Purposes
Get familiar with the usage of an oscilloscope and a function generator. Understand how a
digital multimeter works with AC signal. Show that the current flowing in a capacitor is
proportional to the time derivative of the voltage across the capacitor.

1 Time domain study of oscillations

Build the circuit shown in Figure 1 with \(L = 1 \text{ mH} \). Setup the signal generator to provide square
signals with proper amplitude and frequency to clearly see the signal oscillation due to the RLC
circuit: tune \(f \) closed to the resonance frequency.

![Figure 1: Circuit for parts 1 and 2.](image)

1. Take \(C = 100 \text{ nF} \) a vary \(R \) from 0 to 5 k\(\Omega \), observe, i.e. make a sketch and describe, the
different oscillatory regimes. For \(R = 0 \), the oscillation are still damped why?

2. For \(R = 0 \), measure the oscillation period, \(T_0 \), for \(C = 11, 27, 51.1, 100, 220, 470 \text{ nF} \). Plot
\(\omega_0 \equiv 2\pi/T \) versus \(C \) and superimpose the theoretically expected curve.

3. For each of the previously use capacitor value, vary \(R \) and find out the critical resistance
(corresponding to the critical damping regime). Plot \(R \) versus \(C \) and superimpose the
theoretically expected curve.

4. For the case \(C = 100 \text{ nF} \) measure the amplitudes of consecutive oscillation maxima \(U_n, U_{n+1} \) (see Figure 2) and using the formula \(\delta = 1/T_0 \log[U_n/U_{n+1}] \) compute the damping
constant \(\delta \).
2 Resonance

Consider the same circuit as built in the previous section but setup the signal generator to produce a sinusoidal wave. Use a capacitor with capacitance $C = 11 \text{nF}$.

1. For different values of R approximately corresponding to quality factor of $Q = 0.1, 1, 2$, and 5:

 (a) vary the frequency of the sinusoidal signal,
 (b) for each frequency setting, measure the voltage across the capacitor V_c and the tension produced by the frequency generator V_g (the oscilloscope will be used in "standard" mode),
 (c) compute the ratio $T(f) \equiv V_c/V_g$,
 (d) switch the oscilloscope to X-Y mode you should see an ellipse,
 (e) measure the phase between the two signal $\Phi(f)$ (see section 3).

2. For the four cases of resistance values, corresponding to $Q = 0.1, 1, 2$, and 5, plot the curves $T(\omega)$ and $\Phi(\omega)$ as a function of ω/ω_0 [ω_0 is the resonance frequency of the circuit that you can compute knowing L and C].
3. Superimpose with the theoretical curve for $T(\omega)$.

3 Lissajou’s technique to measure the phase between two sinusoidal signals

Let consider two sinusoidal voltages $V_1 = A \sin(\omega t)$ and $V_2 = B \sin(\omega t + \phi)$. V_1 and V_2 are respectively applied to X- and Y- channel of the oscilloscope. The oscilloscope, when operated in X-Y mode, displays an ellipse; see Figure 3. When $X = 0$, $A \sin(\omega t) = 0$ so $B \sin \Phi = [OB']$.

![Figure 3: Illustration of Lissajou’s technique.](image)

The distance $[OB]$ is B, the signal amplitude. Thus $\sin \Phi = \frac{[OB']}{[OB]}$. Similarly one can show that we also have $\sin \Phi = \frac{[BC']}{[BC]}$. For this technique to be accurate you should first make sure when no voltage is apply to channels X and Y that the spot is well centered on the screen. Finally is the ellipse is such that its main axis as a negative slope then the phase is $\pi - \Phi$ where Φ is defined by either of the aforementioned equation.