Purposes
Get familiar with circuits containing BJT-type and FET-type transistor.

1 Transistor versus diode
1. Take a 1N914 Si diode and measure its resistance (in both directions by flipping the polarity of the digital multimeter leads).
2. Take a 2N3904 transistor and measure the resistance for each pairs of terminals for both polarity (so you should perform six measurements).
3. Can you conclude that the transistor acts as two diodes?

2 BJT transistor characteristics curves
Connect the variable power supply, the 2N3904 transistor (npn) and a digital multimeter (DMM) as shown in Figure 1. Use a 1.5 V battery for V_{BB} and a variable power for V_{CC}. Take $R_B = 470 \, \text{k\Omega}$ and set V_{CC} to 0.1 V.

![Circuit diagram](image)

Figure 1: Circuit for parts 2 and 3.

1. Measure the voltage drop across R_B to infer I_B.
2. Measure the voltage drop across the 100 Ω resistor, this gives V_E.
3. Compute V_{CE} and I_C for this value of I_B.
4. Repeat the measurement of V_E for $V_{CC} = 0.2, 0.5, 1, 2,$ and 5 V.
5. Plot I_C versus V_{CE}.

6. Change R_B to 200 kΩ and then to 110 kΩ and repeat the measurement/plot of the I_C versus V_{CE} curve.

7. Estimate the value of β for this transistor.

3 BJT transistor characteristics curves: simpler measurement

Modify the circuit of the previous section to measure the voltage across V_{CC} on channel 1 and the voltage across the 100 Ω resistor on channel 2. Replace the V_{CC} power supply by the function generator setup to produce triangular signals.

1. Set the O-scope to “X-Y” mode. This means the x-axis will now read volts from channel 1 input and the y axis will read volts channel two input.

2. Sketch the curve you observe on the scope and compare them with the one you measure in Section 2.

4 FET transistor characteristics

Use a power supply set to 5 V for V_{GS} and a 10 kΩ potentiometer for R_G to set the voltage at the gate V_{GS}. Use the variable power supply for V_{DD}.

1. Set V_{GS} to 0 V

 (a) set $V_{DD}=0.5$ V.
 i. Measure V_{DS} with a digital multimeter.
 ii. Subtract V_{DS} from V_{DD} to get the voltage drop across R_D
 iii. Use this value to infer the current I_D.

 (b) Repeat the measurement of V_{DS} versus I_D for $V_{DD} = 1.0, 2.0, 3.0, 4.0, 6.0, 10.0,$ and 15.0 V.

 (c) Graph I_D versus V_{DS}.

2. Redo all the previous measurements for the values $V_{GS} =-0.5$ and -1.0 V.

3. Estimate the transconductance of the FET transistor used.
Figure 2: Circuits for part 4.