—E = —4mn, (g) In ymy
dz

oot 10 (DI B (13.9)] (5.19)
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This equation has been derived under the IA. Compare to Bohr’s results (1915) more carefully
derived:

dFE 2 1.123y?*mov? 102
— = —4mn, (4e) In ymr 2t : (5.20)
dz mu? ge{w) 2 ¢?
where (w) represents the average angular frequency of the bound electron in target. The
agreement between Bohr’s and the equation we derived is no bad: the IA seems to contain

the essential physics.

5.3 Influence of Dielectric Screening

For particles not too relativistic the observed energy loss is accurately given by the Bohr’s
formula for all kinds of particles in all types of media. For ultra-relativistic particles observed
energy loss less than what predicted with Bohr formula = reduction of energy loss is due to
“density” effects.

In dense media, dielectric polarization alter the particle’s field compared to free-space

Problem of finding field in the medium can be solved using the Fourier transform.
Consider a dielectric medium, € = e¢(w), = 1. In Gaussian units we have:

[]A = %J‘l (5.21)
where [[] = 0,0% = 5 — 0; V. A = (O, _A>) and J“ = (pc/e, 7)
Define
P70 = —— / " P (T w)e
V27 -
F(7,w) = L +OO dwF (T, t)et™!
V271 -
F(7w) = (273 - /_ :O JF PR, w)ek ™
— Too - =
F(k,w) = ﬁ/ﬂo dk F(Z,w)e k*

two first eqns: Fourier transform in time, two last eqns: Fourier transform in space.
The source of the field is the incident point charge (¢) so we have:

p(@,t) = ¢5(F =t
J(@t) = 0p(T,1)

The time and space Fourier transform is:

o(Fow) = (2Z>2 / 07 / dt[gd(F — TH)e K70
_ q —i(k.w—wt _ 4 -
— dt = —0(w— k. 22
Cat / e L~ 7) (5.22)



So finally:

p(k W) = 215@) %) and T (% ,w) = L5(w - K.7) (5.23)
T

Now transform the wave equation in the Fourier space:

(1A% — (K — e(w)%) A = 4= jo

So that:
po— A% (5.24)
clk? — e(w)%]
or
an T o
N
A = T~ Yewa(k,w)
clk? — e(w)“c’—z] c
4p 2¢0(w — ? )

(D: =

The electrlc field is then given by

E = —v<1> 158 or E(k,w) = i(4e(w)T — k)@ and
- - ce(w) 77 —
B = VxA—wkxA:zckxvfI).Hence
— — —
E(K,w) T —
’ =1 ¢ Sk, ,w 5.25
<§<?,w>> ( Ly )0 o

We want to find the ﬂgw of energy away from the incident particle’s trajectory = find the
Poynting flux = find E (7 ,w) and B(7,w):

E(7 LT R )~ F)o(F w)et T 5.26

(@) = s [ A Eel) = = Flo(F e (5.26)

o0

Let’s specify the problem: consider @ = b# and take v = v3.

N ' 7 —| §(w — k) kb

€
' . . wuv .
_ 3/26 ///dk;dkdk; o =y + (Soew) — k) 4]
5(“’—]“)) piksb.
k2 — e

the term in k,3 has no contribution to the integral of k,. Let’s integrate over dk.:

E(7,0) = '3/26 //dk: dk, { kod + — <—e—1) }

zkb

X 2 2
k4 (270 - e

c2

(5.27)
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Let A=%/1— % and T = [ [ dk* 54575 Then the E-field takes the form:

E(7,w) = ﬁi‘l{ ‘g M(eﬂ 1)z } (5.28)

The integration over dk, gives:

+o0o T
(5.29)

ky
arctan < ——kg+,\2)
oo w/k% + )2

+00 1
dky—— o =
/_ Yk2 4 k24 N NIESY

[e.e]

So
1k [e'¢) zkzb + efzkzb

T = dk -
mﬁo avcEa

oo cos(k.b)
= 27 dk,———= = 21 K,(b)). 5.30
and & = —27AK; (bA).
So ﬁnally the E-field re-writes:
=N 2 A
E(7,w) = — AKl(bA)x — z—(eﬁ — 1)Ko(bN)Zz (5.31)
Now let’s find the B-field
ﬁ(?,w) = 2@? v CID(? w) = zev( k.y+ k x)@(?,w)
-
B w?2¢d(w—k.V) 7=
= 3/2///dkdkdk kpy + ky ]c [ICQ—G“C)—;] e
O(w — k.v) o kT

= 27T3/2 2q— y///dkdkdkk 2+k2+k2 w_g

the term in k,2 has no contribution to the integral in dk,. Integrate over dk,:
thab 1 1. d7T

— 1 v
B = —— 9% | [ dk.dk,k - 20— i
(27372 qcy// I T R A )

By inspection this is the same as z-component of F thus
— 2q R
B = —=AK1(bN)g. (5.32)
T

Now that we have E and B we are in position of computing the e.m. field energy flowing

out of a cylindrical surface of radius b extending from —oo to +00 in 2

[e%¢) 1 +oo
Cr_ o b/ S hdt = 27rb—/ (E x B).adt
dz oo AT J_

(5.33)
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we have:

— (E,B,: - E.B,i).h = —E.B, (5.34)
So

d&; b [
— = —= E.B,dt
dz 2/_0O Y

b o 00 . 1% .,
= —= dt [/ dsz(w)e_Wt} [/ dw' B, (w)e

47T —00 o0 [e.9]

= —9/_ OOEZ(w)By(—w)dw:—g

I [ BB

(e 9]

~ Re (—b /0 +°° Ez(w)B;(w)dw) (5.35)

Expliciting £, and B, we have:

Z_‘Zf _ —bRe{/+oo duw [—i\/g%%(l/e—ﬁ)ffo(%)]
. [\/%A*Kl(x‘b)” (5.36)

% = Re {/0+°<> dw%g—z[iwu/e - ﬁz))\*b]Ko()\b)Kl()\*b)}
- %%Re { / dw(iwA™b)(1/€ — ﬁz)Ko()\b)Kl(A*b)} (5.37)

The equation was first derived by Fermi. Note that A or € need to be complex to have
L.

To proceed with our calculation we now need to introduce a model for e(w). Use the same
model as the one used to study Thomson Scattering: we model the bound target electron as
a damped harmonic oscillator:

T(w) = wg —;Luﬂ <—wz')wF (5.38)

The dipole moment is just —e@ and the polarization is defined as the dipole moment
density that is —n.e7:

— nee? ﬁ(w)
P = —
@) m wi —w? —iwl
—1
- 6(“2 E(w). (5.39)
7r
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So we can write

@) =14 (5.40)
= wi —w? —iwl '

wherein w, = y/4mn.e?/m is the plasma frequency. Now we just plug this into % and

perform the integral.
Integral not so simple to perform. We follow JDJ’s suggestion and use the “narrow
resonance approximation”

w:wo:>b>\:b%\/1—eﬁ2~b%\/1—662 (5.41)

So

wWo b
b— ~ 21— 5.42
v 7T)\e ( )

bA < 1 if b < an atomic radius.Then, using the small argument approximation for the
modified bessel function we have: (see JDJ Eq. 3.103)

1
bA*

2~ 1.12
Ko(bA) ~ In2—In(bA) — = 1n< ; ) ~1In (%) (5.43)

DA*K1(DAY) ~ DA* 1

~ = 0.577 Euler constant.

& 2, , oo b (1123
o = quRe{/O dwiw(1/e — %) In ™

= zq2v27€e(Z) (5.44)
T

where 7 = [" dwiw(<L)In (L12) (we took 8 = 1). Explicit e(w) [recall that bA =

bA
b T ):

oo w? 1.123
I = 2/ dww( 5 5 p2 - )[ln( C)—lnw+
0 wp + wi — w? —wwl bwy,

1
+5 In(w?® — wg + iwf)} (5.45)

Now let’s perform the integration in the complex plane...

Two sources of poles: —wj + w? + iwl’ = 0 from the In(...), and w? + wj — w? —iwl' =0
from denominator of % All the poles are in the lower part of the complex plane. Consider
the integral along C. This gives:

Il —|— ]2 + 13 = O

, 80 Z = ily = i(—1Iy — I3). The i comes from the fact we drop the i when evaluating the
integrals I,,.
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Let’s evaluate the integrals:
0
I3 = / dww(...)In(...) (5.46)
+1i00
Let w = Q) with Q € R then:

I = — [ dOQ(.)In(..) = AN ——2
3 / () In(...) /0 witwd+02+Qr

1.12 1
X (ln 5 niQ+ = In(—Q* — wg — QF)> (5.47)
W 2
the bracket simplifies:
1.123 1 1
() == Ini—mQ+ = In(~1) + = In(Q + w? + Q) (5.48)
bwy, 2 2

the Ini and 1/21n(—1) cancel each other. So I3 becomes:

o0 W2+ Q24+ Qr
I; = dnN——->2
3 /0 wg—l—wg—i—QQ—i—QF

1.12 1
X (m ; g +3 In(Q% + wp + QI‘)) (5.49)

Wp

So I3 is real, so i[5 is pure imaginary and therefore its contribution to ReZ is zero.
Now consider I, let w = Re®, then

w/2 ; ; w2
i . . 7 1 p
L = z%l—rgo 0 idf Re™ e w? + w§ — R?e%9 — {ReT
1.123 o1 . ‘
X (m ; ¢ InRe? §ln(—w§ + R2e%0 4 iRe’eF)) (5.50)
Wp
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Taking the limit R =— oo, we get:

™/2 1.123¢  mw) 1123
L = / idfu? In ——=2C — =21 = (5.51)
0 bwy, 2 bw,
So finally energy loss is:
& 2 4, ¢°wy  1.123¢
— = —q“v"Re(Z) = — 1 5.52
Az al? (@) z bw,, (5:52)

where we have taken v = ¢. On another hand we have derived at the beginning of Part V
the energy loss under the impulse approximation to be:

d 2 2 2,2
ﬁ — _47Tne (qe) ln v — q C()p
dz muv wpb c

2
note that we have actually derived %, we also took v = ¢ in the latter equation.
The influence of dielectric screening is two-folds:

In 1< (5.53)

wa )

1- It removes the dependence of energy loss on atomic structure wy is replaced by w,
which only depend on the density number of e- (and not on their binding energy).

2- It reduces the energy loss from highly relativistics incident charge, the v in the argu-
ment of In is gone.

5.4 Cerenkov radiation

We now consider density effect in the extreme limit bA > 1 and look at the energy deposited

in the target. The large argument approximation for the modified bessel function gives:
—bA

Ko(bA) = K1 (b)) = \/geﬁ So the fields are:

—bA

— qe AL w1 .

E(T,w) = = Zi—it(=—p 5.54
—bA

B(7T,w) = 1% (5.55)

__y‘
CRVAP)
to get radiation A or € € C. Let’s take € € R (no dielectric screening). Then

A= %\/1 ()2 (5.56)

To have A € I, 1 — ¢3? < 0 = €3? > 1, this is the Cerenkov condition.

Now replace the field in the expression for %:
d 2 * 1
% - %Re (/ dw(iwN*b) (= — 52)K0(bA)K1(bA*)> (5.57)
0 €

e [ astiarn - )
= Re (/0 dw(iwA b)(e %) WoNT (5.58)

© 1,
/0 iw X(;—ﬁ)) (5.59)
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but radiation only when A € I that is for a frequency band w € [w;, wy.

dgf q2 wo 1
— = = d 1—— 5.60
dz v /., e €32 (5.60)
This is Frank-Tamm (1937) equation.
— —
The propagation direction of the wave is given by k and k is perpendicular to E and

B.Soif 0,.£(7, %) then

cosf. = =
El  E2+E?
A
= < . (5.61)

DRI

€

introducing A\? = (w/v)%(1 — €3?), we finally obtain:
1 m
= (5.62)

1
cosf, = = —m
V1—1+p5% Bye v

wherein ¢,, = ¢/+/¢€ is the velocity of light in the medium; ¢,, < ¢ so cosf. < 1 and 6 € R.
The shock wave feature should be derivable from the e.m. potential,

2 N SN
(k?—%)ﬁ@(k,cu):%p(k,w)

2 — — 4T — —
(kQ—%m) \/EA(k,w):éj(k,w)

So in the medium, A% takes the same form as in vacuum, under the renormalization ¢ —
q/\/€, ¢ — ¢p,. Using these potential we can directly get the Lienard-Wiechert potentials:

(550t 2)
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— —
Let ( =7 -0t R=7 -Z(t)=7 -Tt.So R=T7—0t+0(t—t)= ¢ +o(t—t).
Sot ! = BW) _ [¢+v(=t)]

= (t=t)? = L2 T —t) +02(t—t)?. = (02— B)(E—t)2+2C . T (t—t)+(2 = 0;
solve to get

(t—t)s = — CUE \/(ji (5.64)

R

Cm

—

For cherenkov radiation v > ¢, to obtain ¢t —t' > 0 € R we need: Z) v < 0 and (¢.70)% >
(v* — ¢2,)¢?, which means (vcosf < 0 or > 7/2, and cos? > 1 — 2, /v

0 > arccos(—+/1 — (¢ /v)?), (5.65)

which lies in [7/2, 7].

So potential and fields exist at time t only within a cone which the apex lies at { =

7 — Ut (i.e. the present position of incident charge) and for which the apex angle is

7 — arccos(—+/1 — (¢ /v)?). The 4-potential is A* = A 4+ A% where the & corresponds to
(t —1t')+. Now,

[HR]ret = |(]— - 1/Cm7ﬁ)§| = |§> — Cﬁ?[? + ?(t . t/)”
= [R- 207 - 2ot —t))
—
C.v
- —(t =1

Cm Cm

= (&A1) - T (5.66)

= Jifen(t —t) —

Expliciting (¢ — t’) in the latter equation (using 5.64), we get:

(KRt = C \/ — v2sin? 9—(1/1——s1n 0. (5.67)

both for (¢t —t')+. So the potentials are given by:

< éq()gt;) ) - %41 /1 —E’%sinQQ ( ém ) 269

The potentials have a singularity (a shock front) at sin®6 = (c,,/v)?, which corresponds to
the earlier results cos?6 = 1 — (c,,/v)?. Note that when the frequency-dependence of ¢ is
introduced the shock wave-front is smeared.
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g’'s with velocity v

Figure 5.6: 777

5.5 Scattering

Thus far we have only looked at energy loss from charges incident to a target. Now let’s
look at momentum transfer that is scattering. Let N’ be the number of incident particle
scattered from bdbd¢ into df2 per unit time; we have:

N’ do do N’
d*N = nvbdbdp = N'dQ = bdbdp = —dQ) = —d); = — = —. 5.69
nbdbdg = ¢ nv Q“5 T a0 T (5.69)
do . do b db
Under the impulse approximation we have sinf ~ 6 = size ’ % ‘ But
Ap 2qe
=— = 5.71
o= 22 (5.71)
for target e~ (see beginning of part V). so b = 702]\‘22 = ‘% = 793?\;1]2. So finally,
do b6, db 2ge \° 1
— == === ) = 5.72
aQ 62 ‘dG‘ <’7MU2> 64 (5:72)
For target Nuclei:
do 1 [ 2qZe 2
B [ S 5.7
aaQ 04 (vM 02) (5:73)

this is the small-angle Rutherford formula. scattering by nuclei is Z? times stronger than by e-.
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There are Z times more e- than nuclei, so the net effect is that nuclei scattering is Z
times stronger than e- scattering.

Average deflection angle in a material: To get the mean-square deflection angle, evaluate:

J d00?do /A [ d96*1/6*

%) = ~ 5.74
O = Taodejan = asei/e (5.74)
em(lm 0
do1/0 In Smaz
— femzn 3/ = 5 5 Omin 5 (575)
f d91/0 5(1/9mm o 1/0max)
So (%) ~ 267, In §22= for a single scattering event. This is just few times 62, which is a

small number.
Let’s estimate 0,,;, from physical arguments: b,,.. ~ a, the atomic radius because atomic
electrons almost completely screen the nucleus if b > a. So

2qZe 2qZe

Oin, = ~ 5.76
YormazMv? — yaMuv? ( )

e? e/ (mec?) Te
~ ~ ~ 1 5.77
am,c? am,c? 1836a < ( )

So to achieve a sizeable deflection angle, the incident charge needs either to undergo many
small-angle scattering of a few large-angle scattering.

e Case of many small-angle scattering:
Net effect: charge ¢ random-walk through the target (©%) = N(6?) and:
d(©?)

== no(0?) ~ 2nc6? . (0 mae/Omin) (5.78)
2

The distribution of angle after many small-scattering event (random-walk) is given by:

—92

PRw(ep) X 62<®%’> .

e Case of few large-angle scattering:
Consider the distribution of scattering angle for a single scattering event:

do 2qZe \ 1
mdQ = <W> @dq%’dQ (5.79)
In terms of projected angle 6, = 6sin ¢, this takes the form:
do 2qZe \ 1
—dQ = [ == ) —d#b,sin* ¢d )
iS) (VMUQ) g3 ¢do (5.80)

Upon integration over ¢ we find that the distribution scales as:
do,

1
03 > P1(9p) X
p

Oy

Pi(6,)d6,
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Chapter 6

Standard Formula Sheet

Definite Integrals
For n = non-negative integer,

o0
/ "¢ *dx = nl
0

o0 |
/ 33'2”6763:2 dr = (271,) ﬁ
0 nl (2\/6)271,4-1
0 |
2n+1 7ﬂw2 . n:
i T e dx 5 g

where 0! =1landn!l=1-2...(n—1)-n.
Stirling’s Approximation:

1
n! = V2rn"t? exp (—n + =+ O(l/nz))

12n
In(n!) = nln(n) —n (for n > 1)
Legendre Polynomials:
Pyf) = 1, Pi(x) = . Pyfr) = (32> = 1)/2, Py(ar) = (50° — 32)/2,
Py(z) = (35z* — 302% + 3)/8, Ps(x) = (632° — 702 + 15x)/8
Spherical Harmonics:
(=0 Y9(0,0) = /-
0\ T
=1 Y2(0,¢) = i(:080 Y0, ¢) = :F\/ieﬂd) sin 0
1 s L 81
(=2 Yy (0,¢) = \/i(?)cosQ@— 1) Y50, ¢) = F4/——eTsinf cosd
167 us
Y20, ¢) = Eeﬂqu sin? @
S 32T
20+ 1
For all ¢ : Y2(0,8) = 4+ Py(cos )
T



Numerical Constants:

h=1.05x 107" erg sec = 1.05 x 10734 J sec
he =197 x 107"eV m

e=4.80x 10""%esu = 1.60 x 10712C

€0 = 8.85 x 10712 C?*/N m*

me =9.11 x 1072 g = 9.11 x 1073 kg = 0.511 MeV />

ag = 0.529 x 1078 cm = 0.529 x 10~ %m
he=1.24 x10"%eV m

c=3.00 x 10'° cm/sec = 3.00 x 10%¥ m/sec
po = 4w x 1077 N/A?

m, = 1.67262 x 107** g = 1.67262 x 107" kg = 938.272 MeV /¢?
my, = 1.67492 x 1072* g = 1.67492 x 102" kg = 939.565 MeV /c?

Ny = 6.02 x 10?3 particles/mole

kp=138x102J K '=138x 10" erg K ' =862 x 107°eV K™

Spherical Coordinates (r,6, ¢)

Relations to rectangular (Cartesian) coordinates and unit vectors:

x = rsinfcos¢ 56:fsin@cosqﬁ—i—écos@cosqﬁ—qgsinqﬁ
y = rsinfsin¢ y = 7sinfsin ¢ + 0 cos O sin ¢ + ¢ cos ¢
z = rcost Z = rcosf —0Osinf

o 3
Il
—+
2
B
|
=
8
o
_l’_
Ny
o
~
&
D >

Line element:

Volume element:

Gradient:

Divergence:

Curl:

Laplacian:

= Zsinfcos ¢ + ysinfsin ¢ + Z cos b
= Zcosbfcos¢p+ ycosfsingp — Zsind
= —Zsing + ycos o

dl = Fdr+0rdo+ ¢rsinddd
dr = r*sinfdrdf de

Vi = %ﬁ”%%mr;ne%é

V-7 = %%(TQUT)—FTSLG%(QDGW)—Frsin@%_ﬁ

Vi = - ;ne [%(smevd,) - Z—Zj] f+% [511116%1}; = %(r%) 0
A

Y R U N A
V= r Or? (rf)+ r2 sin 6 06 sind 00 + r2 sin? @ O¢?
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Cylindrical Coordinates (r, ¢, z)
Relations to rectangular (Cartesian) coordinates and unit vectors:

T = rcoso :f::fcosqﬁ—gzgsin(b
Yy = rsing § = Fsing + dcos
z =z Z2=2z

ro= /22 +y? P = Zcos¢+ §sin ¢
¢ = tan"!(y/z) ¢ = —Fsine + gcos ¢
z =z zZ=2

Line element: Al = 7dr+ QAﬁ'r dop + z2dz

Volume element: dr = rdrd¢dz

Gradient: Vi = %f + %g—i b+ %2

Divergence: V - = %%(TUT) 4 %86_1;‘: + 881);

ot Vi = (15 - Ge] e |GE - Ge ot o - G ¢
Laplacian: Vif = %% (T?)_i) + 712% %

Vector Formulae
In the following formulae, A and B are vector functions and % is a scalar function.

Vx (V) = 0
V- (V x A) 0
Vx(VxA) = V(V-A)-V4
V(A- B) (A-V)B+(B-V)A+ Ax (VxB)+ B x (VxA)
V- (A x B) B-(VxA) —A-(VxB)
Vx(AxB) = ANV-B)—B(V-A)+(B-V)A—(A-V)B
V-WA) = A-Vy+yv-A
Vx (@A) = ¢V xA—Ax Vi
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