PHYS 690C: Homework, set \#4 (all points are bonus)

due date: May 8 th in my mailbox.

exercise 1: Consider the $\mathrm{K}-\mathrm{V}$ distribution

$$
f\left(x, x^{\prime}, y, y^{\prime}\right)=f_{0} \delta\left[\left(\frac{A_{x}^{2}}{\epsilon_{x}}+\frac{A_{y}^{2}}{\epsilon_{y}}\right)-1\right],
$$

where $A_{i} \equiv \frac{i^{2}}{w_{i}^{2}}+\left(w_{i} i-w_{i}^{\prime} i\right)^{2}$ for $i \in\{x, y\}$, and f_{0} is a normalization factor. Prove that the KV distribution yields a uniform distribution in the $x-y$ plane and give an expression for the density.
exercise 2: Similarly to the way we derived the rms envelope equation in x, y, derive the envelope equation for the x, y, and z directions. You will assume the velocity of the beam is $\vec{v} \simeq v \hat{z} \equiv v_{z} \hat{z}$, and introduce $x^{\prime} \equiv d x / d s \simeq v_{x} / v \ll 1$, similarly for y-axis and $z^{\prime} \equiv d z / d s$. You should recognize that $\vec{v}=\beta c\left(x^{\prime}, y^{\prime}, 1+z^{\prime}\right)$. In the final results, the moments $\left\langle x F_{x}\right\rangle,\left\langle y F_{y}\right\rangle$ and $\left\langle z F_{z}\right\rangle$ should appear (do not try to compute them!). The envelope equation should be of the form $\sigma_{i}^{\prime \prime}+\ldots=\ldots$ with $i \in\{x, y, z\}$
exercise 3: Consider a uniform ellipse distribution in the $x-y$ plane with an infinite extent in z-direction. Derive the electrostatic potential produced by such a distribution (I gave the result in class), you can help yourself with a more general derivation given in R. L. Gluckstern "scalar potential for charge distributions with ellipsoidal symmetry", Fermilab Technical memo TM-1402 (available from Fermilab library website).

